Placement of Nodes
in an Adaptive Distributed Multimedia Server

Balazs Goldschmidt!, Tibor Szkaliczki®*, and Lészl6 Boszorményi?

! Budapest University of Technology and Economics
balage@inf.bme.hu
2 Computer and Automation Research Institute
of the Hungarian Academy of Sciences
sztibor@sztaki.hu
3 University Klagenfurt, Department of Information Technology
laszlo@itec.uni-klu.ac.at

Abstract. Multimedia services typically need not only huge resources
but also a fairly stable level of Quality of Services. This requires server ar-
chitectures that enable continuous adaptation. The Adaptive Distributed
Multimedia Server (ADMS) of the University Klagenfurt is able to dy-
namically add and remove nodes to the actual configuration, thus real-
izing the offensive adaptation approach.

This paper focuses on the optimal placement of nodes for hosting certain
ADMS components (the so-called data collectors, collecting and stream-
ing stripe units of a video) in the network. We propose four different
algorithms for host recommendation and compare the results gained by
running their implementations on different test networks. The greedy al-
gorithm seems to be a clear looser. Among the three other algorithms
(particle swarm, linear programming and incremental) there is no single
winner of the comparison, they can be applied in a smart combination.

1 Introduction

Even highly sophisticated multimedia servers with a distributed architecture,
such as the Darwin server of Apple [1] or the Helix architecture of RealNetworks
Inc. [2] are static in the sense that actual configurations of the the distributed
server must be defined manually. The Adaptive Distributed Multimedia Server
(ADMS) of the University Klagenfurt [3] is able to dynamically add and remove
nodes to the actual configuration. Thus, ADMS realizes the offensive adaptation
approach [4]. In case of shortage of resources, instead of reducing the quality of
the audio-visual streams by usual, defensive, stream-level adaptation, it tries to
migrate and/or replicate functionality (i.e. code) and/or audio-visual data on
demand.

* Partial support of the EC Centre of Excellence programme (No. ICA1-CT-2000-
70025) and the Hungarian Scientific Research Fund (Grant No. OTKA 42559) is
gratefully acknowledged.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 776-783, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Placement of Nodes in an Adaptive Distributed Multimedia Server T

It is crucial for the performance of the system, to find optimal placement
for the server nodes. The host recommender component of the ADMS system
determines the host computers in the network where the server components
(also called applications) should be loaded. The optimal location depends on
the actual load and capacity of the available nodes and links, and on the actual
set of client requests.

The distributed multimedia server architecture [3] has different components
that can be located on different hosts of the network. Data managers or servers
store and retrieve the media data. Data collectors or proxies collect the data
from the servers and stream them to the clients.

This paper deals with the configuration recommendation algorithms. Unfor-
tunately, the related problems are NP-complete. However, there are many ap-
proximation algorithms that can result in nearly optimal solutions within short
time. We examine, what kind of mathematical approaches can be applied to the
adaptive host recommendation.

The formal and detailed description of the model and the algorithms can be
found in a technical report! [5].

2 Related Work

Finding the optimal deployment of proxies in a network is a well known problem
in the literature. Most of the works, however, deal only with (1) static config-
urations, (2) web-proxies, and (3) caching-problems [6-8]. Static configuration
means, that proxies are deployed once, and their placement can not change later,
or with high cost only. On the other hand, web proxies have to serve the clients
with relatively short documents and images that have to arrive unmodified. On-
line multimedia data delivery serves huge data-streams, where some modifica-
tions are still acceptable, having the emphasis on the timing constraints. Finally,
we are currently not interested in caching problems, because they are orthogo-
nal to the offensive adaptation problem. This issue was discussed elsewhere [4].
Therefore, we cannot use the former results directly.

