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Abstract

Compared to conventional cars, electric vehicles (EVs) still suffer from considerably
shorter cruising ranges. Combined with the sparsity of battery loading stations, the com-
plete transition to E-mobility still seems a long way to go. In this paper, we consider the
problem of placing as few loading stations as possible so that on any shortest path there
are sufficiently many not to run out of energy. We show how to model this problem and
introduce heuristics which provide close-to-optimal solutions even in large road networks.

1. Introduction

Battery-powered, electric vehicles (EVs) are an important means towards a reduction of
carbon dioxide emissions when recharged using renewable energies, e.g. from solar or wind
power. Despite their environmental advantages EVs still wait for their breakthrough with
the main reason being their limited cruising range (often less than 200km) together with
the sparsity of battery loading stations (BLSs). Planning a trip from A to B with an EV
nowadays is a non-trivial undertaking; the locations of BLSs have to be taken into account,
and many destinations are completely out of range.

Hence, in this early phase of E-mobility an important goal is to establish a network of
BLSs so that using an EV becomes a worry-free enterprise. As modern BLSs require only
little space (see Figure 1, left, for an illustration), they can be placed almost everywhere.
But as this generates costs, a natural objective is to minimize the number of installed BLSs.
In previous work (Storandt & Funke, 2013), a heuristic was proposed to determine BLS
locations such that one can get from anywhere to anywhere in the road network without
running out of energy (when choosing a suitable route). Unfortunately, this approach
only guarantees connectivity but not reasonability of the routes. In fact, even rather close
destinations where routes with only one recharging stop are possible, might require long
detours with several recharging stops due to the placement of BLSs. A related approach by
Lam, Leung and Chu (2013) suffers from similar drawbacks. In the long run, E-Mobility
will only prevail if a road trip with an EV can be undertaken without unreasonable detours
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Figure 1: Inner-City battery loading station (left image), and feasible loading station cover
for a small map cut-out (right image).

being introduced. In this paper we ask for a placement of the BLSs such that on any
shortest path there are enough BLSs not to get stranded when starting with a fully loaded
battery – just like it is typically the case with gas stations for conventional cars. We call
such a set of BLS locations an EV Shortest Path Cover (ESC) and define the respective
optimization problem as follows.

Definition 1 (EV Shortest Path Cover (ESC)). Given a (di)graph G(V,E), edge costs
c : E → R

+ and a function η which for a path π decides whether this path can be traveled
along without recharging the EV, the problem of determining a minimum subset L ⊆ V of
BLSs such that every shortest path wrt c can be traveled without running out of energy is
called the EV Shortest Path Cover Problem.

See Figure 1, right, for an idea of how a valid ESC looks like. In the remainder we
will define n = |V | and m = |E| if not otherwise noted. Also consider that for sake
of a clearer presentation we assume unique shortest paths (which can be enforced using
standard techniques like symbolic perturbation). We will describe how to deal with am-
biguous shortest paths towards the end of the paper. The function η captures all the energy
characteristics of the network and the considered vehicle. Typically, in mountainous areas
or on roads with rough surfaces, the minimal paths where an EV runs out of energy are
considerably shorter than in flat terrain or downhill. For our experiments we determined
the energy consumption of a road segment e = (v, w) ∈ E with elevations h(v), h(w) as
distance(e) + α · max(h(w) − h(v), 0) for some weighting parameter α (dependent on the
EV). That is, the energy consumption is determined by the Euclidean distance and the
height differences, similar to the energy model used in previous work (Artmeier, Haselmayr,
Leucker, & Sachenbacher, 2010) but disregarding energy recuperation (negative edge costs).
The function η compares for a path π the accumulated energy consumption along its edges
with the EV’s battery capacity B ∈ R

+ to determine if recharging is necessary. Note that
one could employ any kind of monotonous function η here, all approaches we will introduce
in the following will work notwithstanding this particular choice.
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1.1 Contribution

We describe how to model the ESC problem as an instance of the Hitting Set problem
with the sets being shortest paths which require at least one battery recharge. This allows
us to use algorithms developed for solving Hitting Set problems, e.g. the standard greedy
approach. Unfortunately, it turns out that the difficulty of computing an ESC solution
is already the instance construction. With Θ(n2), n = |V | shortest paths in the network,
extracting and storing them naively requires too much time and space to be practical.
We therefore design new shortest path extraction and representation techniques, which
allow to tackle even very large road networks. Moreover, we develop several refinements
and heuristics which provide feasible ESC solutions more efficiently. While no a priori
approximation guarantee can be shown for the solutions, we can prove a posteriori – using
instance-based lower bounds – that for real-world instances the actual approximation ratio
is only a small constant.

In this extended version of the original paper (Funke, Nusser, & Storandt, 2014b), we
present the following new results and insights regarding ESC: We prove the ESC prob-
lem to be NP-hard (and even hard to approximate). The proven hardness is motivation
and justification for the development of heuristic algorithms. Furthermore, we explain how
to transform shortest paths from one (newly developed) representation into another, along
with a theoretical run time analysis and experiments. The ability to transform between rep-
resentations allows for more flexibility and might prove useful for other applications where
compact representations of shortest paths are used. We also describe simple minimality
checks for shortest paths deciding whether they need to be considered in the respective Hit-
ting Set instance. Especially for large networks, such checks reduce the number of shortest
paths that have to be stored significantly. In addition, we provide details for more involved
lower bound constructions. Finally, we lay out methods for dealing with ambiguous shortest
paths, for augmenting an already existing loading station set and for the case that loading
station locations are restricted to a subset of the nodes in the network.

2. Theoretical Analysis

Let us first prove the ESC problem to be NP-hard, so there is no hope for efficient algorithms
that solve ESC to optimality (unless P=NP). Hence in the remainder of the paper we will
focus on designing algorithms that compute good approximate solutions.

Theorem 1 (Hardness). The EV-Shortest Path Cover problem (ESC) is NP-hard.

We prove NP-hardness of ESC by a solution size preserving reduction from Vertex Cover
(VC), which is one of the classical NP-hard problems. We use the following definition and
notation for VC:

Definition 2 (Vertex Cover). Given a graph G(V,E), the goal is to find a vertex set C ⊆ V
of minimal cardinality such that ∀e ∈ E : e ∩ C 6= ∅.

To prove Theorem 1, we show that the ability to solve the ESC problem efficiently implies
the ability to solve VC efficiently as well. Hence, ESC has to be NP-hard as otherwise we
would have a contradiction to the NP-hardness of VC. To that end we construct for a given
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Figure 2: Left: Vertex Cover instance with optimal solution of size 3 (red circled nodes).
Right: Respective ESC instance constructed by inserting an auxiliary edge per
node in the graph on the left, and augmenting all edges with cost 1. The circled
nodes indicate an optimal Hitting Set such that no path of cost at least 3 is unhit.

VC instance Gvc(Vvc, Evc) a corresponding instance of ESC specified by G(V,E), c and η as
follows:

• V = Vvc, E = Evc i.e. the ESC instance initially contains all nodes and edges of the
VC instance

• for all v ∈ V add an auxiliary vertex v′ and an auxiliary edge {v, v′} to G

• for all e ∈ E set the costs c(e) uniformly to 1

• η is true for all paths consisting of less than three edges and false otherwise, i.e. every
shortest path that traverses at least three edges has to have a loading station on it to
make the set of loading stations a feasible ESC

The construction requires only polynomial time in the size of Gvc. Figure 2 illustrates the
transformation from a Vertex Cover instance to an ESC instance on a small example.

