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Abstract
Apoptosis, programmed cell death, is an essential feature of normal placental development but is
exaggerated in association with placental disease. Placental development relies upon effective
implantation and invasion of the maternal decidua by the placental trophoblast. In normal
pregnancy, trophoblast apoptosis increases with placental growth and advancing gestation.
However, apoptosis is notably exaggerated in the pregnancy complications, hydatidiform mole,
pre-eclampsia, and intra-uterine growth restriction (IUGR). Placental apoptosis may be initiated
by a variety of stimuli, including hypoxia and oxidative stress. In common with other cell-types,
trophoblast apoptosis follows the extrinsic or intrinsic pathways culminating in the activation of
caspases. In contrast, the formation of apoptotic bodies is less clearly identified, but postulated by
some to involve the clustering of apoptotic nuclei and liberation of this material into the maternal
circulation. In addition to promoting a favorable maternal immune response, the release of this
placental-derived material is thought to provoke the endothelial dysfunction of pre-eclampsia.
Widespread apoptosis of the syncytiotrophoblast may also impair trophoblast function leading to
the reduction in nutrient transport seen in IUGR. A clearer understanding of placental apoptosis
and its regulation may provide new insights into placental pathologies, potentially suggesting
therapeutic targets.
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Introduction
Pre-eclampsia and intra-uterine growth restriction (IUGR) are major pregnancy
complications, resulting in significant perinatal mortality and morbidity. While their precise
etiology is unknown, it is hypothesized that placental dysfunction is central to their
development. A common feature of the placenta in pre-eclampsia, IUGR and molar
pregnancies, i.e. hydatidiform mole (trophoblast hyperplasia), is exaggerated placental
apoptosis. As a result of these observations, apoptosis is suggested to be a key mechanism in
placental dysfunction. This review describes the evidence for the presence of apoptosis in
normal placental development, its alteration in placental dysfunction and development of
placental diseases, such as pre-eclampsia.
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Apoptosis
Apoptosis is evident in both physiological and pathological circumstances and was first
described by Kerr and Wylie in 1972.1 Apoptosis (Greek: apo – from, ptosis – falling) is a
form of programmed cell death characterized by the condensation of cell cytoplasm and
organelles into membrane covered dense apoptotic bodies. During nuclear condensation, the
nuclear lamina is dissembled, allowing the cleavage of DNA into 200 base pair fragments.
2,3 Moreover, the cell membrane undergoes extensive alterations with loss of asymmetry,
externalizing phosphatidylserine, promoting phagocytosis.4 In contrast to necrotic cell death,
apoptosis represents a series of energy-dependent events, removing unwanted cell material
while avoiding an immune response and damage to surrounding tissues. Apoptosis is
initiated via the extrinsic or intrinsic pathway. Both pathways rely upon a cascade of protein
interactions orchestrated by a family of 14 cysteine proteases, caspases, which are able to
cleave structural proteins producing the morphological appearances typical of apoptosis. In
addition, active caspases potentiate the apoptotic signal by activating a variety of pro-
apoptotic proteins.

The extrinsic pathway is controlled by members of the tumour necrosis factor (TNF) death
receptor family. There are eight members of this family with Fas (CD95/APO-1), TNF-R1
(CD120a), and TNF-related apoptosis inducing ligand (TRAIL), being the most studied.5
Binding of an external ligand to the death receptor allows protein–protein interactions
between the receptor and a cytoplasmic death domain, such as Fas-associated death domain
(FADD) or TNF-R-associated death domain.6 Binding of FADD to the death receptor
recruits procaspase-8 or procaspase-10 via death effector domains.7–9 The combination of
these proteins forms the death-inducing signaling complex which cleaves procaspase-8 and
procaspase-10 to their active forms, initiating the caspase cascade.10 Sometimes this signal
is further amplified by cleavage of Bid by caspase 8, which also activates the intrinsic
pathway.11