We looked at the mathematical background and found the facility location
problem(FLP), which is an intensively studied problem in operations research.
The problem is to select some facility candidates and to assign each client to
one of the selected facilities while minimizing the cost of the solution. A de-
tailed description of the problem can be found in [9]. Despite the similarity,
some significant differences prohibit the direct application of the approximation
algorithms for the FLP to the host recommendation. First, while the cost of a
facility is usually a constant value in case of the FLP, in the current problem
it depends on the maximum bandwidth required by the clients assigned to the
proxy. Furthermore, the limited bandwidth of the subnets must be taken into
account as well.

In [9] it is shown that FLP is NP-hard for general graphs. Many constant
approximation algorithms have been published for the facility location problem

! http://143.205.180.128 /Publications/pubfiles/pdffiles /2004-0005-BGAT.pdf

778 B. Goldschmidt, T. Szkaliczki, and L. Boszorményi

with polynomial running time that are usually combined with each other. The
linear programming techniques play key role in many algorithms with constant
approximation ratio [10,11]. The best approximation ratio was achieved com-
bining the primal-dual method with the greedy augmentation technique [12].

As a different approach, evolutionary algorithms (EA) also provide an ef-
ficient way of finding good solutions for NP-hard problems. In [13] an EA is
proposed to solve the P-median problem, which problem is in close relation to
FLP. A kind of evolutionary algorithms, particle swarm optimisation proved to
be effective in a wide range of combinatorial optimisation problems too [14].

3 The Problem Model

In order to implement and compare different algorithms that solve the problem,
we have defined the following model and metrics.

From the actual point of view the Adaptive Distributed Multimedia Server
consists of Data Managers and Data Collectors. Multimedia data (videos) are
stored on the Data Managers. The videos are sliced, and the resulting stripe units
are distributed to the Data Managers. When needed, the video is recollected
and streamed to the clients by the Data Collectors. This technique helps both
network and node resource load balancing.

According to [15], Data Managers that contain stripe units of the same video
should be kept as close to each other as possible, practically on the same subnet,
because that configuration gives the best performance. Based on this result our
model considers such a group of Data Managers a single server.

The media is collected from the Data Managers by Data Collectors (proxies).
They can be loaded on any node that hosts a Vagabond2 Harbour [16]. The nodes
that may play the role of a Data Collector are considered candidates.

The client is the third kind of component in the model. The clients connect
to Data Collectors and get the desired media via streaming from them. The
clients define their requests as lists that contain QoS requirements in decreasing
order of preference. We assume that the demand list has a last, default element,
that represents the situation when the client’s request is rejected. In the current
model we also assume that all clients want to see the same video at the same
time.

In our current model only the proxies can be deployed dynamically. The
locations of the servers and that of the clients are not to be modified.

The network model is basically a graph where the nodes are called areas.
An area is either a subnet (including backbone links) or a router that connects
subnets. We handle them similarly because from our point of view they have the
same attributes and provide the same functionality. The edges of the graph are
the connections between the routers and the subnets they are part of.

We assume that we know the subnet location of the clients and servers, the
candidate nodes, and the attributes of the network, the latter presented as the
attributes of each area: bandwidth, delay jitter, etc. The route between any two
nodes is described as a list of neighbouring areas.

Placement of Nodes in an Adaptive Distributed Multimedia Server 779

The solutions of a problem are described as possible configurations that pro-
vide the following information:

— for each client, the index of the QoS demand that has been chosen to be
satisfied, and the candidate that hosts the proxy for the client
— for each candidate, the server, where the video should be collected from

In order to compare different solutions, we have defined a cost function that
gets the initial specifications and a possible configuration as input parameters.
Using this information the function calculates the network resource needs (to-
tal allocation and over-allocation), the number of rejected clients (those whose
chosen demand is the last, default one), the sum of the chosen demand indexes
of the clients (linear badness), and the so called ezponential badness, that is de-
fined as) . 2" where C' is the set of clients, and i, is the index of the chosen
demand for client c¢. This last metric is useful if we want to prefer ‘fair’ to ‘elitist’
configurations.