We first show that any Vertex Cover solution in Gvc is also an ESC solution for the ESC
instance constructed as described above.

Lemma 1. A Vertex Cover C in Gvc yields an ESC L for G, c, η with |L| = |C|.

Proof. Let C ⊆ Vvc be a VC solution in Gvc. As the ESC graph G contains a corresponding
vertex for every v ∈ Vvc, we simply set L = C (so obviously |L| = |C|). It remains to show
that after placing loading stations according to L, every shortest path in G can be traveled
without running out of energy. Assume for contradiction that there exists a shortest path
in G consisting of three edges {u, v}{v, w}{w, x} and neither v nor w are in L. As every
edge e ∈ Evc has at least one of its two vertices in L (because L = C is a Vertex Cover
for Evc), it follows that {v, w} has to be an auxiliary edge only present in G but not in
Gvc. But auxiliary edges cannot be in the middle of a path containing three or more edges,
as every auxiliary vertex has degree 1. So every path consisting of three edges contains a
loading station, hence L is a valid ESC.

To complete the proof of Theorem 1, we have to show that a valid ESC solution leads
to a valid Vertex Cover solution as well.

636



Placement of Loading Stations for Electric Vehicles

Lemma 2. An ESC L for G, c, η yields a Vertex Cover C in Gvc with |C| ≤ |L|.

Proof. Let L be a valid ESC solution. As L might contain auxiliary vertices, we construct
C by replacing every auxiliary vertex v′ in L with its respective original vertex v. As v
might also be part of L, we conclude that |C| ≤ |L|. To show that C is a valid Vertex
Cover in Gvc, we prove that for every edge {v, w} ∈ Evc either v or w or both are in C.
Assume for contradiction that there exists an edge {v, w} ∈ Evc with {v, w} ∩ C = ∅.
Accordingly, neither v, nor w, nor the respective auxiliary vertices v′ and w′ were part of
the ESC solution L. This implies a shortest path {v′, v}, {v, w}, {w,w′} of three edges with
no loading station on it in G. As this contradicts L being a valid ESC solution, we conclude
that for every edge we have {v, w} ∩ C 6= ∅ and therefore C is a valid Vertex Cover.

If L is an optimal solution for ESC, then obviously |C| = |L| is fulfilled in Lemma 2, as
placing a loading station at an auxiliary vertex v′ and the corresponding original vertex v at
the same time renders the loading station at v′ superfluous. Hence in an optimal solution,
we never have both vertices v and v′ in L. So in combination with Lemma 1, we showed
that for every instance of VC, we can construct in polynomial time an instance of ESC
for which an optimal solution translates into an optimal solution for the VC instance of
the same size in a straightforward manner. Therefore any hardness results for VC carry
over to ESC. This proves Theorem 1 and furthermore rules out the existence of (1 + ǫ)
polynomial-time approximation schemes for ESC via the proven APX-hardness of a factor
better than 1.3606 for VC (Dinur & Safra, 2004):

Corollary 1. ESC cannot be approximated better than 1.3606.

With the proven hardness, efficient algorithms that solve the ESC problem to optimality
might be difficult to design unless one can make use of certain problem aspects as the battery
capacity parameter or road network characteristics.

3. Modeling ESC as a Hitting Set Problem

In the following, we aim for good approximation algorithms and heuristics that solve the
ESC problem in practice. In particular, we will exploit the fact that ESC can be modeled
as an instance of the well-known Hitting Set problem and therefore algorithms suitable for
Hitting Set computations transfer to ESC. The classical Hitting Set (HS) problem is defined
as follows:

Definition 3 (Hitting Set). Given a set system (U,S) with U being a universe of elements
and S a collection of subsets of U , the goal is to find a minimum cardinality subset L ⊆ U
such that each set S ∈ S is hit by at least one element in L, i.e. ∀S ∈ S : L ∩ S 6= ∅.

In our case, U consists of all nodes of the road network (the possible BLS locations). The
set S is composed of the vertex sets of all shortest s-t-paths (excluding s and t themselves)
for which a fully charged battery at s does not suffice to reach t. Our function η characterizes
the paths where the energy consumption of traversing them exceeds the battery capacity
B ∈ R

+ – we call these paths B-violating. Clearly, we only need to consider set-minimal
paths as supersets are hit automatically. Theorem 2 shows that this Hitting Set formulation
indeed solves our ESC problem (see also Figure 3 for an illustration).
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Figure 3: If a shortest path from s to t exhibits a B-violating prefix (s-v, marked red), then
according to the Hitting Set formulation there has to be a loading station l on
this subpath. As the vehicle fully reloads at l, the same argumentation applies
to the subpath l-t, which is illustrated in the picture by cutting off the prefix
s-l in every layer. The final s-t-path is not B-violating anymore. Therefore the
originally considered s-t-path can be traveled when visiting the three indicated
loading stations. The blue B’s mark the nodes where the battery is fully loaded,
i.e. where the charge level is equal to the battery capacity.

Theorem 2 (Correctness). The Hitting Set formulation leads to a feasible ESC solution,
i.e. when placing loading stations according to the Hitting Set solution L, every shortest
path in G can be traversed with an EV without running out of energy according to η.

Proof. Let π(s, t) be a shortest path from s to t in G which is B-violating, and let the EV
be fully loaded at s. Let π(s, v) be the minimal B-violating prefix of π(s, t). This prefix
has to be hit by a loading station l ∈ L with l 6= s, l 6= v as demanded by the Hitting Set
formulation. The EV can reach l from s, as π(s, v) is the minimal B-violating prefix and l
appears before v on π(s, v). At l the EV is fully re-charged. Hence the whole argumentation
transfers now to the subpath π(l, t). Applying this argument recursively, the EV will finally
reach a loading station on π(s, t) from which the suffix of the path is no longer B-violating.
Therefore the EV will reach t via π(s, t) without running out of energy.

Note that there is no precision loss in reformulating ESC as a Hitting Set problem
instance, since every solution to ESC is a feasible solution of exactly the same cardinality
for the respective Hitting Set problem instance.

At this point, common Hitting Set solving techniques can be applied to solve ESC, e.g.
the standard greedy algorithm. The greedy algorithm repeatedly picks the node hitting
most so far unhit sets in S and adds it to the solution. It terminates as soon as all sets are
hit. A solution computed with the greedy algorithm is guaranteed to be a ((ln |S|)+Θ(1))-
approximation (Chvatal, 1979); we ignore the lower-order term Θ(1) from now on. In our
application, the number of sets in the system is upper bounded by the number of shortest
paths in the graph. Therefore, we have |S| ≤ n2 and hence the greedy algorithm provides
a 2 ln(n) approximation guarantee. The running time of the greedy algorithm depends
crucially on fast access to the so far unhit sets in S in each round.
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Figure 4: Cut-out of a CH-graph: Black edges are original edges, blue edges indicate short-
cuts. The red node labels reflect the contraction order. So, for example, at the
moment the node labeled 6 was contracted, the shortcut from node 10 to node 9
was inserted as the shortest path from 10 to 9 went over 6. On the right side, the
search space for a query from the leftmost to the rightmost node is illustrated.
Green edges show G↑

out
(s) and purple edges G↓

in
(t).