The intrinsic pathway is initiated by cellular stress; such as DNA damage, reactive oxygen
species, the unfolded protein response, or removal of growth factor support. Activation of
the intrinsic pathway leads to alteration in mitochondrial membrane permeability because of
an imbalance in the relationship of pro- and anti-apoptotic Bcl-2 proteins.12 Increased
mitochondrial permeability causes membrane pore formation and leakage of cytochrome c
into the cytosol.13 In the cytosol, cytochrome c is bound by apoptosis protease activating
factor-1 (APAF-1) forming the apoptosome.14 The apoptosome cleaves procaspase-9
activating the terminal pathway of apoptosis. During apoptosis, other mitochondrial contents
such as smac/Diablo are also released from the mitochondria, antagonizing anti-apoptotic
inhibitor of apoptosis proteins.15,16 Both pathways culminate in a terminal pathway
involving the cleavage and activation of caspase-3, 6, and 7 initiating cell destruction by
activating DNAses and cleaving DNA repair enzymes such as PARP.17,18

Apoptotic cells can be identified in a variety of ways. The initial description of cell
morphology was based upon observations of ultrastructure by electron microscopy including
increased nuclear cytoplasmic ratio, cytoplasmic condensation, and deposition of
euchromatin around the nuclear periphery. Subsequently, some of these changes in cell
morphology particularly increased nuclear/cytoplasmic ratio have been observed by light
microscopy. 19 Biochemical measures have also been utilized to confirm the presence of
cleaved DNA into 200 bp fragments by the presence of DNA ladders (Fig. 1).20 More
recently, combined histological and biochemical approaches have led to the development of
staining techniques that recognize cleaved DNA by terminal deoxy-uridine nick-end
labeling (TUNEL), 21 by externalization of phosphatidylserine or by cytoskeletal cleavage

Sharp et al. Page 2

Am J Reprod Immunol. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



products indicative of caspase activity e.g. cytokeratin M30 neoepitope22 (Fig. 2). Often
studies will combine multiple measures to ensure apoptotic specificity.

Apoptosis and implantation
Normal placental development relies upon the invasion of the maternal decidua by
extravillous trophoblast, and the subsequent remodeling of maternal spiral arteries to
provide stability to the placenta and efficient utero-placental blood flow. Extravillous
trophoblast invades the maternal decidua as far as the proximal third of the myometrium,
with a greater depth observed centrally.23 A subgroup of extravillous trophoblast invades the
maternal spiral arteries replacing the endothelium and remodeling the maternal vasculature.
Initially this process is trophoblast independent,24 although eventually requiring trophoblast
for completion.25 Trophoblast disrupts the endothelium causing the loss of underlying
smooth muscle allowing further trophoblast invasion of the decidua.26 Recently, it has been
suggested that vascular remodeling may be indirectly controlled by intravascular trophoblast
that stimulates endothelial cells to secrete chemokines. These chemokines attract decidual
leukocytes, particularly uterine natural killer cells and macrophages, leading to vascular
smooth muscle cell apoptosis.27 A suggested mechanism for endothelial cell destruction is
via the Fas/FasL system, which is present on endothelial and vascular smooth muscle cells
of the uterine spiral arteries.25

The remodeling of maternal spiral arteries is again not uniform throughout the decidua, with
a higher incidence in the center region compared to the periphery.23,28 In addition to
remodeling, trophoblast has been suggested to block maternal vessels allowing the fetus to
develop initially in a hypoxic environment, protected from reactive oxygen species until
around 10 weeks gestation, when placental blood flow is restored.29

In pre-eclampsia and IUGR, there may be a reduction in the number of trophoblast cells
within the spiral arteries, which has been associated with increased apoptosis and a reduced
luminal size.30,31 Others have found a reduction in the extent of trophoblast invasion in
severe pre-eclampsia, both in the spiral arteries and the myometrium.32 Poor trophoblast
invasion and remodeling of uterine spiral arteries have been suggested to lead to the
development of a high pressure placental blood supply, which may in turn damage the
developing villous tree causing a change in placental structure.33,34 It has been suggested
that this damage leads to hypoxia and impaired blood flow, as determined by aberrant
Doppler ultrasound waveforms in IUGR and severe pre-eclampsia.35

