
VLS1 DESIGN
1998, Vol. 7, No. 1, pp. 97-110
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1998 OPA (Overseas Publishers Association)
Amsterdam B.V. Published under license

under the Gordon and Breach Science
Publishers imprint.

Printed in India.

Placement and Routing for Performance-Oriented
FPGA Layoutt

MICHAEL J. ALEXANDERa’*, JAMES P. COHOONb, JOSEPH L. GANLEY and GABRIEL ROBINSb

aSchool of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164-2752;
bDepartment of Computer Science, University of Virginia, Charlottesville, VA 22903-2442;

CCadence Design Systems, lnc., San Jose, CA 95134-1937

This paper presents a performance-oriented placement and routing tool for field-
programmable gate arrays. Using recursive geometric partitioning for simultaneous
placement and global routing, and a graph-based strategy for detailed routing, our tool
optimizes source-sink pathlengths, channel width and total wirelength. Our results
compare favorably with other FPGA layout tools, as measured by the maximum
channel width required to place and route several benchmarks.

Keywords: FPGAs, placement, routing, performance-driven layout, Steiner trees, arborescences,
multi-weighted graphs

1. INTRODUCTION

Field-programmable gate arrays, or FPGAs, pro-
vide a versatile and inexpensive way to implement
and test VLSI designs [7, 16]. FPGAs are available
in a number of styles and configurations [40]. One
of the most common FPGA architectures [9, 43]
consists of a matrix of user-configurable logic
blocks interconnected by a set of programmable
routing resources (Fig. 1). FPGA reprogram-
mability is achieved at the expense of performance,
as there may be long signal delays through the
reconfigurable routing resources [39]. To increase
FPGA performance, partitioning and technology

mapping have been extensively studied [11, 20, 27,
35]. However, the observation that circuit perfor-
mance is impacted more by routing delays rather
than by device delays [6, 26] has focused recent
attention on routing [8, 15, 31, 32, 42].

This paper presents a performance-oriented
FPGA Placement and Routing (FPR) tool. FPR
is based on a recursive geometric strategy for
simultaneous placement and global routing, fol-
lowed by a graph-based detailed-routing phase.
FPR heuristically minimizes both wirelength and
source-sink pathlengths. Thus, FPR optimizes
the number of FPGAs required to implement a
given design, as well as the performance of the

*Corresponding author.
tOur benchmarks and additional related papers may be found at WWW URL http://www.cs.virginia.edu/,,vlsicad/.

97

98 M.J. ALEXANDER et al.

Switch Block

Block ’’Edges \
Channel Edges Logic Block.

FIGURE A typical FPGA architecture.

implementation. In particular, FPR successfully
lays out a number of large industrial benchmark
circuits using smaller channel widths than other
FPGA layout tools, and also optimizes source-sink
pathlengths as a secondary criterion.
The rest of the paper is organized as follows.

Section 2 provides an overview of our methodo-
logy. Section 3, Section 4 and Section 5 detail the
main phases of FPR, namely placement, global
routing and detailed routing, respectively. Section
6 establishes the efficacy of our implementation on
industrial benchmark designs, and we conclude in
Section 7. The Appendix develops some theoretical
results for multi-weighted graphs used in the
multi-objective optimization phase of detailed
routing. Preliminary versions of this work have
appeared in [1, 2, 3].

2. OVERVIEW

FPGA logic blocks typically contain a program-
mable look-up table, which enables arbitrary
combinational-logic functions of up to four vari-
ables to be implemented. Each logic block thus
contains a small portion of the overall circuit logic.
The logic blocks are interconnected by channel
segments, which are linked together by switch
blocks. The switch blocks contain programmable
internal connections among certain subsets of
incident channel segments. Switch-block edges

are often implemented as pass transistors, which
can be "turned-on" to interconnect incident
channel edges. Finally, connection edges allow
logic-block pins to latch onto adjacent channel
segments.
During the FPGA design process, placement and

routing are performed following the technology
mapping phase. Technology mapping decomposes
the circuit design into units of logic, which are then
assigned to specific logic blocks during placement.
Thus, the input to FPR consists of unplaced logic
blocks and a set of nets (a net is a set of logic block
I/O pins that must be interconnected). FPR
performs simultaneous placement and global rout-
ing using a recursive geometric technique called
thumbnail partitioning, which decomposes the
circuit area into an mxn grid, for some small fixed
rn and n. This grid is called the partitioning
template. The placement is then optimized and a
global routing is determined relative to the
partitioning template using optimal rectilinear
Steiner arborescences (RSAs) [34] (i.e., minimum-
weight shortest path trees). Since rn and n are small
and fixed, these optimal RSAs (called thumbnails)
may be precomputed for efficient lookup during
execution. Setting m=n 3 yields the basic 3x3
partitioning template that is used in our imple-
mentation (Fig. 2(a)). Thumbnail partitioning is a
generalization of sharp partitioning [5], which in
turn is a generalization of quadrisection [38].
Our strategy consists of placement and global

routing, followed by detailed routing. During
placement and global routing, a partitioning
heuristic is used to assign the logic blocks to
regions in the partitioning template, minimizing

(.) (b) (c) (d)

FIGURE 2 (a) Partitioning template for m=n=3; (b) a
sample pointset (the source is at the upper-left); (c) one of its
possible thumbnails; and (d) the associated virtual pins.