Given two costs, that cost is less, that has (in decreasing order of preference):

less over-allocation (we can’t afford over-allocation),

— less rejection (we want to increase the number of accepted clients),
less exponential badness (we prefer fairness),

— less total allocation (we want to minimize the network load).

Using this cost metric we were able to compare several algorithms.

4 Solution Algorithms

In this chapter we provide a short introduction to the algorithms we have im-
plemented and tested. More details can be found in [5].

4.1 Greedy

The greedy algorithm we use here is almost identical to that published in [17].
The difference is that the cost function is changed to that described in the
previous chapter, and that the clients’ demand list is also taken into account.

4.2 Particle Swarm

The particle swarm algorithm is based on the algorithm of Kennedy and Eber-
hardt [14]. The original algorithm uses a set of particles, each of them represent-
ing a possible configuration. Every particle is connected to several other particles
thus forming a topology.

The particles are initialized with random values. Each particle knows its last
configuration (z(t)), its best past configuration (b,), and the configuration of
that neighbour (including itself) that has the least cost (b,,). In each turn, if
it has less cost than any of its neighbours, it counts a new configuration by

780 B. Goldschmidt, T. Szkaliczki, and L. Boszorményi

creating a linear combination of b, and b,,, using probabilistic weights, then it
adopts this new configuration. The whole process runs until some condition is
met. The combination is defined as:

z(t+1) =z(t) + p1(b, — z(t — 1)) + pa(b, —z(t — 1))

where ¢; is a random number from [0, 1).

This original algorithm, however, can solve those problems only, where the
dimensions of the configurations represent binary or real values. This is the
consequence of the linear combination technique. In our case the configurations’
dimensions represent unordered elements of sets. Therefore, instead of the linear
combination that can not be applied to them, we use the following. For each
dimension we first take the value with a certain probability from either z(t),
or b, (crossover). Then, with another probability, we change it to a random
value (e) from its value set (mutation). Finally, we assign the value to the given
dimension.

Crossover and mutation are also applied by genetic algorithms[18]. The dif-
ference between genetic algorithms and our algorithm is that in our case the
connections of the partners (neighbours) are static. Particles do crossovers only
with their neighbours, and the crossovers transfer information from the better
configuration to the worse only, thus the best results are always preserved.

The algorithm runs until every particle has the same cost. But this condi-
tion combined with the mutation leads from the initial fast evolution to a final
fluctuation. We apply the simulated annealing of the mutation rate in order to
avoid this phenomenon [19]. The control variable of the annealing is the number
of particles that have their configuration changed. The less particle changed, the
less the mutation rate is.

4.3 Linear Programming Rounding

LP Model. We chose an algorithm based on linear programming rounding for
the solution of the configuration problem. For simplicity, we minimize only the
number of refused clients, the exponential goodness and sum of the reserved
bandwidth for each subnet. Weights are assigned to the different optimization
criteria to express their priority.

Inequations express three types of constraints as follows. The reserved band-
width of a subnet is less than or equal than the available. A proxy-server con-
nection needs at least as much bandwidth as the maximum among the accepted
requests served through it. Each client is either assigned to a client-proxy-server
route or rejected.

We introduce variables X, ;; to indicate whether the request of client ¢ is
served by server k through proxy j. Their possible values are 0 and 1. Since
the time complexity to find the exact solution for an integer linear program-
ming problem is large, we consider the LP-relaxation of the problem, where the
possible values of the variables can be any real number.

Placement of Nodes in an Adaptive Distributed Multimedia Server 781

Rounding. First we solve the linear program and obtain an optimal solution.
If X;;r = 1 then let the request of client 7 be served by server £ through
proxy j. Unfortunately, the possible fractional values of X-type variables do not
represent legal solutions. We round the solution in a greedy manner. We take
each X variables with fractional value one after the other. If the client is still not
served, we try to select the current client-proxy-server route denoted by variable
X 4k, and check the load conditions in the network. The client ¢ is served by
server k through proxy j in the solution if and only if these conditions are fulfilled
after the selection of the route.