Apoptosis in placental villi
After 10 weeks gestation, the human villous placenta develops within a lake of maternal
blood, with the tree-like structure becoming progressively more branched and convoluted to
form the terminal villi. These terminal villi consist of stroma, containing fetal capillaries,
beneath a layer of progenitor cytotrophoblast cells, which are in turn covered by a
continuous multinucleated syncytium called the syncytiotrophoblast. The
syncytiotrophoblast forms a barrier between the fetal and maternal circulations and is
essential for the normal immunological, endocrine, and nutritional functions of the placenta.
Fusion between the cytotrophoblasts and the syncytiotrophoblast has been suggested as a
means of replenishing the syncytiotrophoblast, although the exact physiological function is
unknown. Fusion of the villous cytotrophoblast with the syncytiotrophoblast is associated
with the presence of GCM-1,36 Syncytin-1 & -237 and caspase-8.38

The amount of apoptosis in placental villi changes throughout normal pregnancy, being
lowest in the first trimester, increasing in the third, and markedly accelerating beyond 40
weeks gestation.39,40 Interest has been stimulated by the observation that increased levels of
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villous trophoblast apoptosis have been identified in placental pathologies (Fig. 3), including
early pregnancy loss,41,42 pre-eclampsia,43–46 IUGR,45,47–49 and gestational trophoblastic
disease, including partial and complete hydatidiform mole and choriocarcinoma.50,51

Systemic disease can also impact upon the human placenta, as maternal diabetes is similarly
associated with increased placental apoptosis.52 Moreover, the finding of increased
apoptotic maternal is not confined to the placenta. In pre-eclampsia, increased levels of
syncytial derived cytokeratin M30 neoepitope can be detected in maternal serum.53

Apoptosis within the villus is predominantly localized to the syncytiotrophoblast with
virtually no events within term cytotrophoblast and a very low incidence in first trimester
cytotrophoblast.19,54–56 In support, the syncytiotrophoblast demonstrates features consistent
with apoptosis, such as externalization of phosphatidylserine, caspase-8 and caspase-9
activation, cytokeratin-18 cleavage, and DNAse activity.38,56–58 Importantly, apoptotic
pathways may be involved in the maintenance of the syncytiotrophoblast. This stems from
two observations, first that caspase 8 is involved in the fusion of cytotrophoblast with
syncytiotrophoblast, and second that some syncytiotrophoblast nuclei exhibit morphological
features of apoptosis with peripheral chromatin condensation and gradual pyknosis.

Within the syncytiotrophoblast, syncytial knots are aggregations of pyknotic nuclei which
accumulate at the syncytial surface before being lost into the maternal circulation as
membrane bound entities. The presence of such material has been identified within the
maternal venous circulation prior to destruction by pulmonary macrophages.59,60 It is the
release of this apoptotic material into the maternal circulation that has been suggested as a
mechanism for maternal endothelial disruption in pre-eclampsia.61 However, the theory that
syncytial knots consist of truly apoptotic nuclei has recently been challenged.62

Nevertheless, apoptosis occurs in discrete areas within the syncytiotrophoblast, particularly
those associated with damage e.g. fibrin deposition. This is unexpected as apoptosis in other
organs and tissues is confined to individual cells,63 and an apoptotic signal would be
expected to spread throughout the syncytiotrophoblast.

The origin of exaggerated apoptosis in pregnancy complications is not clear. Although the
extrinsic pathway is active in trophoblast,64,65 the in vivo association with abnormal
conversion of the uterine spiral arteries, more readily implicates hypoxia and/or oxidative
stress. In support, exaggerated apoptosis can be reproduced in trophoblast in vitro by
exposure to hypoxia66 and reactive oxygen species.67 Interestingly, villous trophoblast from
placentas of pregnancies complicated by IUGR or pre-eclampsia demonstrate increased
susceptibility to apoptosis, an inherent change rendering these cells more vulnerable to
oxidative damage.43–45,47,48 In molar pregnancies, increased apoptosis is thought to reflect
the cell fate of some trophoblast resulting from uncontrolled hyperplasia. This is confirmed
by greater levels of apoptosis in more invasive and proliferative disease.50