FPGA LAYOUT 99

source-sink pathlengths as well as the total length
of the thumbnails. When the circuit area is divided
according to the partitioning template, each logic
block lies in one of the mxn regions. For each net,
we construct a pointset in the mxn grid, where a
point is present in a region if some logic block
associated with the net lies in that region (Fig.
2(b)). A thumbnail over this pointset is then
determined (Fig. 2(c)).
To reduce overall routing congestion, alterna-

tive thumbnails are selected in order to balance the
number of thumbnail edges that cross each edge of
the partitioning template. "Virtual" pins are then
created at the intersections of thumbnails and
partitioning-template edges (Fig. 2(d)), and the
algorithm is then applied recursively to each
subregion of the partitioning template. This
scheme simultaneously produces both a placement
and a global routing in which source-sink path-
lengths, total wirelength, and maximum channel
congestion are all heuristically minimized. The
resulting placement and global routing is then used
in the detailed-routing phase to produce a
complete routing solution.
During the detailed-routing phase, nets are

assigned specific routing resources based on global
routes. By modeling the FPGA routing architec-
ture as a graph, efficient graph-based algorithms
may be used to produce detailed-routing solutions.
Nets are routed one at a time; as resources are
committed to nets, the corresponding edges in the
underlying graph are made unavailable to subse-
quent nets.
The next three sections detail the main phases of

FPR, namely: (1) logic-block placement and
thumbnail selection for balancing congestion, (2)
global routing, and (3) detailed routing.

3. PLACEMENT

The placement phase overlays the FPGA with
the partitioning template and initially partitions
the design logic into m.n regions. Cut lines of the
partitioning template go through switch blocks so

that each logic block lies entirely within a single
region of the partitioning template. The distribu-
tion of logic blocks among regions of the
partitioning template is then improved using simu-
lated annealing [28], where a move consists of
swapping two logic blocks that lie in different
regions of the partitioning template. The simulated
annealing objective is to minimize (1) the sum of
the maximum source-sink pathlengths in the
thumbnails over the nets, and (2) the total length
of the thumbnails for all nets. Note that the I/O
blocks on the perimeter of the FPGA are not
moved during these iterative refinement steps.

Routability is a primary concern during the
FPGA design process [6, 10]. An important
measure of the quality of a placement and global
routing is maximum congestion, which in our case
is the number of thumbnail edges that cross any
given partitioning-template edge. Thus, once logic
blocks have been assigned to regions in the par-
titioning template, a congestion-balancing step is
undertaken as follows.
A typical pointset can have many thumbnails;

for example, Figure 3 illustrates a pointset and its
eight thumbnails. The objective of the congestion-
balancing step is to assign one of the precomputed
thumbnail alternatives to each net in a manner
that minimizes the maximum thumbnail conges-
tion. This task is accomplished using the following
greedy heuristic:

Sort the nets in ascending order of the number
of distinct thumbnails for each net; and

FIGURE 3 All eight thumbnails for the pointset shown in the
3 x3 partitioning template (source is at upper-left).

100 M.J. ALEXANDER et al.

For each net on this list, choose the thumbnail
that minimizes the maximum congestion in-
duced by all previously processed nets.

Intuitively, this scheme postpones the global
routing of nets for which there are a greater
number of thumbnail choices; this enables FPR to
better compensate for the less avoidable conges-
tion incurred earlier by nets with fewer thumbnail
choices.

4. GLOBAL ROUTING

After FPR has mapped the logic blocks to regions
in the partitioning template and each net has been
assigned a thumbnail, every edge in each thumb-
nail is then assigned to a specific switch block
along the crossed cut-line of the partitioning
template. Each such switch block is then concep-
tually added as a new "virtual" pin in the net. The
portion of each net within each region of the
partitioning template is then passed on to a lower
level of the recursion (this is similar to the virtual
terminal [5] and terminal propagation [14] techni-
ques). Thus, the global routing computed for a net
corresponds to the topology of its thumbnail.
Assignment of nets to switch blocks is accom-

plished in a manner similar to PHIroute [37]. The
number of nets that can be assigned to each switch
block is bounded by the number of nets crossing
the cut, divided by the number of switch blocks on
the cut. This construction induces a structure that
may be represented by a complete bipartite graph
with nets in one partition and switch blocks in the
other. Edge weights in this graph model the cost of
assigning a net to the corresponding switch block.
Assignments are then determined by computing a
minimum-cost matching [33].

Recursion terminates when a region contains at
most one logic block, along with the adjacent
channel segments and switch blocks. We then
route nets within the channels surrounding the
logic block (if it exists) while minimizing the
maximum channel congestion. In our implementa-

tion, an optimal solution is computed using integer
programming [30]. This is efficient in practice since
the number of nets involving any single logic block
is small [17].

5. DETAILED ROUTING

After placement and global-routing, FPR per-
forms detailed routing by assigning specific chan-
nel and switch-block edges to each net. The
placement and global-routing phase passes the
following information to the detailed router: (1)
locations of relevant logic-block pins (i.e., the net
to be routed), (2) a "loose" route for the net
(leaving unspecified the edges within channel
segments and switch blocks), and (3) switch blocks
that are likely to serve as Steiner nodes in the
detailed routing (Fig. 4).
A design goal for FPR has been the ability to

handle a wide variety of FPGA architectures.
Towards this goal, we have adopted a graph-based
approach to detailed routing. Each switch block
contains internal switch-block edges that may be
programmed to connect incoming channel edges.
The routing structure of the entire FPGA is
captured by a routing graph: detailed routes on

@ @

N N

[]

@

@

FIGURE 4 Global-routing information for a three-pin net,
showing the associated logic blocks (dark squares), global route
(cross-hatched region), and potential Steiner switch block (large
dark square).

FPGA LAYOUT 101

the FPGA correspond to paths in the routing
graph, and vice-versa (Fig. 5). In a routing graph,
vertices model logic-block and switch-block nodes,
while the edges correspond to connection, chan-
nel, and switch-block edges. This strategy enables
the detailed router to employ generic graph
algorithms in order to produce detailed-routing
solutions.
Using the routing-graph approach, detailed

routing entails interconnecting the logic-block
vertices using edges and vertices inside the
corresponding global-route region. This goal is
modeled by the graph Steiner tree (GST) problem:
given graph G=(V, E), where V is the vertex set
and E C_ Vx V is a set of weighted edges, find a
minimum-weight tree in G that spans a subset of
the vertices N c_ V (the logic-block vertices in a
net), using switch-block vertices as possible Steiner
nodes. The cost of a tree T, denoted T, is the sum
of the costs of its edges.