4.4 Incremental Algorithm

In order to find solutions quickly, we implemented a very simple but efficient
algorithm. It operates on the so-called FLP graph which is a bipartite graph,
where one set of nodes denotes the clients, the facility nodes represent the proxy-
server routes and the edges between them correspond to the client-proxy-server
routes that are able to satisfy client requests. The main steps of the algorithm
are as follows.

After generating the FLP graph, the facilities are sorted in decreasing order
of the bandwidth of the represented proxy-server routes. We take the facilities
one after the other. The algorithm selects facility f; if it can serve new clients or
there is at least one client c; already assigned to a facility denoted by fo where
the QoS parameters of edge (c;, f;) is better than that of edge (¢;, fo). If facility
fi is selected, we take the clients adjacent to it one after the other and client c;
is assigned to it if it fulfills the above condition and its request can be satisfied
through facility f; without overloading the network. A facility is deselected if no
clients are assigned to it.

5 Results

We implemented the algorithms and tested them on simulated network environ-
ments. Each test network consists of 50 subnets. Six test series were generated;
each of them consisted of ten cases. The number of servers is always ten, while
the number of clients and proxies varies in different series; there are 5, 10, 15,
20, 25, 30 clients and 10, 20, 30, 40, 40, 40 proxies in the different series. We
examined the cost of the solutions and the running time as a function of the
number of clients. Figure 1 shows the costs (linear and exponential badnesses,
numbers of rejected clients) and the runtime. The figures compare the results of
the algorithms described above, namely linear programming rounding, swarm al-
gorithm, greedy algorithm and incremental algorithm. The linear programming
does not produce legal solutions, without rounding, but can be used as a lower
bound for the cost measures.

According to the figure, the swarm algorithm produces the best results, and
the linear programming rounding achieves results with slightly higher cost and
the greedy algorithm fails to find nearly optimal algorithms for a high number
of clients.

782 B. Goldschmidt, T. Szkaliczki, and L. Boszorményi
Rejection Runtime
w 9 T T 100000 T T T
b L LinProg —+— LinProg —+—
8
k) Incremental ---x-— 10000 F Incremental ---x-—--
c 7 Greedy ---%--- 1000 b Greedy -~
8 6} Swarm & . " Swarm & . 1
¥ © B S
.i& 5 X S 100 R o 4
= 4 3 10 e B ;
5 4 3 . |
9] __E \ 1
a 2 == e —
E 1L~ gt T 0.1 —
= 5/ . e -3 P R
0 0.01
5 10 15 20 25 30 10 15 20 25 30
Number of clients Number of clients
Exponential badness Linear badness
800 T T 120 T T k
700 - LinProg —+— LinProg —+— -
Incremental ---x--- 100 Incremental o
600 - Greedy ------ & Greedy ---*--- m
500 Swarm 8- 80 - Swarm -8
* B
400 e 60
300 ST T e 40
200 ;g_‘!’/ - M,/, .
X — 20
100 f//. g
0 0
5 10 15 20 25 30 5 10 15 20 25 30

Number of clients Number of clients

Fig. 1. The results of the measurements for linear programming rounding, incremental,
greedy, and swarm algorithms.

On the other side, the running time of the incremental algorithm is clearly
the best, the running time of linear programming with rounding is the second,
while the swarm and the greedy algorithms run substantially slower.

6 Conclusions and Further Work

We introduced a number of algorithms for host recommendation in an Adap-
tive Distributed Multimedia Server. We did not find an algorithm that is the
best in every aspect. A good idea is producing an initial solution quickly using
the fast deterministic algorithms. Later, if time allows, a more sophisticated so-
lution (admitting more clients) might be rendered, using the stochastic swarm
algorithm.