The interplay of pro and anti-apoptotic regulators is crucial for the control of apoptosis and
the expression of these in villous trophoblast has been the subject of significant study
(reviewed in detail by Heazell and Crocker, 2008).68 It is well recognized that both
cytotrophoblast and syncytiotrophoblast express TNF receptors, Fas and Fas ligand, and
TRAIL69,70 and its death and decoy receptors, each may play an important role, not only in
apoptosis but also in immune regulation (comprehensively reviewed by Straszewski-Chavez
et al., 2005). Other important regulators of cell fate include proteins such as the transcription
factor p53 and members of the Bcl-2 family. p53 has been identified in cytotrophoblasts but
is only rarely observed in the syncytiotrophoblast.71,72 Placental p53 is present in a non-
mutated, wild-type form in both normal tissue and gestational trophoblast disease.73,74 By
contrast, the natural inhibitor of p53, Mdm2, is expressed within both the cytotrophoblast
and syncytiotrophoblast in the first trimester and at reduced levels in third-trimester tissue.
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74–76 A variety of p53 target proteins are also located in the villous placenta including the
cell cycle regulator p21, which is strongly expressed in first trimester cytotrophoblasts and
more weakly expressed in the syncytiotrophoblast and third trimester tissue.71,75,77

The regulation of apoptosis in placental disease
In general, more dramatic morphological and developmental changes occur in the villous
placenta in cases of IUGR and early-onset pre-eclampsia, i.e. before 32 weeks gestation.
These changes predominantly relate to impoverished villus development and reduced
capillary growth.78 In pre-eclampsia, apoptosis has been associated with a reduction in
syncytiotrophoblast, a response not seen in idiopathic IUGR,79 and an observation
supportive of irregular syncytiotrophoblast formation or excessive syncytial loss.

Alterations in a variety of pro- and anti-apoptotic proteins have been observed in pre-
eclampsia and IUGR (Table 1). For example, p5380 and the pro-apoptotic isoform of
Mcl-181 are increased in pre-eclampsia and Bcl-245 and syncytin decreased.81 Others have
found p53 to be increased in severe pre-eclampsia with HELLP syndrome.82 In IUGR, the
pattern is similar with increased staining observed for p53,47 caspase-3,48 and p21.83

However, not all proteins are affected equally with most observers finding no effect upon
Bax43,47 and conflicting results reported for Bcl-2.45,47

Apoptosis and the maternal vasculature
Pre-eclampsia and IUGR are associated not only with apoptosis but also with excessive
syncytial knot formation. With 10–30% of normal terminal villi containing knots compared
to virtually all terminal villi in pre-eclampsia.62,84,85 Small microparticles of
syncytiotrophoblast microvillous membrane (STBMs), are found in the maternal circulation
from the second trimester and in increasing amounts with gestation and are thought to
represent apoptotic material released as part of normal syncytiotrophoblast turnover. 60

Exaggerated levels of this material are associated with pre-eclampsia, but not IUGR.86 This
reconciles with greater syncytiotrophoblast loss and damage.60,87,88 This finding is
reproducible under hypoxic conditions in vitro, further supporting hypoxia and reactive
oxygen species as the underlying pathophysiological trigger in the formation of syncytial
debris.89,90 Other smaller fragments, including cell-free fetal DNA, are also released and
may also be associated with severe pre-eclampsia.91