Logic Block

Switch Blocks

()

Since the GST problem is NP-complete [24], we
utilize the heuristic of Kou, Markowsky and
Berman [29] (KMB), which approximately solves
the GST problem in polynomial time, and is
guaranteed to yield solutions with cost less than
twice the optimal. While the KMB heuristic always
finds a feasible detailed routing if one exists, it
often does not "branch" at the appropriate Steiner
nodes (Fig. 6(a)). This potential drawback is effec-
tively ameliorated using the greedy strategy
described below.
Our detailed-routing algorithm is based on

combining a greedy, iterated heuristic [21, 25] with
the KMB algorithm; we refer to this hybrid method
as the Iterated-KMB (IKMB) algorithm [1]. Given a
routing graph G (V, E), a netN c_ V, and a set S of
potential Steiner nodes, we define the savings of S
with respect to N as AKMBzG(N, S KMB6(N)
-KMB6(N U S). Intuitively, AKMB6(N, S) repre-
sents the interconnect savings incurred by KMB
when the Steiner nodes in S are included into the
node set N to be spanned. This is illustrated in
Figure 6(b), where using a candidate Steiner node
from the shaded switch block results in an optimal
solution. In order to efficiently find such Steiner
nodes, a set of candidate Steiner nodes is determined
for each net. Candidate Steiner nodes are switch-
block nodes that correspond to Steiner switch
blocks (Fig. 4).
The IKMB method operates by repeatedly

finding candidate Steiner nodes that reduce the

Logic-Block Node

Connection Edges

Channel
Edges Switch-Block Edges

(b)

FIGURE 5 Global-routing information (a) is used to con-
struct a routing graph (b) for a Xilinx [43] 4000-series part with
channel width 2.

(b)

FIGURE 6 Detailed-routing solutions; (a) a KMB solution
containing unnecessary parallel paths, while (b) the IKMB
solution reduces total number of channel edges by 22%.

102 M.J. ALEXANDER et al.

overall KMB cost by the largest amount, and then
including them into a growing set S of Steiner
nodes. The cost of the KMB tree over NUS
decreases with each added node, and the construc-
tion terminates when there is no xEV with
AKMB(NUS,{x}) > 0. The final topology is
obtained by computing the KMB construction
using NUS as the pins and the remaining
V-(NU S) nodes as potential Steiner nodes.
The overall IKMB method is more formally
described in Figure 7.
The placement and global-routing phases seek

to minimize congestion, thereby enabling the
detailed router to find a feasible (and high-quality)
solution more easily. However, since it is NP-
complete to determine whether there exists a
feasible detailed-routing solution for all nets [41],
we use a deterministic net-ordering scheme to
route nets one at a time. When a detailed-routing
solution for a net is found, the corresponding
routing resources are committed to that net and
are made unavailable for subsequent nets (i.e.,
they are removed from the underlying graph). If
infeasibility is encountered during the detailed
routing of a net (i.e., some logic-block pin is
unreachable in the routing graph from the other
pins of the net), the following two heuristics are
employed.

First, an incremental "wavefront-expansion"
technique is used to gradually "loosen" the global
route, allowing the detailed route to detour around
local blockages caused by previously-routed nets
(Fig. 8). Note that wavefront expansion deter-
mines the region searched by the routing algo-
rithm, as opposed to the order in which graph

The Iterated-KMB (IKMB) Algorithm
Input: A weighted graph G (V, E) and net N C_ V
Output: A low-cost tree spanning N

While C {x e V NIA-M--a(N U S, {x}) > 0} O
Do Find x E C with maximum AKMBa(N LJ S, {x})
s=su{}

Return KMBG(N U S)

FIGURE 7 Iterated-KMB algorithm (IKMB).

FIGURE 8 Wavefront expansion is used to "loosen" global
routes when infeasibility is encountered.

edges are explored [22]. Second, we strive to
minimize congestion, which is a measure of
resource utilization. To gauge congestion, we
divide routing resources into disjoint groups
according to functional similarity and physical
proximity. For example, all channel edges inter-
connecting the same two switch blocks form a
group, as do all edges inside a particular switch
block. As nets are routed, the detailed router
updates each group’s congestion information (i.e.,
the number of edges in each group taken by all
previously routed nets). Multi-objective optimiza-
tion is used in the IKMB graph searches to
heuristically minimize a combination of wirelength
and congestion (See the Appendix for additional
details). Thus, within the region specified by the
global route, our detailed router searches for a
feasible solution minimizing both congestion and
wirelength.
We found that in practice, the majority of those

nets that fail to route using the initial global route
become routable after only a single loosening
operation. In cases where wavefront expansion
fails to produce a routing solution, we employ a
"move-to-front" heuristic [36], where unroutable
nets are moved to the beginning of the net-routing
order and the new routing order is attempted.

FPGA LAYOUT 103

6. EXPERIMENTAL RESULTS

Our algorithms have been implemented using
C + + in the Sun/UNIX environment and incorpo-
rated into FPR. Two FPGA architectures, corre-
sponding to Xilinx 3000-series and 4000-series
parts, were modeled [7, 43] (these architectures are
identical to the ones used by CGE [8], SEGA [32]
and GPB [42], respectively). We compared the
performance of these tools on fourteen large
benchmark circuits: the suite of five 3000-series
benchmarks used by [8], and the suite of nine 4000-
series benchmarks used by [32] and [42]. The 3000-
series benchmarks were routed on FPGAs with
switch-block flexibility F 6 and connection flex-
ibility Fc [0.6x IV], where IV is the the channel
width. The 4000-series benchmarks use FPGAs
with F 3 and Fc IV.
During FPGA physical design, a common

objective is to minimize maximum channel width.
(Smaller channel width implies the ability to route

TABLE Maximum channel width required by SEGA [32],
GBP [42] and FPR on the benchmark circuits

