
65

Places to stay on the move
Software architectures for mobile user interfaces

extended abstract

Alan Dix Devina Ramduny Tom Rodden, Nigel
Davies.

aQtive limited and
Staffordshire University

Staffordshire University Lancaster University

http://www.hiraeth.com/alan/topics/mobile/

Abstract

Architectural design has an important effect on
usability, most notably on temporal properties. This
paper investigates software architecture options for
mobile user-interfaces, in particular those for
collaborative systems. One of the new features of
mobile systems as compared with fixed networks is
the connection point to the physical network, the
point of presence (PoP), which forms an additional
location for code and data. This allows
architectures that bring computation closer to the
users hence reducing feedback and feedthrough
delays. A consequence of using PoPs is that code
and data have to be mobile within the network
leading to potential security problems.

Keywords: mobile computing, collaborative work,
CSCW, software architecture, client-server

Introduction
At first sight it seems that software architectures are
about the internals of system design and not a
necessary concern for the user interface. However,
the merging of computing and communication
systems and the maturing of distributed computing
techniques has started to altered the way in which
we view our interaction with computer systems.
With the growing prominence of an almost
universally accessible information infrastructure we
are increasingly seeing our interaction focus on the
communication infrastructure rather than the
devices that access it.

The rapid development of the World Wide Web
represents the most dramatic example of this shift
in how we view our interaction with computer
systems. The popular acceptance of massively
interconnected computer systems has in the nature
of computers has seen computer and
communication systems being seamlessly
interwoven within the everyday life of the general
public. Interaction is now routinely with the web

(rather than the machine used to access it) and our
everyday experience of this interaction makes
inherent assumptions about the architecture of the
infrastructure.

As the opportunity to access the underlying
infrastructure increases with the development of
mobile devices the link to the underlying
architecture is likely to become even more
significant and the need to consider the architecture
of the infrastructure underpinning user interaction
will grow.

This paper considers the issues of software
architectures and their implications for interaction
with a particular emphasis on the implications for
mobile interfaces. Our particular concern is the
dynamic nature of the infrastructure required to
support mobile and context sensitive applications
and the impact on the relationship between
interaction and architecture.

Software Architectures in HCI
Concerns about the architecture of interactive
systems are not new to HCI. Experience has shown
that the internal structure of a system has a dramatic
effect on its external behaviour [Gram 1996].
Because of this user interface architecture has been
a concern for many years including the
development of Seeheim, MVC, PAC and
Arch/Slinky models as well as the whole stream of
UIMS systems [Pfaff, 1985; Lewis, 1995; Coutaz,
1987; UIMS, 1992].

In collaborative systems research the interest in
software architectures has continued with CSCW
architectures and toolkits including Rendezvous,
MEAD, Suite and Groupkit [Hill, 1994; Bentley,
1994; Dewan, 1990; Greenberg 1994]. These
collaborative systems almost always imply some
form of networked solution, and increasingly single
user systems also involve access to central
information giving rise to a whole industry in
client-sever and n-tier applications.

66

The emergence of distributed architectures to
support interaction across geographically disparate
communities of users has seen a series of debates
about the nature of these architectures and their
impact on interaction. This debate has tended to
centre on the propagation of the effects of the
actions of users to others involved in the activity
being supported. The core issue in this discussion
has been the tension between the responsive nature
of replicated architectures that allow feedback to be
provided locally and the need for some centralised
component to make users aware of the action of
others.

The majority of these arrangement tend to assume
'control' over the entire system, with bespoke
software running at the users' own workstations and
at various central servers. The implicit assumption
in many of these systems is that the machines are
connected to a single local area network. However,
two developments have challenged this assumption
and hence the whole basis for network-based user
interfaces.

The first is the World Wide Web which in addition
to highlighting the importance of the infrastructure
has suggested alternative architectural arrangements
for applications. A Web 'application' may include
code running at a web-server (via CGI scripts or
other server side technology), web pages displayed
on browsers of many different kinds, and applets or
similar downloaded code [Dix 1998]. In previous
work we and others have investigated the ways in
which CSCW architectures can be married to the
web infrastructure [Bentley, 1997; Clarke, 1999;
Palfreyman, 1996; Ramduny, 1997].

The second development is the massive growth in
mobile communications and mobile computing.
Although the end points here may be well
understood (although in the case of small mobile
devices difficult to design for), the network itself is
far less controlled than even the Internet, with
limited bandwidth, temporary disconnection, and an
ever changing network topology. The design of
appropriate user interfaces for this environment is
becoming an increasingly important topic
[Borovoy, 1998; Davies, 1994; Dix, 1995; Johnson,
1997, 1998; Joseph, 1995; Long, 1996; Want,
1995].