Syncytial debris and systemic inflammatory response
The presence of STBMs, and newly identified nano-particles 92 within the maternal
circulation are associated with alterations in immunological response, specifically neutrophil
activation93,94 and the release of superoxide radicals.95 Neutrophil activation may be further
exaggerated in pre-eclampsia as shown by an increased incidence of DNA lattices (NETS)
in placentae from these pregnancies.94 The culture of syncytiotrophoblast-derived particles
with non-pregnant peripheral blood monocytes stimulates the release of the cytokines, TNF-
alpha, IL-1beta, IL-6, IL-8, IL12p70, IL-18, with an additional increase in adhesion
molecule CD54.96,97 These findings suggest a systemic inflammatory response in
pregnancy, one further exaggerated in pre-eclampsia. In support, maternal levels of
monocyte derived IL-1β, IL-6, and IL-8 are increased in pre-eclampsia.98 Furthermore,
STBMs are able to disrupt endothelial cells in vitro, again promoting a link between
placental apoptosis, syncytial microparticle liberation and the maternal vascular
complications, characteristic of the pre-eclamptic syndrome.99,100
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Conclusion
In conclusion, apoptosis is a feature of villous trophoblast throughout pregnancy and is an
essential feature of placental invasion, cytotrophoblast fusion, and syncytiotrophoblast
function as well as potentially playing a role in maternal immune tolerance. This process is
not uncontrolled or haphazard in nature. In fact, the many key proteins and cytokines
involved in presenting foreign material to the placenta and controlling the response of this
tissue to external stimuli have only been partially explored. We do know that alterations to
placental function by external factors such as hypoxia and reactive oxygen species can lead
to significant increases in placental apoptosis, which may be the underlying cause in the
pathophysiology of pre-eclampsia and IUGR. A growing body of evidence also suggests that
abnormal placental apoptosis has effects beyond the placenta upon maternal vascular
endothelial behavior and immune tolerance. Our understanding of the role of key protein
pathways involved in regulating placental apoptosis is constantly expanding and it is at this
mechanistic level the future therapeutic strategies may be derived.
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Fig. 1.
Apoptosis in the villous placenta. (a) Light micrograph (oil immersion, H & E stained) of 4
μm section of term villous placenta. Apoptotic nuclei of trophoblast highlighted (arrows).
Magnification × 1000. (b) Electron micrograph showing pyknotic and apoptotic nuclei
within the syncytiotrophoblast (original magnification × 4250). Smith et al. 1997,
reproduced with permission. (c) Increased DNA fragmentation (laddering) in term
trophoblast under hypoxic conditions. Reproduced from Levy et al. 2000 with permission.
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Fig. 2.
Apoptotic multi-nucleated giant cell from the third trimester placental bed (arrow). (a)
Stained for cleaved cytokeratin 18 (M30) and (b) TUNEL. Reproduced from Kadyrov et al.
2001 with permission.
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Fig. 3.
Exaggerated trophoblast apoptosis in pre-eclampsia. (a) occasional TUNEL positive nuclei
(arrows) in the syncytiotrophoblast in normal pregnancy. (b) increased apoptotic events in
pre-eclampsia (brown stained nuclei). Reproduced from Heazell et al. 2008 with permission.
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Table I

Selected Studies of Apoptosis in Spiral Artery Remodeling and in the Placental Pathologies, Pre-eclampsia,
and Intrauterine Growth Restriction (IUGR)

Author Year Tissue Method Main findings

IUGR

 Smith et al. 1997 Villous TB IHC, EM TUNEL staining demonstrates an increase in apoptosis in IUGR

 Ishihara et al. 2002 Villous TB IHC, EM Increased TUNEL-positive nuclei in pre-eclampsia in both ST and CT. BcL-2
reduced in severe pre-eclampsia and IUGR. No difference in Fas

 Levy et al. 2002 Villous TB IHC Increased TUNEL-positive nuclei in IUGR. Increased p53 in CT of IUGR but
no difference in BcL-2 family proteins

 Crocker et al. 2003 Villous TB IHC Enhanced apoptosis in IUGR and pre-eclampsia after treatment with 3%O2 or
TNFa

 Crocker et al. 2004 Villous TB IHC Increased apoptosis in placentas from women with pre-eclampsia or IUGR
exposed to TNFa or 3%O2

 Daayana et al. 2004 Villous TB Microscopy Reduced syncytial area in IUGR. Reduction in syncytial/villous area ratio in
pre-eclampsia but not in IUGR