In the remainder of the paper, we will investigate the efficient construction of the set
system using different path extraction and representation schemes and study their influence
on the greedy algorithm.

4. Basics for Practical ESC Computation

To determine suitable BLS positions, we first have to construct the set of shortest paths
on which the EV would run out of energy (according to η). Computing the shortest path
between two nodes or from one to all other nodes is classically performed using Dijkstra’s
algorithm (also shortly called ’Dijkstra’). In large street networks Dijkstra is too slow to
process a large number of such queries (as it is necessary for our application), though.
Therefore, we will instrument speed-up techniques developed for accelerating shortest path
queries to achieve better running times for our approaches. In particular, we will employ
Contraction Hierarchies (CH) (Geisberger, Sanders, Schultes, & Delling, 2008) for this
purpose. The basic idea behind CH is to augment the graph G(V,E) with a set E′ of so
called shortcuts, which span (large) sections of shortest paths. Using these shortcuts instead
of original edges allows for a dramatic reduction of operations in a Dijkstra run.

The central operation in the CH preprocessing is that of a node contraction. Considering
a graph G(V,E) with a node v to be contracted, the goal is to remove v from G without
affecting shortest path distances between all remaining nodes. This can be achieved by
creating additional shortcut edges between neighbors of v as follows: For every pair of
neighbors u,w of v with (u, v), (v, w) ∈ E, a shortcut (u,w) is created (with cost of the
path uvw) if uvw is the only shortest path from u to w. Then the resulting graph (with
v removed and all necessary shortcuts added) exhibits the same shortest path distances as
the original graph. The CH preprocessing phase instruments this node contraction by first
assigning a label l : V → N to each node. Then, the nodes are contracted in increasing label
order. Having contracted all nodes and constructed a set of shortcuts E′ on the way, we
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return as result of the preprocessing phase the CH-graph G′(V,E ∪E′), that is, the original
graph augmented with the shortcuts (and the labeling), see Figure 4 (left) for an example.

According to these labels, original or shortcut edges (v, w) are referred to as upwards
if l(v) < l(w) and downwards otherwise; paths are called up/downwards if they consist
exclusively of edges of that type. It can be shown that by the way we created shortcuts,
for each node pair s, t ∈ V a shortest path exists in G′ = G(V,E ∪ E′) which can be
decomposed into an upward path starting at s followed by a downward path ending in t;
The highest node of the path wrt l is called the peak node in the following. This property of
the path allows to restrict a bidirectional Dijkstra run to G↑

out
(s) and G↓

in
(t) which refer to

the subgraphs of G′ containing only all upwards paths starting in s or all downwards paths
ending in t respectively. In Figure 4 (right), these subgraphs are illustrated. The resulting
optimal path found by the bidirectional Dijkstra has the same costs as the shortest path
in the original graph. But the representation of the path is different, because the path
now consists (partly) of shortcuts. To get the shortest path in the original graph, an
unpacking procedure is applied. For every shortcut, the two edges (original or shortcut) it
directly spans are memorized during CH construction. Thus, for unpacking one just has to
recursively replace shortcuts by these spanned edges until all original edges are identified.

Note that the CH scheme can also be employed to just represent a shortest path π
very concisely by replacing as many subpaths of π as possible by shortcuts. We also call
this representation of π a CH-path. In our experiments it turns out that CH-paths are an
extremely economic representation scheme for shortest paths.

For the one-to-all shortest path problem, the PHAST algorithm (Delling, Goldberg,
Nowatzyk, & Werneck, 2011) also takes advantage of the CH-preprocessing scheme. Here

in a first phase all nodes in G↑
out

(s) for a source s ∈ V are settled via a Dijkstra run. In the
second phase all downward edges (v, w) are relaxed in decreasing order induced by l(w),
thereby computing correct distances to all nodes in V . So the second phase is simply a sweep
over a subset of the edges which requires only linear time. Correctness of PHAST results
again from the fact that for every node t the shortest path from s to t can be decomposed
into an upwards path (with all contained nodes settled in the first phase) and a downwards
path. As the set of downwards edges forms a directed acyclic graph and the labels l(w)
induce a topological order, a sweep over the edges in this order assures that at the moment
an edge (v, w) is relaxed, node v is already settled. Hence PHAST computes exact shortest
path distances from s to all nodes in the network. Note that for a single shortest path query
PHAST is not the method of choice, as other techniques like pure CH-Dijktra computations
normally run in time clearly sublinear in the number of edges in practice.

5. Construction of the Set System

In this section, we investigate several strategies to extract the set system for a given ESC
instance, i.e. the set of all minimal shortest paths in G which are B-violating. Along with
different extraction strategies, we present different ways to represent and store the respective
set of shortest paths and discuss the advantages and disadvantages of these representations.
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5.1 Naive Extraction

The simplest approach that comes to mind is to compute the shortest path tree (via Dijkstra)
for every s ∈ V and to identify all nodes in the tree with accumulated energy cost values
above B. Once all nodes in the priority queue of Dijkstra have settled predecessors that
already belong to B-violating paths, we can abort the exploration from that source s. The
respective paths in the search tree can then be backtracked and stored as e.g. complete
vertex sets. For small exploration radii (small bounds B) this is a practical approach, but
for larger B the space consumption of O(n2√n), n = |V | is enormous (assuming an average
path length of

√
n). Even if we only store the Dijkstra search tree for each s ∈ V via

predecessor labels, we still have a space consumption of O(n2). Of course, we could easily
achieve linear space consumption in the number of B-violating paths, by only storing the
source vertex s and the target vertex t for each path. But if we want to have access to the
nodes on a certain path, we again have to run a Dijkstra computation in the network from
s to t. For huge sets of paths computing the nodes between s and t always on demand is
very time-intensive. No matter which representation we use to store the paths, the time
complexity of O(n · (n log n+m)),m = |E| for the naive extraction already limits usability
for real-world instances; O(n log n+m) being the runtime for one Dijkstra run.

In fact, this is also the main difficulty for other Hitting Set-type problems on street
networks. For example, speed-up techniques for shortest path queries like Transit Nodes
(TN) (Bast, Funke, & Matijevic, 2009) or Hub Labeling (HL) (Abraham, Delling, Goldberg,
& Werneck, 2012) are based on hitting a certain set of shortest paths as well. Methods
for complete instance construction are impractical there. Therefore several custom-tailored
heuristics were developed that allow for efficient computation without explicitly constructing
S (Arz, Luxen, & Sanders, 2013). But their setting differs significantly from ours, as in our
setting η poses an additional criterion to c for identifying the paths contained in S. Hence
the distance bound employed in their setting leads to a set of equal length paths, while
in our scenario, due to different energy consumption when driving uphill or downhill, the
lengths of minimal B-violating paths differ vastly. So unfortunately these TN and HL (and
other related) heuristics do not carry over to our setting. Therefore we need to explore new
ways of extracting and storing shortest path sets.