3000-Series Benchmarks

Name Size Nets CGE FPR

busc 13 x 12 151 10 9
dma 18 x 16 213 10 9
bnre 22 x 21 352 12 11
dfsm 23 x 22 420 10 11
z03 27 x 26 608 13 13

Total 55 53

4000-Series Benchmarks

Name Size Nets SEGA GBP FPR

9symml 11 x 10 79 10 9 9
terml 10 x 9 88 10 10 8
apex7 12 x 10 115 13 11 9
alu2 15 x 13 153 11 11 10
too_large 14 x 14 186 12 12 11
example2 14 x 12 205 17 13 13
vda 17 x 16 225 13 13 13
alu4 19 x 17 255 15 14 13
k2 22 x 20 404 17 17 17

Total 118 110 103

larger designs on a fixed-size part). Table I shows
the maximum channel widths of actual complete
placement and routing solutions produced by
FPR; these compare favorably with CGE [8] for
the 3000-series benchmarks, and with SEGA [32]
and GBP [42] for the 4000-series benchmarks. The
channel width required by FPR is smaller than
that required by CGE, SEGA, and GPB in 8 of the
14 benchmark circuits, and is equal on all but one
of the remaining 6 benchmark circuits (further
improvements have been recently obtained in [4]).
We also measured how well FPR optimizes

total wirelength and maximum source-sink path-
lengths or radius. Since previous works do not
report these statistics, we have implemented a
modified version of FPR, called FPR-S, that uses
unrooted Steiner trees as thumbnails [17], instead
of the preferred arborescence thumbnails de-

TABLE II Comparison of arborescence-based FPR against
Steiner-tree-based FPR-S. Wirelength statistics reflect average
number of channel segments used by nets in the circuit; radius
statistics reflect average number of channel segments encoun-
tered on longest source-sink path for each net. The A% column
gives the percent change from FPR-S to FPR

3000-Series Benchmarks

Avg. Wirelength Avg. Max Radius

Name FPR-S FPR A% FPR-S FPR A%

busc 9.3 9.1 -2.2 6.6 6.0 -9.1
dma 13.2 13.0 -1.5 8.6 7.7 -10.5
bnre 14.0 14.0 0.0 9.0 7.9 -12.2
dfsm 12.0 12.7 5.8 7.3 7.1 -2.7
z03 13.7 14.1 2.9 8.9 8.7 -2.2

Average 12.4 12.6 110 8.1 7.5 -7.3

4000-Series Benchmarks

Avg. Wirelength Avg. Max Radius

Name FPR-S FPR A% FPR-S FPR A%

9symml 11.4 10.9 -4.4 7.1 6.1 -14.1
terml 7.0 7.4 5.7 5.2 5.2 0.0
apex7 9.1 9.5 4.4 6.3 6.7 6.3
alu2 12.2 1,2.5 2.5 7.5 7.2 -4.0
too_large 11.9 11.5 -3.4 8.5 7.2 -15.3
example2 9.3 9.4 1.1 7.2 6.8 -5.6
vda 15.0 15.0 0.0 10.6 9.4 -11.3
alu4 14.5 14.9 2.8 9.5 9.0 -5.3
k2 17.7 17.7 0.0 13.1 12.1 -7.6

Average 12.0 12.1 1.0 8.3 7.7 -6.3

Overall 12.2 12.3 1.0 8.2 7.6 -6.7

104 M.J. ALEXANDER et al.

FIGURE 9 FPR solution for 9symml circuit.

scribed in Section 3. We compared the solutions
produced by FPR-S against performance-oriented
solutions produced by the unmodified FPR tool.
We observe that the additional 1.0% in wirelength
used by FPR yields a 6.7% decrease in radius
(Tab. II). We believe the 1.0% total wirelength
difference is insignificant but the 6.7% difference in
average radius is significant. Therefore we recom-
mend the use of FPR with its use of RSA’s over
FPR-S and other similar tree-based tools. The
time to run FPR is comparable to other tools:
CPU times to completely lay out the circuits on a
Sun SparcServer 10/514 workstation ranged from
several minutes for the smallest circuit to several
hours for the largest. Figure 9 shows the solution
produced by FPR for the smallest of the bench-
mark circuits.

7. CONCLUSION

We have developed FPR, a placement and routing
tool for FPGAs that combines a recursive geo-
metric strategy for simultaneous placement and
global routing with a general graph-based de-
tailed-routing algorithm. FPR addresses perfor-

mance issues by minimizing source-sink path-
lengths as well as total wirelength and maximum
channel width. FPR compares favorably to exist-
ing tools on both 3000-series and 4000-series
Xilinx-type parts, as measured by the maximum
channel width required for complete layout of a
number of industrial benchmarks.

Acknowledgement

We thank Matt Saltzman for the use of his
matching code, and Steve Brown and Jonathan
Rose for supplying the benchmark circuits. We are
grateful to Dr. Bob Grafton of the National
Science Foundation for his support and advice.
This work is supported by NSF grants CCR-
9224789 and MIP-9107717 (Cohoon), a Virginia
Space Grant Fellowship (Ganley), a Packard
Foundation Fellowship and NSF Young Investi-
gator Award MIP-9457412 (Robins).

Refe’ences
[1] Alexander, M. J., Cohoon, J. P., Ganley, J. L. and

Robins, G. An Architecture-Independent Approach to
FPGA .Routing Based on Multi-Weighted Graphs, in
Proc. European Design Automation Conf., Grenoble,
France, pp. 259-264, September 1994.

[2] Alexander, M. J., Cohoon, J. P., Ganley, J. L. and
Robins, G. Performance-Oriented Placement and Rout-
ing for Field-Programmable Gate Arrays, in Proc.
European Design Automation Conf, Brighton, England,
September 1995.

[3] Alexander, M. J. and Robins, G. A New Approach to
FPGA Routing Based on Multi Weighted Graphs, in
Proc. ACM/SIGDA Intl. Workshop on Field-Program-
mable Gate Arrays, Berkeley, CA, February 1994.

