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Abstract

A growing body of evidence suggests that prenatal environment is important in Autism

Spectrum Disorder (ASD) etiology. In this study, we compare placental shape features in

younger siblings of children with ASD, who themselves are at high ASD risk, to a sample of

low risk peers. Digital photographs of the fetal placenta surface and of the sliced placental

disk from 129 high ASD risk newborns and from 267 newborns in the National Children’s

Study Vanguard pilot were analysed to extract comparable measures of placental chorionic

surface shape, umbilical cord displacement and disk thickness. Placental thickness mea-

sures were moderately higher in siblings of ASD cases. The placentas of ASD-case siblings

were also rounder and more regular in perimeter than general population placentas. After

stratification by sex, these across-group differences persisted for both sexes but were more

pronounced in females. No significant differences were observed in cord insertion mea-

sures. Variations in placental shape features are generally considered to reflect flexibility in

placental growth in response to changes in intrauterine environment as the placenta estab-

lishes and matures. Reduced placental shape variability observed in high ASD risk siblings

compared to low-risk controls may indicate restricted ability to compensate for intrauterine

changes.
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Introduction

Autism Spectrum Disorders (ASD) are neurodevelopmental conditions that manifest as

impaired social communication and the presence of restricted/repetitive behaviors and inter-

ests [1]. In United States, 1 in 68 eight year old children have ASD [2]. ASD symptoms emerge

in early childhood and the associated disabilities are typically lifelong [3]. Converging evidence

suggests that the changes in the brain associated with ASD are initiated during prenatal brain

development [4–7] but the complete nature of these changes remains unknown.

The placenta is vital to fetal growth and development and plays a key role in maintaining

the homeostasis of the intrauterine environment. Fetal and/or placental cell inflammatory

response [8], gene expression [9], gene-environment interaction [10], and placental morphol-

ogy [11–13] have been used as measures of abnormal placental function [14] and have been

shown to be associated with reduced fetal growth and adverse neonatal outcomes, including

death and neurological morbidities [15]. The human placental formation begins soon after

implantation and continually modifies to accommodate the increasing demands of the fetus

and can be influenced by factors such as nutrients and smoking [16]. The ex utero placenta is a

universally accessible organ that is suitable for research into possible indicators of prenatal

environment, however, the placenta is generally discarded as medical waste.

A typical placenta is described as round or oval but can have various shapes [17]. Variant

shapes, cord insertion sites and placental disk thickness (reflecting later villous branching

arborization) have been associated with reduced placental efficiency [12]. Irregular placental

chorionic surface shapes have been linked to low birthweight [18], however, it is also rare to

have perfectly round placentas with central umbilical cord insertion [19] and placental shape

variability may be the norm [12]. Examination of placental morphology has also yielded

insights into mechanisms of pre-eclampsia, prematurity and fetal growth restriction [13, 20],

which are conditions also associated with increased ASD risk [21]. Increased ASD risk have

been associated with indicators of decreased placental function, such as abnormal placental

pathology (trophoblast inclusion) [22] and obstetric complications (preeclampsia/eclampsia)

[23].

Here we compare placental shape features in a cohort of children at higher risk for ASD, by

virtue of the fact that they have older ASD-affected siblings, to a population of typical-risk

peers.

Materials and methods

Sample collection

The National Children’s Study (NCS) Vanguard recruited pregnant women during 2009–2010

in 7 locations in the United States (Orange County, California; Queens County, New York;

Duplin County, North Carolina; Montgomery County, Pennsylvania; Salt Lake and Cache

County, Utah; Waukesha County, Wisconson; multiple counties in South Dakota/Minnesota)

using a multistage area probability sampling design to identify study locations (generally,

counties) for house-hold based recruitment [24]. As such, the children in this sample would be

expected to experience the typical ASD risk of the general U.S. population. The latest CDC

prevalence studies suggest that 1.5% of US children have an ASD [2].

Formative research projects were conducted based on the NCS Vanguard study, one of

which was focused on collection and analysis of placental samples. Of 831 enrolled and eligible

pregnant women, 267 mothers consented and provided placental samples. However, in the

pilot phase of placental collection, there was no attempt to collect demographic and perinatal

data, which left a subgroup of 180 mothers with both placenta and linked demographic and
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perinatal data. However, in not all instances were all perinatal data available. Gestational age

information, which had to be abstracted from medical records, was available for 31

participants.