5.2 PHAST-Based Extraction

For large bounds B finding all B-violating paths from a source node resembles the one-to-all
shortest path problem. PHAST was explicitly designed to solve this task efficiently. The
paths we can backtrack in the respective search tree are in CH-representation, i.e. they
consist partly of shortcuts. This is a huge advantage compared to conventional paths in
terms of storage, because with shortcuts spanning large portions of the shortest path the
number of nodes in the CH-path is significantly smaller (about two orders of magnitude for
the street network of Germany). There are some downsides, though: Nodes are processed in
the second phase of PHAST in l-order and not increasingly by distance; hence incorporating
B as stopping criterion seems difficult. Moreover, if B is not that large or leads to paths with
vastly differing lengths, the Ω(n2) lower bound on the (accumulated) runtime of PHAST
from every source might already result in a large overhead. Hence we propose a different
strategy which is also based on CH but has the potential of being significantly faster.
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Figure 5: Left: Schematic representation of a CH-graph with the height of the nodes indi-
cating the contraction order. For the blue-marked peak p, G1 := G↑

in
(p) is colored

red and G2 := G↓
out

(p) is colored green. Note that for all nodes in the bottom
layer, both G1 and G2 are empty and nothing has to be done (which in practice
is true for about 50% of the nodes). Right: Energy cost labels (black) assigned
to G1 and G2 resulting from two Dijkstra runs starting at the blue node. The
resulting intervals for nodes in G2 are expressed in purple. So if we, for example,
search for matching targets for the source node labeled 3 in G1, the intervals
reveal that only the node labeled 9 in G2 is a suitable candidate.

5.3 Peak Node Mapping (PNM)

A large number of B-violating paths can originate from a source s ∈ V . Exploring all
these paths with Dijkstra or PHAST is very time-consuming. The core idea of PNM is to
enumerate B-violating paths completely different but also taking the CH-representation of
paths into consideration. As explained above, shortest CH-paths are unimodal with respect
to the labeling l and the node with the maximal label is called the peak. Intuitively, nodes
with a high label appear in more shortest paths as peaks. In fact, in real-world graphs, the
5% nodes with highest level constitute the peaks of all reasonably long shortest paths. This
gives rise to a path enumeration algorithm, which explores paths not from the source but
from the peak, resulting in dramatically reduced search spaces for the majority of nodes.

Algorithm. Our PNM algorithm works as follows: We consider one by one every node
p ∈ V as potential peak. As all shortest paths with peak p can only contain further nodes
with a smaller label, we only need to search upwards paths ending in p and downwards paths
starting in p for prefix and suffix candidates. The respective subgraphs of the CH-graph
G′ containing these paths are called G1 := G↑

in
(p) and G2 := G↓

out
(p), see Figure 5, left,

for an illustration. A conventional Dijkstra run in each of G1 and G2 (which are typically
very sparse) reveals the distances from p to the contained nodes. Now we are interested
in combinations of shortest (upward) paths in G1 and shortest (downward) paths in G2

leading to minimal B-violating paths. Testing them all naively is too expensive. Therefore,
we construct for each p an interval tree (Berg, Cheong, Kreveld, & Overmars, 2008) on the
nodes in G2. The interval ]a, b], which we associate with such a node t, denotes the range of
possible energy consumption values of a path prefix π(s, p) in G1 such that π(s, p)∪ π(p, t)
is a minimal B-violating path. These intervals can easily be computed by a single pass over
the Dijkstra search tree in G2, see Figure 5, right, for an example. So for every possible
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Figure 6: Illustration of three methods for representing and storing shortest paths (stored
elements are always colored orange): On the left as complete vertex set, in the
middle as shortcut set/CH-path (the heights of the vertices in the image corre-
spond to their l-value), and on the right as triple consisting of source, target and
peak vertex.

source s ∈ G1, we query the interval tree for the set of targets T in time O(log(|G2|) + |T |)
storing the resulting paths as quadruples (s, p, t, c(s, p) + c(p, t)), t ∈ T . Note that for the
employment of the interval trees we make use of the special choice of η. For different choices
of η the interval computation procedure has to be adapted.

Filtering. After all nodes are processed, we have a set of B-violating paths from which,
unfortunately, not all are shortest paths. The concatenation of two shortest paths (π(s, p)
and π(p, t)) does not need to be a shortest path itself. So it remains to filter this set
appropriately. This can be achieved by using distance oracles with quasi constant look-up
time as e.g. provided by HL or by another pass over all nodes in the role of the peak, always
pruning a quadruple if for s, t a shorter path was found for p′ 6= p. Note, that pruning
can already be employed during the construction phase if the intermediate path set sizes
become too large. The final set of paths is then stored as list of triples (s, p, t) – an even
more compact representation than CH-representation. In Figure 6, a visual comparison is
provided for storing a path as vertex set, as shortcut set, or as PNM triple.

Accessing all nodes in the respective shortest s-t-path in G as required for the greedy
Hitting Set algorithm is no longer trivial for our sophisticated representation schemes,
though. Therefore, we develop suitable adaptions of the greedy algorithm to work on
the CH-representations and on PNM triples in Section 6.

5.4 Minimality Checks

As mentioned when introducing the Hitting Set formulation of ESC, we only need to extract
and store minimal B-violating shortest paths, i.e. paths with no subpath being B-violating
as well. Adding non-minimal paths to the set system of course does not invalidate the
solution, but increases the complexity of storing all sets, and the running time of the greedy
algorithm later on.

For the naive extraction scheme, a B-violating path π = sv1 . . . vkt identified in a Dijk-
stra run from s might not be minimal, as the path might still be B-violating without some
prefix. More precisely, we have to check if the path remains B-violating when removing the
first edge (s, v1), and if so, we don’t have to include π into S. The respective Dijkstra run
when considering v1 as source will ensure that no B-violating path is missed.
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For the PHAST-based extraction, the minimality check becomes more complex. As the
paths are in CH-representation, we might not have direct access to the first edge of the path
in the original graph (if the path starts with a shortcut). So we have to unpack the first
shortcut before performing the minimality check.

For PNM both prefix and suffix deletion might lead to a subpath that is still B-violating.
So immediately after the decision in favor of a triple (s, p, t), we check for the first edge on
the path from s to p and the last edge on the path from p to t if their removal will not
destroy the property of the path being B-violating. Again, like with PHAST, paths are in
CH-representation during the construction, therefore we have to unpack the shortcuts first.

5.5 Transformability

Note, that the extraction scheme does not tie us to a certain path representation. In fact,
all mentioned representations (vertex sets, source-target-pairs, CH-paths, triples) can be
converted into each other. Especially the transformation from vertex sets to CH-paths will
turn out to be favorable, as CH-paths yield a fair trade-off between space consumption and
applicability of the greedy algorithm as explained in more detail in Section 6. We will now
provide the details for all transformations including theoretical transformation times. For
the latter we assume that the complete vertex set representation contains k elements.

• From source-target-pairs to vertex sets. Given s, t, the complete path is computed via
a Dijkstra run in G and backtracking, requiring O(n log n+m) time.

• From vertex sets to CH-paths. We assume the CH-labels l : V → N are available.
Then a recursive procedure allows to turn the vertex set into a CH-path. We first
identify the node v0 in the vertex set with the highest l-value (the peak). Then we
split the vertex set into the prefix before v0 and the suffix after v0. For both of those
sub-paths we again search for the node with the highest l-value, providing us with
v1, v2. These two nodes are connected with v0 via a direct edge/shortcut in the CH-
graph (as all nodes in between were contracted before), so we have (v1, v0), (v0, v2).
This again provides us with a prefix (nodes before v1) and a suffix (nodes after v2)
on which we recurse. The algorithm stops when the prefix is only s and the suffix
only t (or the prefix is monotonously increasing wrt l and the suffix monotonously
decreasing), see Figure 7, top, for an illustration. Assuming the CH-representation
contains h shortcuts, the transformation can be performed in O(k · h).