[4] Alexander, M. J. and Robins, G. (1996). New Perfor-
mance-Driven FPGA Routing Algorithms, IEEE Trans.
Computer-Aided Design, 15, pp. 1505 1517.

[5] Bapat, S. and Cohoon, J. P. A Parallel VLSI Circuit
Layout Methodology, in Proc. IEEE Intl. Conf. VLSI
Design, pp. 236-241, January 1993.

[6] Bhat, N. B. and Hill, D. D. (1992). Routable Technology
Mapping for LU.T FPGAs, in Proc. IEEE Intl. Conf
Computer-Aided Design, pp. 95-98.

[7] Brown, S. D., Francis, R. J., Rose, J. and Vranesic, Z. G.
(1992). Field-Programmable Gate Arrays, Kluwer Aca-
demic Publishers, Boston, MA.

[8] Brown, S. D., Rose, J. and Vranesic, Z. G. (1992). A
Detailed Router for Field-Programmable Gate Arrays,
IEEE Trans. Computer-Aided Design, 11, pp. 620-628.

[9] Carter, W. S., Duong, K., Freeman, R. H., Hsieh, H. C.,
Ja, J. Y., Mahoney, J. E., go, L. T. and Sze, S. L. (1986).

FPGA LAYOUT 105

A User Programmable Reconfigurable Logic Array, in
Custom Integrated Circuits Conf., pp. 233-235.

[10] Chan, P. K., Schlag, M. D. F. and Zien, J. Y. (1993). On
Routability Prediction for Field-Programmable Gate
Arrays, in Proc. ACM/IEEE Design Automation Conf.,
pp. 326- 330.

[11] Chen, K. C., Cong, J., Ding, Y., Kahng, A. B. and
Trajmar, P. (1992). DAG-Map: Graph-Based FPGA
Technology Mapping for Delay Optimization, IEEE
Design and Test of Computers, 9, pp. 7-20.

[12] Cohoon, J. P. and Richards, D. S. (1988). Optimal Two-
Terminal a-/3 Wire Routing, Integration: The VLSI
Journal, 6, pp. 35-57.

[13] Collier, W. C. and Weiland, R. J. (1994). Smart Cars,
Smart Highways, IEEE Spectrum, 31, pp. 27-33.

[14] Dunlop, A. E. and Kernighan, B.W. (1985). A Procedure
for Placement of Standard-Cell VLSI Circuits, IEEE
Trans. Computer-Aided Design, 4, pp. 92-98.

[15] Frankle, J. (1992). Iterative and Adaptive Stock Alloca-
tion for Performance-driven Layout and FPGA Routing,
in Proc. ACM/IEEE Design Automation Conf., pp. 536-
542.

[16] Gamal, A. E., Greene, J., Reyneri, J., Rogoyski, E.,
E1-Ayat, K. and Mohsen, A. (1989). An Architecture for
Electrically Configurable Gate Arrays, IEEE J. Solid
State Circuits, 24, pp. 394-398.

[17] Ganley, J. L. (1995). Geometric Interconnection and
Placement Algorithms, PhD thesis, Department of
Computer Science, University of Virginia, Charlottesville,
Virginia.

[18] Ganley, J. L. and Cohoon, J. P. Routing a Multi-
Terminal Critical Net: Steiner Tree Construction in the
Presence of Obstacles, in Proc. IEEE Intl. Symp. Circuits
and Systems, London, England, May 1994, pp. 113-116.

[19] Ganley, J. L., Golin, M. J. and Salowe, J. S. (1995). The
Multi-Weighted Spanning Tree Problem, in Proc. First
Intl. Computing and Combinatorics Conf., Xian, China,
pp. 141-150.

[20] Gao, T., Chen, K. C., Cong, J., Ding, Y. and Liu, C. L.
Placement and Placement Driven Technology Mapping
for FPGA Synthesis, in Proc. IEEE Intl. ASIC Conf.,
Rochester, NY, September 1993, pp. 87-91.

[21] Griffith, J., Robins, G., Salowe, J. S. and Zhang, T.
(1994). Closing the Gap: Near-Optimal Steiner Trees in
Polynomial Time, IEEE Trans. Computer-Aided Design,
13, pp. 1351-1365.

[22] Heyns, W., Sansen, W. and Beke, H. (1980). A Line-
Expansion Algorithm for the General Routing Problem
with a Guaranteed Solution, in Proc. ACM/IEEE Design
Automation Conf., Minneapolis, pp. 243-249.

[23] Hu, T. C. and Shing, T. (1985). The a-/3 Routing, in
VLS1 Circuit Layout: Theory and Design, New York,
IEEE Press, pp. 139-143.

[24] Hwang, F. K., Richards, D. S. and Winter, P. (1992). The
Steiner Tree Problem, North Holland.

[25] Kahng, A. B. and Robins, G. (1992). A New Class of
Iterative Steiner Tree Heuristics with Good Performance,
IEEE Trans. Computer-Aided Design, 11, pp. 893-902.

[26] Kahng, A. B. and Robins, G. (1995). On Optimal
Interconnections for VLSI, Kluwer Academic Publishers,
Boston, MA.

[27] Karplus, K. (1991). Xmap: a Technology Mapper for
Table-lookup Field-Programmable Gate Arrays, in Proc.
ACM/IEEE Design Automation Conf., pp. 240-243.

[28] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983).
Optimization by Simulated Annealing: An Experimental
Evaluation (PART 1), Science, 220, pp. 671-680.

[29] Kou, L., Markowsky, G. and Berman, L. (1981). A Fast
Algorithm for Steiner Trees, Acta Informatica, 15, pp.
141-145.

[30] Lawler, E. L. (1976). Combinatorial Optimization: Net-
works and Matroids, Holt Rinehart and Winston, New
York.