The Early Autism Risk Longitudinal Investigation (EARLI) network of research sites

(Southeast Pennsylvania: Drexel University, The Children’s Hospital of Philadelphia and the

University of Pennsylvania; Northeast Maryland: Johns Hopkins University and Kennedy

Krieger Institute; Northern California: University of California Davis) enrolled a group of

mothers of children with ASD diagnoses at the start of a subsequent pregnancy and is docu-

menting the development of the newborn child (sibling of the ASD case) through three years

of age [25]. EARLI singleton birth placentas from 133 mothers were available. Four subjects

were excluded because placenta morphology measures could not be obtained and129 placentas

were included in the analysis. The study was approved by multiple Institutional Review Boards

(IRB) listed below:

Mt. Sinai Institutional Review Boards, University of Rochester IRB, UC Davis IRB, Medical

College of Wisconsin IRB, University of North Carolina IRB, University of Utah IRB, UC

Irvine IRB, South Dakota State University IRB, University of Pennsylvania IRB, Northwestern

University IRB, Columbia University IRB, University of Illinois at Chicago IRB, Baylor Uni-

versity IRB, University of Arkansas IRB, University of Iowa IRB, University of Massachusetts

IRB, Duke University IRB, and Drexel University IRB.

Placenta morphology measures

Placentas were fixed with formalin in uniform sealable bags for one week. A uniform protocol

of placental gross measurement developed by the pathology group collected a range of placen-

tal gross measures that reflect three facets of placental shape: the chorionic plate surface shape

and irregularity; umbilical cord displacement; and disk thickness (Table 1). Digital photo-

graphs were obtained of the placental chorionic surface shape which included the site of the

umbilical cord insertion, and of the sliced placental disk. The chorionic surface shape and cord

insertion, or the edge of the placental disk slice, were marked as a “layer” in GIMP (GNU

Image Manipulation Program). These layers were then analyzed using dedicated algorithms as

Table 1. Placenta morphology measure definitions.

Morphology Definition

Perimeter (cm) perimeter of the placenta from the traced 2D fetal surface image

Area (cm2) area of the placenta from the traced 2D fetal surface image

Radius (cm) radius from geometric center to the perimeter of the placental disk measured per degree

Median median radius of the placenta based on 360 radii

Minimum minimum radius of the placenta based on 360 radii

Maximum maximum radius of the placenta based on 360 radii

Umbilical distance

from center (cm)

distance between umbilical cord insertion and geometric center of the placenta from the

traced 2D fetal surface image

Eccentricity

Umbilical cord maximum radius/minimum radius from cord insertion point of the disk

Geometric center maximum radius/minimum radius from geometric center of the disk

Thickness (cm) thickness of the placenta f each vertical pixel pair of the disk slice

Maximum maximum thickness of the disk slice

Mean mean thickness of the disk slice

Standard

deviation

standard deviation of thickness of the disk slice

https://doi.org/10.1371/journal.pone.0191276.t001
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described previously [12, 26, 27]. Thickness measures could not be obtained in three EARLI

and 84 NCS samples. All measurements were obtained by a trained pathologist blinded to the

study group.

Several placental morphology measures, such as placental disk eccentricity, were sekewed.

Wilcoxon rank-sum test was used to compare all perinatal characteristics and placental mor-

phology between EARLI and NCS. Spearman’s rho was used to examine the correlation

between placental shapes and perinatal characteristics. Chi squared test was used to test for dif-

ference between categorical variables. An alpha-error tolerance of 5% (P<0.05) was used to

determine statistical significance of comparisons. Wilcoxon rank-sum test was also used to

determine if differences in EARLI and NCS placentas varied significantly within sex. Two way

ANOVA was used to examine whether any association between placental morphology and

cohort differed by the sex of the subject. Birthweight and gestational age have been associated

with placental size and ASD risk. Birthweight was not available in 8 (6%) EARLI subjects and

gestational age was not available in 88% of NCS subjects. Sex was missing in one EARLI sub-

ject and was excluded from the sex tratified analysis. Spearman’s correlation was used to deter-

mine correlation between birthweight, gestational age and placental morphology. All analyses

were performed using STATA 12 [28].