• From CH-paths to PNM triples. We just need to extract the peak vertex (besides
source and target) which can be done in O(h) if the CH-path consists of h shortcuts.

• From PNM triples to CH-paths. Given source s, target t, and peak p, we run a Dijkstra
starting at p in G1 := G↑

in
(p) and G2 := G↓

out
(p) until s and t are settled. As the

number of edges in a CH-graph is assumed to be in O(m), the runtime for a single
transformation is in O(n log n+m) just like for the transformation from source-target-
pairs to vertex sets. But as typically a peak with a small l-value has very small G1

and G2, and a peak with high l-value generates many s-t-paths at once, the amortized
costs per path are considerably smaller.
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Figure 7: From vertex sets to CH-paths and back. In the first row, a vertex set is given.
The l-values derived in the CH construction are indicated by the vertex elevations.
Then recursively the vertex with the highest l value (marked red in the images)
in the prefix and suffix of the path is extracted and shortcuts are added to span
path sections with lower l-value. In the second row, a CH-path is recursively
unpacked. Shortcuts are colored blue. The red arrows point to their replacement
edges in the next unpacking step. The final path is the same we started from in
the first row, and does not contain any shortcuts.

• From CH-paths to vertex sets. Given a CH-path, we apply the unpacking method
described in Section 4, i.e. we recursively replace shortcuts by their spanned edges
until the path consists of original edges only (see Figure 7, bottom). If the resulting
path consists of k vertices, the unpacking can be performed in O(k).

• From vertex sets to source-target-pairs. The first and the last vertex of the complete
path are stored and the rest is neglected. This transformation costs O(1) or O(k) if
we consider the deletion of the k − 2 other elements as well.

In the following, we will no longer investigate the source-target pair representation, as
storing PNM triples requires only one item more per path but at the same time allows for
more efficient access to the path’s vertices.

6. Greedy Hitting Set Computation

As explained above, the greedy approach is a natural strategy to solve the Hitting Set
problem approximately. Theoretically it yields solutions within a factor of 2 ln(n) of the
optimum in our setting. But in practice greedy performs much better than the theoretical,
a priori approximation guarantee implies.

For all but the simplest set system representation the application of the greedy Hitting
Set algorithm is not straightforward and requires some deliberate operations on the set
system/path representations as we will see in the following.

6.1 Complete Vertex Sets

If the paths are simply given as the set of contained vertices, a single scan over all these
sets can determine the ‘best’ node hitting most paths. Another scan can remove the paths
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that have been hit by the selected node. These two scans can also be combined into one
by updating the counter values when removing the newly hit paths (an initial count is
still necessary). Unfortunately, the space consumption of this approach is enormous, also
making a single scan quite expensive.

6.2 CH-Paths

When representing the minimal B-violating paths as CH-paths, we could convert the single
paths into original paths by unpacking the shortcuts and then operate on the complete
vertex set of the path. Note that the paths would be processed one by one and only one
unpacked path would be kept in memory at a time. But there is a much better strategy
than just uncompressing every single CH-path to get to the original node sets: maintaining
a usage counter for each edge (counting how many shortest paths use that edge), we first
scan over all edges of all CH-paths in the set system to be hit, incrementing the respective
counters. Then we traverse all shortcut edges of the graph in decreasing order of their
construction in the CH-preprocessing, incrementing the counters of the spanned edges. The
node counters, maintained to identify the maximum node, can then be derived by a final
scan over all original (non-shortcut) edges. Keeping reverse information about which edges
are spanned by which shortcut also allows the identification of all sets that have been hit
by a node. If we update the edge counters when removing CH-paths from the set, picking
a node requires only one scan over the edges to push the counts down on the non-shortcut
edges, one scan over the usage counters and one scan over the set of CH-paths.

6.3 Peak Node Triples

When paths are described as triples of source, target, and peak node, we can get the CH-
path representation as described in Section 5.5. Then we proceed as with the CH-path
representation. Note, that this CH-path representation is computed on demand for each
peak in every round to avoid keeping all paths in CH-representation permanently in memory.

7. Multi-stage Construction

For country-sized graphs, even the improved set system extraction methods and represen-
tations do not reduce the space and time consumption enough to be practical. Therefore
we introduce a procedure which interleaves the set extraction and the greedy Hitting Set
computation in a multi-stage algorithm. This multi-stage algorithm requires significantly
less space than the complete construction of the set system, and therefore can be applied
to considerably larger instances.

7.1 Nested Hitting Sets

For an instance of our ESC problem determined by the battery capacity B, we make the
following important observation: For every capacity B′ ≤ B, a Hitting Set L′ for the
instance corresponding to B′ is also feasible for the original instance (having enough BLSs
for a smaller battery capacity also suffices for a larger battery capacity). So, for example, if
B = 20kWh, solving the problem for e.g. B′ = 5kWh would be feasible as well. While the
construction of L′ for some B′ ≪ B might be considerably faster due to smaller exploration
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Figure 8: If the battery capacity is B = 20 kWh, the shortest path from s to t needs to
be hit by a loading station as it exhibits energy costs of 21. In the conventional
construction, the complete s-t-path would be part of the Hitting Set instance.
The three lower images illustrate what happens when we use a nested construc-
tion with different values of B′. The red+purple/dashed subpath indicates the
minimal B′-violating path starting at s. The brown square is a possible hitter for
this path. The purple/dashed+blue path indicates the minimal (B-B′)-violating
path starting at the brown square. This path is always a subpath of s-t no mat-
ter how B′ is chosen. So hitting the blue+purple path (large dot in the image)
assures that all B-violating paths are hit as well. The nodes marked by brown
squares are not part of the final solution.

radii, L′ is typically also much larger than necessary for the instance defined by B. So
simply using the solution for B′ = 5kWh although the real battery capacity is B = 20kWh,
we expect a result with many superfluous loading stations.

But there is another advantage of first quickly computing a Hitting Set for a small value
B′: It allows us to construct a new, smaller problem instance for which any feasible Hitting
Set L′′ is also feasible for our original problem (defined by B) – and L′′ is hopefully much
smaller than L′. This second instance is defined by the set of paths originating in L′ that
are (B-B′)-violating.

We prove in Lemma 3 that the Hitting Set L′′ for the second instance is indeed also a
Hitting Set for the original instance.

Lemma 3. Given a battery capacity B, and a second capacity B′ < B. Let L′ be a feasible
ESC solution for B′, and L be a feasible Hitting Set for all minimal shortest (B-B′)-violating
paths originating in L′, then L is a valid ESC solution for the battery capacity B.

Proof. Consider some B-violating s-t-path π in the original instance. Then π must be hit
by a node v ∈ L′ less than B′ away from s. The path v, . . . , t from this hitter to the
target (or a prefix thereof) has to be in the new constructed path set of (B-B′)-violating
paths originating in L′. Therefore this subpath has a hitter in L. Hence L hits any B-
violating shortest path, which makes L a valid ESC solution for battery capacity B. Figure
8 illustrates the proof on a small example.
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7.2 Path Cover

For very small values of B, we can even compute Hitting Sets without any exploration and
evaluation of the η function purely based on the connectivity structure of the graph using
a so-called k-Hop Path Cover (Funke, Nusser, & Storandt, 2014a) which is a generalization
of a Vertex Cover. We construct a set of vertices C ⊆ V such that any directed (not
necessarily shortest) k-hop path in G contains at least one vertex from C (for k = 1 this is
simply a Vertex Cover). Then C is an ESC solution for B∗ where B∗ is the maximal energy
cost of a k-hop path, which can easily be upper bounded by k times the maximal energy
cost of an edge. For values k ≤ 48 this takes only a few minutes even on large graphs using
a variant of depth first search, making this step negligible for the overall running time.