[31] Lee, Y.-S. and Wu, A. C.-H. A Performance and
Routability Driven Router for FPGAs Considering Path
Delays, in Proc. ACM/IEEE Design Automation Conf.,
San Francisco, CA, June 1995, pp. 557-561.

[32] Lemieux, G. G. and Brown, S. D. A Detailed Routing
Algorithm for Allocating Wire Segments in Field-Pro-
grammable Gate Arrays, in Proc. ACM/SIGDA Physical
Design Workshop, Lake Arrowhead, CA, April 1993.

[33] Papadimitriou, C. H. and Steiglitz, K. (1982). Combina-
torial Optimization, Prentice-Hall.

[34] Rao, S. K., Sadayappan, P., Hwang, F. K. and Shor, P. W.
(1992). The Rectilinear Steiner Arborescence Problem,
Algorithmica, pp. 277-288.

[35] Roy, K., Guan, B. and Sechen, C. FPGA MCM
Partitioning and Placement, in Proc. ACM/SIGDA
Physical Design Workshop, Lake Arrowhead, CA, April
1993, pp. 211-212.

[36] Shin, H. and Sangiovanni-Vincentelli, A. (1987). A
Detailed Router Based on Incremental Routing Modifi-
cations: Mighty, IEEE Trans. Computer-Aided Design, ,
pp. 942-955.

[37] Spruth, H., Johannes, F. and Antreich, K. (1994).
PHIroute: A Parallel Hierarchial Sea-of-Gates Router,
in Proc. IEEE Intl. Symp. Circuits and Systems, pp. 487-
490.

[38] Suaris, P. R. and Kedem, G. (1989). A Quadrisection-
Based Place and Route Scheme for Standard Cells, IEEE
Trans. Computer-Aided Design, $, pp. 234-244.

[39] Trimberger, S. Effects of FPGA Architecture on FPGA
Routing, in Proc. ACM/IEEE Design Automation Conf.,
San Francisco, CA, June 1995, pp. 574-578.

[40] Trimberger, S. M. (1994). Field-Programmable Gate
Array Technology, S. M. Trimberger, editor, Kluwer
Academic Publishers, Boston, MA.

[41] Wu, Y.-L. and Marek-Sadowska, M. (1993). Graph
Based Analysis of FPGA Routing, in Proc. European
Design and Test Conf., pp. 104-109.

[42] Wu, Y.-L. and Marek-Sadowska, M. (1994). An Efficient
Router for 2-D Field Programmable Gate Arrays, in
European Design and Test Conf., pp. 412-416.

[43] Xilinx, The Programmable Gate Array Data Book,
(1994). Xilinx, Inc., San Jose, California.

8. APPENDIX: MULTI-OBJECTIVE
OPTIMIZATION

During the detailed-routing phase we seek to
simultaneously optimize multiple (competing) ob-
jectives (i.e., wirelength, congestion, jogs, etc.). We
accomplish this by generalizing the IKMB heuris-

106 M.J. ALEXANDER et al.

tic to operate on multi-weighted graphs, where
each of the k optimization criteria is modeled by a
separate set of edge weights. The simultaneous
optimization is accomplished by transforming
these multiple edge weights into a single weighted
average, which is then used by IKMB in the
normal way. The relative magnitudes of the
weighting factors dl,d2,...,dk (i.e., tradeoff para-
meters) are designer controlled, enabling a
smooth tradeoff among the various competing
objectives.
This technique is flexible in that new criteria are

easily incorporated into the model by introducing
additional weight sets into the graph. Such a
framework subsumes e.g., "alpha-beta" routing
(which has been used for jog minimization in IC
design [12, 23]), and also has practical application
in non-VLSI domains [13].

Let V (Vl,V2,...,Vn} be a set of nodes, and let
E c_ V V be a set of edges. We define a k-weighted
graph G=(V, E) to be a weighted graph with a
vector-valued weight function " E---9tk. In
other words, associated with each edge ej E E is
a vector of k real-valued weights o.-(Wijl,
wij2,..., Wijk). Note that ordinary weighted graphs
are a special case of k-weighted graphs, with k 1.

Let d= (dl,dz,...,dk) be a vector of k real-
valued tradeoff parameters, where 0 _< di < for
0 < i_< k, and E/k=l di 1. From the k-weighted
graph G (V, E) and the tradeoff parameters d
we construct a new weighted tradeoff graph

t=. dG(d)- (V, E) with weight function wi wO.
Ekm=l dm Wam. The tradeoff graph t is an ordinary
weighted graph having the same topology as G,
but whose single edge weights represent the
weighted averages of the multi-weights of G, with
respect to d.

Let if-- (1,..., 1), and . (0,...,0, vi,0,...,0)
denote the vector obtained from the vector ’ by
using vi in the ith place, and the rest of the places
set to zero. Thus, ffi denotes the vector consisting
of zeros everywhere except the ith place, which will
contain a 1. A k-weighted graph G induces k
distinct graphs Gi--G(i), each with an identical
topology but with edge weights restricted to only

one of the k components of vector-valued weight
function .
We define the minimum spanning tree for a

multi-weighted graph G with respect to the trade-
off parameters d as the ordinary MST over the
tradeoff graph G(d), and denote it by MST(G(d)).
Similarly, we can compute the MST on each of the
k induced graphs Gi, and we denote these
MST(G). For convenience we will use MST to
denote the cost of the MST.
We start by showing a general lower bound for

the cost of MST(G(d)) in terms of MST(Gi)’s, d,
and k:

THEOREM 8.1 For any k-weighted graph G and

tradeoffparameters d,
k

di" MST(Gi) <_ MST(()).
i=l

Proof Consider an arbitrary edge eij in
MST(t(Y)) having cost of)2km=ldm’wijm. If
every MST(Gm), _< m _< k, also contains edge eij,
then clearly the cost of edge ej in all k trees is
k)2m=lWjm, and the cost of this edge scaled by

the tradeoff parameters is Ekm=ldm.wijm, which
is equal to the cost of this edge in MST(G(d)).
Clearly, if all of the k MST(Gm),I _< m < k contain
the same edges as MST(G(d)), then equality
holds and the theorem is true. On the other
hand, if MST(G(d)) contains an edge that is
not in MST(Gm), _<m_<k, then the cost of

kMST(G(d)) relative to)2m=dm. MST(Gm) can only
increase.