In the future, we intend to improve the model of the network by incorporating
node information also. Thus not only the predicted future values of the network
parameters and client requests might be taken into account at the recommen-
dation, but the performance of the host nodes also. Later the implementations
of the algorithms will be integrated into the Adaptive Distributed Multimedia
Server and tested also in a real network environment.

Placement of Nodes in an Adaptive Distributed Multimedia Server 783

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Apple Computer, Inc. QuickTime Streaming Server: Darwin Streaming Server:
Administrator’s Guide. (2002)
http://developer.apple.com/darwin/projects/streaming/

Helix Community: Helix Universal Server Administration Guide. (2002)
https://www.helixcommunity.org/2002/intro/platform

Tusch, R.: Towards an adaptive distributed multimedia streaming server archi-
tecture based on service-oriented components. In Boszorményi, L., Schojer, P.,
eds.: Modular Programming Languages, JMLC 2003. LNCS 2789, Springer (2003)
78-87

Tusch, R., Bészorményi, L., Goldschmidt, B., Hellwagner, H., Schojer, P.: Offensive
and Defensive Adaptation in Distributed Multimedia Systems. Computer Science
and Information Systems (ComSIS) 1 (2004) 49-77

Goldschmidt, B., Szkaliczki, T., Boszorményi, L.: Placement of Nodes in an Adap-
tive Distributed Multimedia Server. Technical Report TR/ITEC/04/2.06, Institute
of Information Technology, Klagenfurt University, Klagenfurt, Austria (2004)
Steen, M., Homburg, P., Tannenbaum, A.S.: Globe: A wide-area distributed sys-
tem. IEEE Concurrency (1999)

Li, B., Golin, M., Italiano, G., Deng, X., Sohraby, K.: On the optimal placement
of web proxies in the internet. In: Proceedings of the Conference on Computer
Communications (IEEE Infocom). (1999)

Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the placement of web server
replicas. In: INFOCOM. (2001) 1587-1596

Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location
problem. In Mirchandani, P., Francis, R., eds.: Discrete Location Theory. John
Wiley and Sons, New York (1990) 119-171

Shmoys, D., Tardos, E., Aardal, K.: Approximation algorithms for facility location
problems. In: Proceedings of the 29th ACM Symposium on Theory of Computing.
(1997) 265274

Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility loca-
tion and k-median problems. In: IEEE Symposium on Foundations of Computer
Science. (1999) 378-388

Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for met-
ric facility location problems. In: Proceedings of 5th International Workshop on
Approximation Algorithms for Combinatorial Optimization. (2002)

Dvorett, J.: Compatibility-based genetic algorithm: A new approach to the p-
median problem. In: Informs Fall 1999 Meeting. (1999)

Kennedy, J., Eberhardt, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)
Goldschmidt, B., Tusch, R., Boszérményi, L.: A corba-based middleware for an
adaptive streaming server. Parallel and Distributed Computing Practices, Special
issue on Dapsys 2002 (2003)

Goldschmidt, B., Tusch, R., Bészorményi, L.: A mobile agent-based infrastructure
for an adaptive multimedia server. In: 4th DAPSYS (Austrian-Hungarian Work-
shop on Distributed and Parallel Systems), Kluwer Academic Publishers (2002)
141-148

Goldschmidt, B., Laszld, Z.: A proxy placement algorithm for the adaptive multi-
media server. In: 9th International Euro-Par Conference. (2003) 1199-1206
Davis, L., ed.: Handbook of Genetic Algorithms. Van Nostrand Reinhold (1991)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science, Number 4598, 13 May 1983 220, 4598 (1983) 671-680

	1 Introduction
	2 Related Work
	3 TheProblemModel
	4 Solution Algorithms
	4.1 Greedy
	4.2 Particle Swarm
	4.3 Linear Programming Rounding
	4.4 Incremental Algorithm

	5 Results
	6 Conclusions and Further Work
	References