7.3 Combination

In our implementation we combined nested Hitting Sets and k-Hop Path Covers to a multi-
stage procedure, constructing a sequence of Hitting Sets Lr, Lr−1, · · · , L1 = L for a sequence
of values Br < Br−1 < · · · < B1 = B, finally returning L as the Hitting Set for the given
instance.

The first Br results from a k-Hop Cover with small value of k, for all subsequent solutions
we apply the nested Hitting Set approach (and choose Bi manually). There might be some
loss in terms of quality compared to the greedy algorithm on the full set system due to the
nested construction. Our experimental evaluation will show, though, that the loss in terms
of quality is not that pronounced, but the running times are drastically improved, and the
graph sizes which we can handle with this approach are much larger.

8. Refinements and Lower Bounds

In this section we introduce a speed-up strategy for the greedy algorithm which is in-
dependent of the employed set representation. Then we develop algorithms to construct
instance-based lower bounds for the ESC solution. These bounds will be helpful in our
experimental evaluation, as they prove – a posteriori, after running our algorithms – that
the computed solutions are in fact pretty close to the optima.

8.1 Multiple Hitters Heuristic

Even with the non-naive representations, there is considerable work involved when picking
the next ‘best’ node in the greedy algorithm. So it might be worthwhile to add several
nodes to the Hitting Set in each round. Normally, we pick only the node which hits most
so far unhit sets, and refrain from picking other nodes in the same round as picking the
first node influences the hit counters of others. On the other hand, if we pick nodes that
do not interfere with each other, the quality of the solution should not decline too severely.
One way to achieve this is to generate the list of nodes sorted in ascending order of their
hit counters, always picking the first one and then going down the list selecting the next
nodes which have the shortest path distances of at least D to all nodes already picked.
Here D is appropriately chosen, e.g. an upper bound on the longest shortest path that is
not B-violating. Thereby we make sure no path in our set increased the hit counter of two
or more nodes picked in one round.
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Figure 9: Set of seven node-disjoint B-violating paths (highlighted in grey) in a small ex-
ample graph. Every valid Hitting Set for all B-violating paths in the graph has
to contain at least seven vertices, as no vertex can hit more than one of the grey
marked paths. Therefore the size of a set of node-disjoint paths is a feasible lower
bound for the optimal Hitting Set size.

8.2 Simple Instance-Based Lower Bounds

To evaluate the quality of our heuristics, we would like to compare the outcome to the
optimal solution. But as the optimal value is typically unknown, we instead compare to a
good, but easily computable lower bound. In a study on Transit Nodes (Eisner & Funke,
2012) a rather involved lower bound was proposed, which takes an effort comparable to
solving the Hitting Set problem itself. We propose a much simpler alternative which suffices
for our purposes: As a by-product of the generation of the set system itself we can obtain
a set of node-disjoint B-violating paths. So no two paths in the set have a non-empty
intersection. Clearly, any feasible solution must contain an extra node per path in this set.
Hence the size of a set of such node-disjoint paths yields a valid lower bound, see Figure 9
for an illustration.

In case we do not generate the set system explicitly (because we use nested Hitting Sets),
we can greedily extract a set of node-disjoint paths by running Dijkstra computations from
random sources and adding B-violating paths to our set as long as they do not intersect
with previously selected ones. The size of the set provides a valid lower bound at any time.

9. Dealing with Real-world Settings

Throughout the paper, we made some assumptions about the ESC problem for sake of a
clean definition and easier algorithm descriptions. As these assumptions are not necessarily
met in practice, we explain in the following how to adapt our algorithms to still perform
well under real-world settings.
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9.1 Ambiguous Shortest Paths

In our exposition we always assume uniqueness of shortest paths. In this section we will
discuss necessary modifications in case shortest paths are ambiguous.

First of all, we can enforce uniqueness of shortest paths by symbolic perturbation. To
that end we define the cost of a path π = v0v1 . . . vk not only as the sum cπ of its edge costs,
but by the vector (cπ, v0, v1, . . . , vk). Two such cost vectors are compared lexicographically,
that is, if two s − t-paths π1 = sv1 . . . t and π2 = sw1 . . . t have the same aggregated edge
costs, and i is minimal with vi 6= wi, then π1 is considered shorter if vi < wi, otherwise
π2 is considered shorter. This symbolic perturbation can easily be incorporated into e.g.
Dijkstra’s algorithm. During the computation of shortest paths from a node s we consider
as (possibly tentative) distance label of a node v from s not only the aggregated edge costs
ds(v) along the respective path but the tuple (ds(v), preds(v)), where preds(v) denotes the
predecessor on the current path from s to v. The ordering in case of identical ds(v) values is
determined by the node ID of the predecessor. Edge relaxations as well as the organization
of the priority queue is made according to these augmented distance labels. It is easy to
see that this yields the canonical and unique shortest paths as described above.

With edge lengths typically measured at a precision of around one meter it rarely hap-
pens that two paths exhibit exactly the same length. Under some circumstances, though,
it might be desirable to actually maintain multiple shortest paths between nodes (hitting
each of them / allowing to travel along each of them without running out of energy). For-
tunately, we can adapt our algorithms to cater for all shortest paths. There is a minimal
change when backtracking after a Dijkstra exploration as well as in the PNM approach and
a slight change in the CH construction. For the former, when we retrieve paths/sets, instead
of following a predecessor reference of a node v (which was set during edge relaxation), we
inspect all adjacent nodes and check whether their distance labels with the respective edge
cost sums up to the distance label at v. This yields all neighbors of v that lie on a shortest
path from s to v. Recursing on these neighbors we obtain all shortest paths. In the CH
construction, the crucial operation is the contraction of a node v. In the original version,
for every pair of neighbors u,w of v with (u, v), (v, w) ∈ E, a shortcut (u,w) is created
(with cost of the path uvw) if uvw is the only shortest path from u to w. To maintain all
shortest paths, we add the shortcut if uvw is a shortest path from u to w (but with possible
existence of other shortest paths). In this way every shortest path has a CH representation;
this comes at the cost of slightly more shortcuts added.

Our lower bound construction in Section 8.2 can be modified to also yield a lower bound
for the case with ambiguous shortest paths as follows: An s-t-pair can contribute to the
lower bound if all shortest paths between s and t require at least one recharging event. To
compute a valid lower bound we retrieve a maximal set of such vertex pairs, where for any
two vertex pairs in this set the respective shortest path node sets are not allowed to overlap.
This generalizes the idea of node-disjoint shortest paths in case of ambiguous shortest paths.

Our experiments showed, though, that considering all shortest paths does not yield
noticeably different results – mainly due to the rarity of reasonably long ambiguous shortest
paths. When we disregard ambiguities in our implementation, only for extremely small
battery capacities (corresponding to a cruising range of less than 2km), we found ambiguous

650



Placement of Loading Stations for Electric Vehicles

shortest paths that were not covered by our BLS placement. For all larger battery capacities
our BLS placement in fact covered all (of the few) ambiguous shortest paths.