Next, we prove the non-existence of general
upper bounds. Ideally, we would like to bound the
MST cost of arbitrary multi-weighted graphs in
terms of only the costs of the MST(G)’s, d, and n.
Unfortunately, this is impossible to in general:

THEOREM 8.2 For any k-weightedgraph G over n
vertices, and tradeoff parameters d, the tradeoff
graph cost MST(G(d)) can not be bounded from
above by anyfunction ofonly MST(Gi)’s, d, n, andk.

Proof Consider the 2-weighted graph G=(V,E)
over n 3 nodes, where k=2. Fix d by setting

FPGA LAYOUT 107

a a a

ccf bb co b c
(0,0)

ob

(a) (b) (c)

FIGURE 10 An example showing that MST(t(g)) can not
be bounded from above by any function strictly in terms
of MST(Gi)’s, d, n, and k: (a) The 2-weighted graph G; (b)
MST(G((1,0))) has cost 0; (c) MST(G((0,1))) has cost 0. On the
other hand, MST(G((1/2 ,))) has cost which can be arbitrarily
large.

0 _< dl,d2 <_ 1. Let M be some very large constant,
V {a, b, c}, and E= Vx V, with Wab O, Wbc O,
Wac1 M, and let Wab2 M, Wbc2=O, Wac2=O (see
Fig. 10). Observe that MST(G1)- MST(G2) 0,
k= 2, n 3, dl, and d2 are all constants. On the
other hand, MST(G) min(dl. M, d2. M), which
can be made arbitrarily large for any fixed d by
making M large enough. Since any expression
involving only constants must also be bounded by
a constant, MST(G) can not be bounded from
above by any function strictly in terms of only
MST(G1), MST(G2), k, n, and d. [---1

The negative result of Theorem 8.2 only applies
to non-metric graphs. We now give a general
upper bound for metric graphs"

THEOREM 8.3 For any metric k-weighted graph
G over n vertices, and tradeoff parameters d,
MST(G(d)) < (n- 1). k=d. MST(G).

Proof Consider an arbitrary edge eiy in
kMST(G(d))and its cost, Em=ldm.wim. Consider

the mth element in this summation, and the corre-
spondingMST ofGm. MST(Gm) spans vertices viand
vy, but does not necessarily contain the edge
Rather, a path must exist in MST(Gm) from vi to vj,
denoted minpathMsT(am)(i,j) with cost denoted by
diStMST(am) (i,j). Bymetricity, Wij diStMST(Gm) (i,j).
Therefore:

cost of edge eij in MST(G(d))
k

Zdm.wim
m=l

k

<--Z dm diStMST(am)(i,j)
m=l

k

<-- Z dm MST(Gm)
m=l

Since ei is an arbitrary edge of MST(G(d)), this
holds for all n-1 edges in MST(G(d)). Thus,
MST(G(d)) < (n 1) Y]m=l am" MST(Gm). [--]

Since most nets in typical VLSI designs contain
three pins or less [18], we derive a tighter upper
bound for 3-pin nets where metricity holds (i.e.,
graphs with weight functions satisfying the tri-
angle inequality dist(a, b) + dist(b, c) >_ dist(a, c),
Va, b, cE V):

THEOREM 8.4 For 2-weighted metric graphs with
three nodes, and any scaling vector- (dl, d2), the
following holds:

minpath (i,j) o
dl" MST(G1) + d2. MST(G2) _< MST(G(d))

4_< --[dl" MST(G1) + d2" MST(G2)].

() (b) (c)

FIGURE 11 A general upper bound in the metric case for
MST(G(d)) in terms ofMST(Gi)’s,d,n, and k: (a) depicts MST
(Gin); (b) depicts MST(G(d)); and (c) shows how the cost of the

thrn weight component of each e/j can be bounded by
dm’MST(Gm).

Proof Let G=(V,E) be a 3-node 2-weighted
graph, with edge weights (a,x), (b,y), and (c,z).
Let g-(dl,d2) be an arbitrary constant vector,
such that 0<dl, d2< 1, and dl+d2 =1 (see
Fig. 12(i)).

108 M.J. ALEXANDER et al.

(a,x) (a,x)

(i)

FIGURE 12 A tighter upper bound for 3-pin nets; (i) a 3-
node 2-weighted graph, with edge weights (a,x), (b,y), and
(c, z); (ii) topology of the three anning trees MST(G2) (inner),
MST(G1) (middle) and MST(G(d)) (outer) corresponding to
case 1.

The lower bound dl" MST(G1)+d2 MST(G) _<
MST(G(d)) holds by Theorem 8.1. Assume with-
out loss of generality that a _< b _< c, which implies
that MST(G1) a + b. The following three cases
must be considered:

1. Assume x, y _< z, which implies that MST(G2)
x + y (see Fig. 12(ii)). Thus,

dl a + d2" x < dl c -+- d2. z and

dl b + d2 y < dl c + d2 z

Now MST(G(d)) a + d2 x

+d .b+d:.y

dl. (a + b) + d2. (x + y)

d. MST(G)
+ d2 MST(G2)

and the theorem holds.
2. Assume x, z _< y, which implies that MST(G2)-

x+z. Let G=dl. MST(G1)+ d:. MST(G2),
and consider the three possible sub-cases
illustrated in Figure 13.

(b,y/*,,Oooo (c,z) (b,

/..,,,,,. ".:’,
(a,x) (a,x)

(i) (ii)

(a,x)

(iii)

FIGURE 13 Topology of the three spanning trees MST(G2)
(inner), MST (G1) (middle) and MST((()) (outer) corre-
sponding to (i) case 2(a), (ii) case 2(b), and (iii) 2(c).