Results

Siblings of children diagnosed with ASD were similar in sex ratio, birthweight, and gestational

age compared to NCS subjects in the subset with perinatal data (Table 2). Correlations between

birthweight and placenta morphologies were in same direction across sexes except for the

umbilical distance from center (Spearman’s rho -0.12 to 0.47) with strongest correlation

observed with area and birthweight among females (Spearman’s rho 0.47 [0.39, 0.58])

(Table 3). Gestational age and placental shapes correlations showed more vairation in direc-

tion and magnitude across sexes (Spearman’s rho -0.16 to 0.33) with strongest correlation

observed between gestational week and median radius among males (Spearman’s rho 0.33

[0.21, 0.43]) (Table 3).

EARLI placentas had smaller, but non-statistically significant differences in, median radius,

umbilical cord distance from center, and eccentricity from umbilical cord compared to NCS

placentas (Table 4). We did not observe statistically significant differences between the average

placental disk thickness across EARLI and NCS placentas (P = 0.71), although maximum

thickness (P = 0.01) and standard deviation of thickness (P = 0.01) were significantly greater in

EARLI subjects. Finally, eccentricity, the placenta measures that capture shape deviation from

a circle, based on the geometric center of the placenta, were significantly lower in EARLI than

in NCS placentas (P = 0.04). The eccentricity using umbilical cord insertion point showed the

same directionality but were not statistically significant (P = 0.12).

Table 5 shows the same comparisons stratified by sex. The minimum placental radius was

greater in EARLI placentas compared to NCS among females (P = 0.05) but not in males. The

Table 2. Perinatal characteristics by study.

EARLI (n = 129) NCS (n = 267)

N Mean SD Min Max n Mean SD Min Max P
Birthweight (g) 121 3454 532.7 2296 6039 180 3498 430.8 2190 4760 0.49

Gestational week 127 39.46 1.3 34 42 31 39.48 1.1 37 41 0.97

Male (%) 128 49% 180 50% 0.89

SD = Standard deviation; Min = minimum; Max = maximum.

https://doi.org/10.1371/journal.pone.0191276.t002
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eccentricity was greater in NCS among both males and females (smaller in EARLI placentas),

but the difference remained statistically significant only for eccentricity from geometric center

in females (P = 0.04). Two placental thickness measures, maximum and standard deviation,

were greater in EARLI placentas compared to NCS with each sex, however, only the maximum

thickness showed significant difference among females (P = 0.02). Two way ANOVA test of

EARLI-NCS differences across sexes for any measure were not statistically significant.

Table 3. Spearman’s correlation (rho) between birthweight, gestational week and placental morphology by child sex.

Birthweight (g) Gestational week

Males Females Males Females

Rho 95% CI rho 95% CI rho 95% CI rho 95% CI

Perimeter (cm) 0.34 [0.20, 0.43] 0.42 [0.33, 0.53] 0.26 [0.14, 0.37] -0.09 [-0.21, 0.04]

Area (cm2) 0.37 [0.25, 0.46] 0.47 [0.39, 0.58] 0.26 [0.14, 0.37] -0.12 [-0.23, 0.01]

Radius (cm)

Median 0.22 [0.09, 0.32 0.31 [0.21, 0.43] 0.33 [0.21, 0.43] -0.11 [-0.23, 0.01]

Minimum 0.16 [0.04, 0.28] 0.15 [0.06, 0.3] -0.02 [-0.14, 0.1] 0.09 [-0.03, 0.21]

Maximum 0.06 [-0.08, 0.17] 0.22 [0.12, 0.35] 0.22 [0.1, 0.34] -0.16 [-0.28, -0.04]

Umbilical distance from center (cm) -0.07 [-0.21, 0.03] 0.04 [-0.08, 0.17] 0.14 [0.02, 0.26] -0.13 [-0.25, -0.003]

Eccentricity

Umbilical cord -0.12 [-0.24, -0.002] -0.04 [-0.2, 0.05] 0.07 [-0.05, 0.19] -0.16 [-0.27, -0.03]

Geometric center -0.05 [-0.20, 0.04] -0.03 [-0.2, 0.05] 0.07 [-0.05, 0.19] 0.02 [-0.1, 0.14]

Thickness (cm)

Maximum 0.06 [-0.05, 0.19] 0.14 [0.05, 0.29] 0.13 [0.01, 0.25] -0.05 [-0.17, 0.08]

Mean 0.05 [-0.06, 0.19] 0.10 [0.05, 0.29] 0.15 [0.02, 0.26] -0.06 [-0.18, 0.06]

Standard deviation 0.06 [-0.07, 0.18] 0.06 [-0.07, 0.18] 0.06 [-0.02, 0.22] -0.02 [-0.14, 0.11]

https://doi.org/10.1371/journal.pone.0191276.t003

Table 4. Comparison of placental shape measures between EARLI and NCS using the Wilcoxson rank-sum test.