9.2 Restricted Loading Station Placement

We assume in our ESC problem definition that loading stations can be placed on every
node in the network. In practice, though, the set of possible locations might be restricted
due to technical, financial or legal reasons. If there is a set V ′ ⊂ V of candidate nodes for
loading stations, we can incorporate this in our algorithms as follows: During construction
of the set system, we check for every shortest path whether at least one of its nodes is in
V ′. Otherwise, we ignore the path completely (as it can never be hit anyway). For the
CH-based extraction methods, we can set a flag for every edge/shortcut indicating whether
the spanned path contains a node from V ′ or not. This allows to perform the check for a
CH-path without having to unpack it. In the actual Hitting Set computation we simply
skip over nodes that are not in V ′ to compute a feasible solution.

Note, that depending on the choice of V ′ the final Hitting Set might not allow to drive
on all shortest paths without running out of energy, though. To incorporate that some
locations are more suitable to become loading stations than others without losing global
reachability as demanded by our ESC problem formulation, we introduce a prize function
p : V → R

+. The higher the prize the more complicated or expensive it is to place a
charging station at this node. Then we can exploit the weighted Hitting Set problem as
basis for our computations. Here the goal is to find a set L of elements in the universe
which hit all sets in the set system while minimizing the accumulated prize

∑
l∈L p(l). Our

set system extraction methods remain unaffected by the prizes. Only in the greedy Hitting
Set computation step, the selection of the next best hitter changes. Previously, we selected
the node next that hits most so far unhit sets. Now, if S(v) denotes the set of so far unhit
sets that contain v, we select the node that minimizes the average prize per set p(v)/|S(v)|.
The approximation guarantee of the greedy algorithm for the weighted Hitting Set problem
is the same as for the unweighted Hitting Set problem (Chvatal, 1979). We expect the
solution to consist mainly of cheap charging stations and possibly some expensive ones that
are required to establish reachability between any two nodes.

9.3 Placement with Given Initial Loading Station Set

Another assumption made in the ESC problem definition is that we try to construct a
network of loading stations from scratch, i.e. starting with no loading stations at all. While
loading stations are still sparse in many areas, the ones that are already installed should
not be ignored. Existing loading stations can easily be taken into account when solving the
ESC problem: For a given initial set of loading stations L0, we check during the extraction
of the set system for each path if it is already hit by L0. If this is the case, the path can be
pruned. The remaining steps for the Hitting Set computation work just like before.

10. Experimental Evaluation

Our proposed techniques for computing ESC solutions were evaluated in a multi-threaded
implementation written in C++ and executed on 2nd generation Intel Core desktop hard-
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ware, an i7-3930 (6 cores, 64GB of RAM) for complete set generations and an i7-2700 (4
cores, 32GB RAM) for the multi-stage construction with nested Hitting Sets. We use the
following abbreviations to state results: K=103, M=106, s=seconds, m=minutes, h=hours,
d=days, GB=109Bytes. We distinguish between CPU time (total CPU usage) and real time
(wall clock time). Several road networks of Germany derived from OpenStreetMap data

region abb. |V | |E|
Pforzheim (PF) 0.2M 0.4M
Tübingen (TU) 0.5M 1.0M

Baden-Württemberg South (BW) 2.2M 4.6M
Southern Germany (SG) 4.2M 8.6M

Germany (GE) 17.7M 36.0M

Table 1: Test graph characteristics.

(OSM, 2015) were used for evaluation, see Table 1 for an overview. As edge cost function
c we used travel time along an edge, so the paths to hit are indeed quickest paths (the
term shortest paths is conventionally used for subsuming all kinds of metrics). Energy con-
sumption of an EV was modeled as explained in the introduction using distance data from
OSM and elevations provided by the Shuttle Radar Topography Mission (NASA, 2015). B
corresponds to a battery capacity which translates to a certain terrain dependent cruising
range. We use a capacity B for PF and TU that allows to drive 40 kilometers on average,
and about 125 kilometers for the larger graphs. Our α, which models how much going uphill
increases the energy consumption, equals 4.

10.1 Dealing with Complete Set Systems

Construction and Representation. Let us first examine the time and space complexity of
extracting the complete set of minimal B-violating paths. We constructed set systems
using the naive strategy (NAIVE – representing each path as the complete sequence of
its vertices), the PHAST-based exploration (PHAST – with paths in CH representation),
and peak node mapping (PNM – representing each path as source,peak,target triple). The
respective results can be found in Table 2. Unfortunately, only the two smallest instances
were feasible to process using all strategies; already for the BW graph, the time and space
consumption of NAIVE exploded (extrapolated more than 500GB and more than 23 CPU
days). In comparison, PHAST is about a factor of 3 faster than NAIVE, and the space
consumption of CH-paths is an improvement by at least an order of magnitude. PNM can
construct the BW instance in 4.4 CPU hours, compared to the week needed by PHAST, and
the space consumption using triples decreases by another factor of 2 (note that for longer
paths the advantage of PNM vs. CH representation increases). But for SG and GE, also
PHAST and PNM took too much time and space (e.g. extrapolated 557GB/112days for
PHAST). So for larger networks, constructing complete set systems seems to be infeasible.

Comparison of Path Representations. As explained in Section 5.5, the path extraction
scheme does not tie us to a path representation. Instead, we can transform the extracted
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Graph # paths space consumption
NAIVE PHAST PNM

vertex sets CH-paths triples

PF 38M 5.2GB 0.2GB 0.1GB
TU 168M 24.0GB 2.1GB 0.9GB

BW 2715M [526.3GB] 34.6GB 14.3GB

Graph computation time
NAIVE PHAST PNM

CPU real CPU real CPU real

PF 1.5h 0.3h 26.7m 5.0m 1.8m 25.1m
TU 24.6h 4.1h 7.5h 1.4h 27.3m 5.4m

BW [23.1d] [3.9d] 7.5d 33.1h 4.4h 47.0m

Table 2: Comparison of path extraction/representation schemes. B corresponds to about
40km (PF and TU) or 125km (BW) cruising range on flat terrain. Timings include
the CH-construction for PHAST/PNM. Values in brackets are extrapolated.

paths to any of the introduced representations before storing them. Each representation
provides some trade-off between space consumption and access times for single paths. Figure
10 illustrates these values for a small and a large benchmark instance (TU and GER).

Note, that the access times for paths represented as triples are amortized. If we really
want to extract a single path only, the costs are comparable to the ones for the (s, t)
representation. But in the greedy algorithm, we require access to huge sets of paths in
every round, so the (s, p, t) representation pays off. For the CH representation, the access
times are reported in the figure purely for completeness. They are not significant for the
greedy Hitting Set computation, though, as our specialized greedy algorithm on CH paths
does not require to unpack those paths. In fact, the access times relevant for the greedy
algorithm are even below the ones for the vertex set representation, as the CH representation
contains far less elements we have to sweep over. Hence, we regard CH-paths as the best
path representation as soon as the set system fits in memory in this representation.

The transformation times between two path representations can be estimated from the
results reported in Figure 10 as well. Every transformation that runs in constant or linear
time according to our analysis has cost less or comparable to accessing paths in vertex
set representation. The transformation time for CH-paths to vertex sets or vice versa
corresponds to the access time for paths in CH representation. And to transform triples
into CH-paths, we need the time to access a path in triple form minus the time to unpack
a CH-path.