(2a) Assume MST(G(d)) contains the "a/x"
and "b/y" edges (see Fig. 13(i)). Then,

MST(G(d)) -dl" (a + b) + d2. (x + y)_
dl (a+b)+d2 (x+x+z)

dl" MST(G1)
+ d2" MST(G2) + d2" x

G-+-d2 x

(2b) Assume MST(G(d)) contains the "a/x"
and "c/z" edges (see Fig. 13(ii)). Then,

MST(G(d)) dl. (a + c) + d2. (x + z)_
dl" (a + a + b)

-F d2" (X -F z)
dl MST(G1)+d a

+d2 MST(G2)
=G+dl.a

(2c) Assume MST(G(d)) contains the "b/y"
and "c/z" edges (see Fig. 13(iii)). Then,

MST(G(d)) all. (b + c) + d2. (y + z)
_< dl (b + a + b)
+ d2. (x + z + z)
dl MST(G1) / dl b

-F d2. MST(G2) -F d2. z

=G+dl .b+da.z

Now, since MST(G(d)) is a minimum

spanning tree, it is the minimum of sub-
cases 2(a), 2(b) and 2(c).

MST(G(d))
=G + min(d2, x, dl .a, dl b + d2. z)

<_ G+--- 1.(d2.x+dl .a

+ dl b + d2. z)
4
3

FPGA LAYOUT 109

3. Assume y, z < x, which implies that MST(G2)
y+z. Again, let G dl.MST(G1) + d2.
MST(G2), and consider the three possible sub-
cases corresponding to whether MST(G(d))
contains the 3(a) "a/x" and "b/y", 3(b) "a/x"
and "c/z", or 3(c)"b/y" and "c/z" edges, which
are handled using similar arguments to those in
case 2 above.

The bound MST(G(d)) < 4/3. [all" MST(G)+
d2-MST(G2)] holds in each one of the three
possible cases (1., 2 and 3). The example a , x
2-, b c=y z= (where > 0 is an arbitrarily
small real number) shows that this bound is
tight.

For 4-node graphs the general upper bound of
Theorem 8.3 implies a multiplicative factor of
n-1 3; yet, an extensive computer-aided search
has been unable to find an example of a 4-pin net
with metric weights where the cost of the tradeoff
MST exceeds the lower bound by more than a
factor of 3/2. We therefore conjecture that our
proven bounds can be made considerably tighter,
and leave this as an open problem (recently, tighter
bounds were indeed derived for MSTs over multi-
weighted graphs [19]).

Authors’ Biographies

Michael J. Alexander received the Ph.D. degree in
Computer Science from the University of Virginia,
Charlottesville in 1996, where he won a Teaching
Assistant Extraordinaire award. He is currently an
Assistant Professor in the School of Electrical
Engineering and Computer Science at Washington
State University. His primary areas of research are
VLSI CAD, with research focusing on high-
performance routing, FPGA architecture, reconfi-
gurable computing, and combinatorial optimiza-
tion. He serves on the program committees of the
IEEE International ASIC Conference, ACM/
SIGDA International Symposium on Physical
Design, and the Canadian Workshop on Field-
Programmable Devices. He is a member of ACM,
IEEE, SIGDA, SIGARCH and Tau Beta Pi.

James P. Cohoon received his Ph.D. in Compu-
ter Science from the University of Minnesota in
1983. He then joined the Department of Computer
Science at the University of Virginia where he is
currently an Associate Professor. His department
has twice nominated him for the University’s best
teacher award. His primary research interests lie in
VLSI circuit layout area with particular emphasis
on algorithmic aspects of routing and placement.
He is the author or co-author of over fifty papers
and two books. Other research interests include
computational geometry, parallel algorithms, test-
ing and visualization. He has served on the
programming committees for such conferences as
DAC, ICCAD, and ICCD, and was co-organizer of
the first ACM Design Automation Workshop in
Russia. He is Chair ofACM-SIGDA and a member
of the ACM and IEEE Circuits and Systems
professional societies. His honors include a Fulb-
right Award and the SIGDA Leadership award.

Joseph L. Ganley received his Ph.D. in Compu-
ter Science in 1995 from the University of Virginia.
His primary research interests are in VLSI physical
design automation, geometric and graph algo-
rithms, scientific computing, and parallel algo-
rithms. He is a member of ACM, SIGACT,
SIGDA, SIAM, and Tau Beta Pi. His honors
include a University of Virginia Dean’s Fellowship
and a Virginia Space Grant Fellowship, and his
doctoral dissertation was nominated for the 1995
ACM Doctoral Dissertation Award. He is cur-
rently a Member of the Research and Develop-
ment Staff at Cadence Design Systems.

Gabriel Robins is Associate Professor in the
Department of Computer Science at the University
of Virginia, where he received an NSF Young
Investigator Award, a Packard Foundation Fel-
lowship, a University Teaching Fellowship, an
All-University Outstanding Teaching Award, a
Faculty Mentor Award, a two-year early promo-
tion/tenure, and the Walter N. Munster Chair. He
completed his Ph.D. in Computer Science in 1992
from UCLA, where he received an IBM Fellow-
ship and a Distinguished Teaching Award. Gabe’s_

primary area of research is VLSI CAD, and he

110 M.J. ALEXANDER et al.

co-authored a book on high-performance routing
and over fifty refereed papers, including a Dis-
tinguished Paper at the 1990 IEEE International
Conference on Computer-Aided Design. Gabe is a
member of the Defense Science Study Group, an
advisory panel to the U.S. Department of Defense,
and he also served on the Navy Future Study
panel of the National Academy of Sciences. He

was General Chair of the 1996 ACM/SIGDA
Physical Design Workshop, and a co-founder of
the. 1997 International Symposium on Physical
Design. He serves on the technical program
committees of several other leading conferences,
and. the Editorial Board of the IEEE Book Series.
He is a member of ACM, IEEE, MAA, and
SIAM.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