EARLI (n = 129) NCS (n = 267)

Mean SD Min Max Mean SD Min Max P�

Perimeter (cm) 61.85 7.68 45.00 92.40 61.54 6.59 48.60 93.00 0.73

Area (cm2) 274.40 53.04 156.00 440.00 272.10 49.76 175.00 496.00 0.62

Radius (cm)

Median 10.09 1.23 7.40 13.90 10.13 1.27 6.97 15.80 0.85

Minimum 5.25 2.08 0.42 8.95 4.98 1.90 0.34 9.61 0.13

Maximum 13.55 2.31 9.46 19.50 13.75 2.27 8.51 22.50 0.37

Umbilical distance 3.48 2.07 0.23 8.95 3.68 1.96 0.04 10.50 0.27

from center (cm)

Eccentricity

Umbilical cord 4.14 5.84 1.23 40.67 4.45 7.01 1.23 51.88 0.12

Geometric center 1.40 0.26 1.11 2.64 1.45 0.33 1.11 3.51 0.04

Thickness (cm)��

Maximum 2.34 0.34 1.71 3.76 2.24 0.33 1.52 3.52 0.01

Mean 1.74 0.27 1.26 2.78 1.72 0.27 1.08 2.87 0.71

SD 0.45 0.10 0.22 0.77 0.41 0.10 0.21 0.72 0.01

�Determined using the Wilcoxon rank-sum test.

��Thickness was available in 123 EARLI and 183 NCS samples.

SD = Standard deviation; Min = minimum; Max = maximum.

https://doi.org/10.1371/journal.pone.0191276.t004
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Discussion

Proper placental function is essential to normal fetal development and the shape and function

of the placenta can be affected by variations in maternal vascular supply, location of uterine

implantation, regional variation in the decidua, and structure of underlying placental vascular

tree [11]. The relationship between placental morphology and fetal neurodevelopment is

largely unknown.

As calculated from a large modern birth cohort with extensive photography images, the typ-

ical placental shape is circular with a center at the umbilical insertion point [12] and irregular

placental shapes have been associated with lower birthweight [27]. However, perfectly round

placentas with central umbilical cord insertion are uncommon [19] and some variability of

placental shapes may be the norm [12]. Interestingly, our study of placental morphology sug-

gested reduced variability in placental chorionic surface shapes in EARLI as compared to NCS

placentas. We also observed that EARLI placentas had greater maximum thickness and stan-

dard deviation compared to NCS placentas. It is important to emphasize that the observed sig-

nificant differences across EARLI and NCS placental morphology were modest in magnitude

compared to the observed variation of each measures. Furthermore, our understanding of con-

nections between placental morphology and nuerodevelopent is still in the formative stages

and we need additional studies to determine whether these differences are epiphenomena of a

poor intratuderine environment or etiologically important mechanisms in neurodevelopment.

The placenta’s morphology at the time of delivery may provide information on etiologically

significant events occurring earlier in pregnancy. Comparisons of placental morphology from

detailed ultrasonography data collected at 11–14 weeks gestation and placental measures

obtained at term delivery show correlations from 0.14 (Pearson’s r of umbilical cord displace-

ment at 11–14 weeks and at term) to 0.25 (Pearson’s r of maximal placental disk thickness at

11–14 weeks and the at term) [29]. Observed differences between siblings of ASD individuals

Table 5. Comparison of placental morphology measures between EARLI and NCS by sex using the Wilcoxson rank-sum test.