Hitting Set Computation. We evaluated both the standard greedy algorithm as well as the
multiple hitters (MH) variation on the set systems for PF, TU, and BW with varying choices
for B. Figure 11 shows their performance in terms of quality (standard greedy vs. MH) as
well as running time (how much faster MH is compared to standard greedy). The ratios are
averaged over all test graphs; the bound B is chosen between almost zero and 60 percent of
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Figure 10: Comparison of several path representation schemes in terms of space consump-
tion and access time. Both axes are in log scale.

the maximum energy consumption of some shortest path in the respective network (in fact
for very long paths, the set systems got so simple that greedy even constructed the optimum,
hence the approximation ratio of 1 in Figure 11). In all cases, greedy produces results much
closer to the optimum as the theoretical 2 lnn guarantee, the maximum deviation from the
lower bound was indeed less than 4.5. Employing the MH strategy increases the HS size
slightly, but yields significantly decreased running times especially for smaller bounds B
(where more hitters have to be chosen). Still, compared to the construction time of the
set systems, the Hitting Set computation times were negligible, so we do not state them
explicitly here. This will change when we employ the multi-stage construction, though.

10.2 Multi-stage Construction

As the construction of the complete set system has proven to be infeasible for larger road
networks, we will make use of the idea of a multi-stage construction.

k-Hop Cover+PNM. Let us first examine how a compact set system can be constructed
using the PNM approach after an initial k-Hop Path Cover. For the BW network we
computed a k = 32-Hop Cover C (146, 494 nodes) which corresponds to an ESC solution
with B′ = 8832 (and cruising range of about 9km in flat terrain). Then PNM is used to
create a final compact set system by only considering (B − B′)-violating paths that start
at nodes in C. Not surprisingly, the number of paths to be hit reduces drastically from
2715M in Table 2 to 24M in Table 3. The running times are still quite high, though, as
this approach does not save the exploration from each peak (therefore more stages will not
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Figure 11: Performance of the greedy algorithm and the multiple hitters variant (MH)
averaged over PF, TU and BW.

Graph |C| B′ CPU real # paths

BW 146,494 8832 2.2h 35.5m 24M
SG 180,455 10048 6.0h 2.8h 75M
GE 769,760 15808 64.8h 27.6h 1085M

Table 3: Instance creation (B = 40K) via PNM with initial k-hop solution C for k = 32.

help much here). Since further improvements in terms of running time using PNM in a
multi-stage approach cannot be expected, let us now concentrate on the naive approach
with the extracted paths being converted into their CH-representation.

Multi-Stage Hitting Sets. We employ the following strategy: first, construct a k-Hop Cover
C with e.g. k = 32 which yields an initial Hitting Set Lr for some bound Br. Then we
construct a reduced set system consisting of all (Br−1 − Br)-violating paths starting at
nodes from Lr only and compute a Hitting Set Lr−1 for that set system. Here, we use naive

Graph Br Bi’s of nested HS |L| LB APX CPU real

TU – 1k,5k,40k 120 33 3.64 9m 3m
SG – 2k,10k,125k 106 33 3.21 404m 106m

TU 1.8k 4.8k,40k 116 33 3.52 8m 2m
SG 4.2k 12.2k,125k 110 33 3.33 242m 63m

GE 15.8k 17.8k,33.8k,125k 868 190 4.57 908m 265m
GE 6.2k 8.2k,24.2k,125k 728 190 3.83 1156m 322m
GE 15.8k 17.8k,25.8k,49.8k,125k 1212 190 6.38 645m 209m

Table 4: Multi-stage Hitting Set computation (LB = lower bound, APX = approximation
factor). The last two experiments can be seen in detail in Table 5.
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i Bi tSS #paths tHS |Li| CPU

4 6.2k – – 14s 1388k 14s
3 8.2k 363m 34.6M 25m 223k 388m
2 24.2k 249m 36.8M 21m 16k 270m
1 125k 467m 13.5M 31m 728 498m
∑

1079m – 77m – 1156m

i Bi tSS #paths tHS |Li| CPU

5 15.8k – – 36s 770k 36s
4 17.8k 203m 19.7M 25m 208k 228m
3 25.8k 101m 17.1M 21m 38.6k 122m
2 49.8k 81m 9.2M 17m 8445 98m
1 125k 146m 5.6M 50m 1212 196m
∑

531m – 113m – 645m

Table 5: Statistics for a 4-stage run starting with a k = 16-Hop Cover (above), and a 5-
stage construction initialized with a k = 32-Hop Cover (below) on GE. The column
#paths gives the number of sets to hit in the respective stage. tSS and tHS

denote CPU time for the set system construction and the Hitting Set computation
respectively.

extraction but transform vertex sets to CH-paths for more efficient storage. We proceed
iteratively until reaching B1 = B and the final Hitting Set L1 = L. It is intuitive to demand
that the gap between B2 and B1 should be large to make sure that the last Hitting Set
instance still faithfully characterizes the original Hitting Set instance. Table 4 shows the
results for various choices of multi-stage parameters. In Table 5 we give a more detailed
account on the intermediate calculations for the large GE graph. The experiments confirm
that the larger the gap between B2 and B1 is, the better the quality of the final Hitting
Set. This comes at the cost of an expensive last stage, though. In contrast to the other
experiments, the first two calculations in Table 4 have been conducted without an initial
k-Hop Cover. The results obtained on TU and SG suggest that an initial k-Hop Cover
accelerates the calculation while maintaining a similar Hitting Set size. Furthermore, all
the APX values remain low even though the lower bounds were obtained in a naive way.
Note that for example for the graph of Germany, the a priori approximation guarantee of
the plain greedy algorithm (which is not feasible due to excessive running time and space
consumption) is 2 lnn ≈ 19.5. This proves the excellent quality of the Hitting Sets for the
particular instances. Table 5 shows that introducing multiple stages keeps the intermediate
set systems rather compact, so efficient computation is actually possible.

11. Conclusions and Future Work

We showed how to model and solve a natural and important facility location problem in
the E-mobility context, taking a radically different approach than previous ones avoiding
detours to loading stations for EVs.
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While a naive strategy only allows for the solution of small instances of few hundred
thousand nodes, our compact representation schemes for the underlying set systems and
heuristic modifications of the standard greedy approach make the computation of a solution
even for country-sized networks like that of Germany possible. Instance-based lower bounds
certify that the solution quality is close to optimal (within a factor of 4) and far from the
pessimistic theoretically achievable approximation bound. In fact it is remarkable that after
all, it was possible to compute a 4-approximate solution to a seemingly intractable Hitting
Set problem within a few hours on a quadcore desktop PC. Our computation determined
around 800 locations where placing BLSs would establish complete coverage for Germany.

Our framework does not require the metric that decides which shortest paths have to
be hit to be identical with the metric that determines which paths are shortest. In fact this
was factored out using our η function, which – depending on the application scenario – can
also be used to implement other hitting criteria (e.g. hop distances or risk values).

In future work we intend to examine how the ‘exact hitting’ requirement can be relaxed.
Naturally, it is not necessary that there is always a BLS right on the respective shortest
path, but a nearby one suffices. This could be modeled by enlarging the vertex sets of
the respective shortest paths by surrounding vertices. Hitting Set sizes for this variant are
expected to be considerably smaller than for hitting all shortest paths directly. Another
direction of research is to take into account capacity constraints of the BLSs (Lam et al.,
2013); in particular in urban areas it is certainly necessary to provide recharging stations
for a very large number of vehicles.
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