 Endo et al. 2005 Villous TB IHC, EM TUNEL staining and activated caspase-3 showed increased apoptosis in
IUGR vs normal. No difference in p53 or Bax

 Kadyrov et al. 2006 EVT IHC Severely impaired trophoblast invasion in pre-eclampsia and IUGR.
Increased EVT apoptosis

 Davy et al. 2009 Villous TB Southern analysis Increase in cell senescence regulators p21, p16, and EF-1 alpha in FGR
placentas

Pre-eclampsia

 Difederico et al. 1999 EVT IHC 15–50% EVT apoptosis in pre-eclampsia, virtually zero in control. Lack of
Bcl-2 staining in preeclamptic EVT

 Allaire et al. 2000 Villous TB IHC Increased TUNEL-positive nuclei, increased Fas and reduced FasL in the
villous TB of preeclamptic patients vs controls

 Leung et al. 2001 Villous TB EM, microscopy Increased apoptosis in placentas from women with pre-eclampsia

 Ishihara et al. 2002 Villous TB IHC, EM Increased TUNEL-positive nuclei in pre-eclampsia in both ST and CT. BcL-2
reduced in severe pre-eclampsia and IUGR. No difference in Fas

 Crocker et al. 2003 Villous TB IHC Enhanced apoptosis in IUGR and pre-eclampsia after treatment with 3%O2 or
TNFa

 Crocker et al. 2004 Villous TB IHC Increased apoptosis in placentas from women with pre-eclampsia or IUGR
exposed to TNFa or 3%O2

 Daayana et al. 2004 Villous TB Microscopy Reduced syncytial area in IUGR. Reduction in syncytial/villous area ratio in
pre-eclampsia but not in IUGR

 Heazell et al. 2005 Villous TB IHC Increased expression of p53 in ST nuclei and ST cytoplasm in placentas from
women with pre-eclampsia. Reduction in Mdm2 in pre-eclampsia

 Jeschke et al. 2006 Villous TB IHC, IF p53 and ki67 elevated in HELLP syndrome but not in pre-eclampsia. p53
reduced in CT from IUGR placentas, no effect upon proliferation

 Kadyrov et al. 2006 EVT IHC Severely impaired trophoblast invasion in pre-eclampsia and IUGR.
Increased EVT apoptosis

 De Falco et al. 2007 Villous TB IHC p21 is expressed by CT and ST in pre-eclampsia

 Cobellis et al. 2007 Villous TB IHC Increased Bax expression in miscarriage vs termination. Reduced Bax in
Cesarean section vs normal birth. Also increased Bax in pre-eclampsia

Vascular remodelling

 Craven et al. 1998 EVT IHC Initial spiral artery changes, such as VCAM-1 expression and smooth muscle
disruption are independent of trophoblast.

 Difederico et al. 1999 EVT IHC 15–50% EVT apoptosis in pre-eclampsia, virtually zero in control. Lack of
Bcl-2 staining in preeclamptic EVT

Am J Reprod Immunol. Author manuscript; available in PMC 2011 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sharp et al. Page 16

Author Year Tissue Method Main findings

 Dunk et al. 2003 EVT IHC EVTs penetrate the decidua and stimulate endothelial and smooth muscle
disruption. Not seen in vessels cultured in the absence of EVT

 Ashton et al. 2005 EVT IHC, WB Endothelial cells and VSMC express Fas and FasL. Trophoblast induced
apoptosis in cultured endothelial cells

 Kadyrov et al. 2006 EVT IHC Severely impaired trophoblast invasion in pre-eclampsia and IUGR.
Increased EVT apoptosis

 Smith et al. 2009 EVT IHC 4-stage model of trophoblast remodelling of spiral arteries. Transient role for
uNK cells and macrophages in VSMC apoptosis

ST, syncytiotrophoblast; CT, cytotrophoblast; EVT, extravillous trophoblast; FGR, fetal growth restricted; TB, trophoblast; VSMC, vascular
smooth muscle cells; uNK, uterine natural killer.
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