Male Female

EARLI (n = 64) NCS (n = 90) EARLI (n = 64) NCS (n = 90)

Mean SD Mean SD P� Mean SD Mean SD P�

Perimeter (cm) 61.00 6.26 61.56 6.35 0.86 62.89 8.93 60.80 6.12 0.19

Area (cm2) 268.3 44.4 274.4 51.5 0.92 282.0 60.6 267.8 47.1 0.23

Radius (cm)

Median 10.08 1.30 10.24 1.40 0.52 10.13 1.19 9.94 1.12 0.30

Minimum 4.91 2.15 4.88 1.92 0.82 5.55 1.99 5.05 1.70 0.05

Maximum 13.83 2.39 13.96 2.16 0.53 13.34 2.22 13.56 2.22 0.54

Umbilical distance from center (cm) 3.82 2.24 3.90 2.02 0.73 3.19 1.86 3.57 1.83 0.16

Eccentricity

Umbilical cord 5.31 7.91 4.73 7.38 0.65 3.07 2.26 3.71 5.46 0.12

Geometric center 1.40 0.22 1.42 0.31 0.84 1.39 0.30 1.41 0.27 0.04

Thickness (cm)��

Maximum 2.32 0.28 2.27 0.33 0.32 2.37 0.39 2.23 0.34 0.02

Mean 1.71 0.22 1.74 0.26 0.58 1.77 0.30 1.71 0.28 0.31

SD 0.46 0.11 0.42 0.09 0.02 0.43 0.10 0.41 0.10 0.12

�Determined using the Wilcoxon rank-sum test.

��Thickness was available among 62 male and 64 female EARLI samples.

SD = Standard deviation; Min = minimum; Max = maximum.

https://doi.org/10.1371/journal.pone.0191276.t005
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to general population in placental shapes may be reflecting differences in the maternal intra-

uterine environments. Towards the end of the first trimester extensive villous remodeling

takes place with onset of the maternal arterial circulation. Later in pregnancy, a wide variety of

stressors are capable of affecting placental growth, the most common being nutrient depriva-

tion and vascular compromise [30]. Mothers of ASD individuals may be exposed to more

gestaional stressors including inflammation and oxidative stress and/or carrie genetic risk fac-

tors that interferes with proper response to changes in intrauterine environment.

This study is a comparison of placentas from mothers of children at higher risk of ASD to

placentas from a general population of mothers and not a comparison of placentas from moth-

ers of children with and without ASD. It is important to note that the we are comparing high

and low risk population and that the NCS children, although they are at low risk at developing

ASD, may not all be typically developing children. The increased recurrence risk of ASD in

younger siblings of older affected children mentioned above has been estimated to range from

3 to 25% [31, 32]. The latest estimate from the ASD Baby Sibs Research Consortium, a multi-

site study with a similar case-confirmation approach to EARLI, is at the upper end of this

range [32]. Recently, evidence has been presented from a small nested case-control compari-

son of 52 ASD cases and 161controls from the ALSPAC (Avon Longitudinal Study of Parents

and Children) general population pregnancy cohort study that suggests reduced eccentricity

from cord insertion and reduced villous branching growth in those children who will receive

an ASD diagnosis when compared to sex and gestational age matched peers [33]. The reduced

variability in both ASD individuals and siblings of ASD may indicate a shared disadvantage of

lesser adaptive capacity and greater vulnerability to gestational stressors.

Several obstetric complications that may reflect or induce an altered intrauterine environ-

ment, have been associated with ASD [23, 34–37]. Two of these ASD risk factors have been

associated with both decreased placental thickness in pre-eclampsia [38] and increased thick-

ness among intrauterine growth restriction [39]. If we assume that differences we observed in

placentas from the at-risk cohort reflect differences that are relevant to ASD etiology, differ-

ences we observe in this study could be the result of obstetric complications. However, data on

obstetric complications and other possible confounders in the NCS population were not avail-

able at the time of the current study and were not included in the analysis. This is a major limi-

tation of this study and these findings must be considered as preliminary and need to be

replicated.

Our findings suggest that there may be some gross morphological differences between gen-

eral population and high ASD risk placentas and provide an initial indication that the ASD

placenta might be less able to compensate for intrauterine variability. Morphological changes

could be merely a marker for vulnerability to risk factors or it could be mechanistically impor-

tant in ASD etiology if reduced compensatory capacity leaves the fetus more vulnerable to

other stressors. Results need to be cautiously interpreted as this is a small initial study and mul-

tiple comparisons were done in an exploratory manner which could lead to false-positive find-

ings. Future work should explore whether these placental morphological differences are

associated with the ASD phenotype. Moreover, investigation on whether obstetric complica-

tions are associated with placental morphology would help clarify the placental morphology

differences that are observed in the current study.
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