The need to consider the dynamic nature of this
infrastructure places new demands on the software
architecture and the overall role of the architecture.
Essentially, software architecture is about 'what
goes where'. In stationary networks, the 'where's
tend to be fairly obvious and are normally
characterised as either clients or servers. Even this
can lead to a rich set of architecture alternatives. In
mobile systems the changing network topology
suggests a much richer set of alternative
possibilities.

Considering these new and emerging arrangements
provides the focus for this paper. We wish to
consider what possible arrangements exist for
mobile and dynamic infrastructures and the
implications for future networks. To achieve this
we will start by revisiting the topology of
interactive single-user and collaborative systems on
fixed networks. We will then go on to see how this
changes when we consider mobility.

Architectures for static networks
In the traditional single-user arrangement for
networked interaction, a single user client usually
interacts with a single server (Figure 1). The user
interface sits at the client-end while the data is on
the server. The choice between opting for a thin or
thick client affects the performance of the
application and depends on many factors, not least
the volume and rate of change of central
information – which is itself a form of weak
collaboration.

Figure 1 single user interaction

In multi-user collaborative systems the arrangement
becomes more complex as we may have one of
more clients handling the demands of the
community of users. These clients may in turn
interact with one of more servers via some inter-
process communication mechanism. For the sake of
simplicity we will limit interaction to take place
through a single server as shown in Figure 2.

Figure 2 collaborative networked system

The two main architectures that emerge from the
above are ➀ a centralised architecture and ➁ a peer-
peer architecture.

In a centralised architecture, each user’s client
manages the screen layout and accepts inputs. The
server holds the shared data and receives all users
input events. Output events are broadcast by routing
them through local client programs to all the users.
As all the data is held centrally, access
management, concurrency control and data
consistency is simplified. However, a server failure
due to a network breakdown or to a delayed
feedback especially in a distributed setting, can give
rise to a deadlock state. Client-server architectures
has been adopted in conferencing systems, such as

67

MMConf [Crowley., 1990] and shared window
systems like shared X [Gust, 1988]. Centralised
architectures can easily support WYSIWIS or
presentation level sharing as the server broadcast
the output to all the clients. View level sharing can
also be supported as demonstrated by the
Rendezvous system [Hill, 1994].

In a replicated or peer-peer architecture, a separate
copy (or replica) of the application runs on each
workstation, which executes the application code
and send output to the local user. To ensure
synchronisation among the different replicas, input
from each workstation is sent to each replica. The
copies then communicate with each other to
maintain data and interface consistency. Each
replica handles its own screen management and
user's feedback locally and must also update the
screen in response any change in application data
from other replicas. The replicated approach offers
the advantages of a centralised architecture with the
added benefits of performance as the output of a
workstation is produced by a local workstation.
Because the clients can be managed locally,
alternate views are supported and it is relatively
easy to provide end-user interface tailoring (Bentley
et al). However, the major difficulties with
replicated architectures lie with synchronising and
maintaining data consistency. For example, if a user
deletes a selected object in a WYSIWIS group
drawing program while another user is changing the
selection to a different object, inconsistent
interfaces can result due to events arriving in a
different order at each workstation.

WWW-based collaboration

The web has had a significant impact in increasing
the prominence of the underlying infrastructure but
many ways the impact on the architecture has been
less dramatic. However, applet security
mechanisms make true peer-peer architectures
difficult except via some form of 'post office' server
as found in various chat programs [Welie, 1996;
Yahoo!] or a client-end plug-in [ICQ].

The use of applets on the web also opens up the
possibility that code may be executing on a client,
but have its permanent home on a server. The
interactions between applet-based code mobility
and the movement of data via caching has been
used to classify the different modes of web-based
architecture [Ramduny, 1997].

The movement of code and functionality inherent
within applets also starts to alter our consideration
of architectures. If architectures are about deciding
where things are what happens when the supporting
mechanisms allow them to easily move. The need
for the infrastructure to exhibit dynamic becomes
even more acute when we start to consider the
support of devices that are also mobile.

Mobile Architectures
On the web applet code may be mobile itself, but
usually runs on static computers. With truly mobile
computing the devices themselves move. In a
paper at the previous workshop on 'Human
Computer Interaction with Mobile Devices', we
investigated various kinds of 'mobility' [Rodden,
1998], but for the purposes of this paper we focus
on physical mobility of devices. However, we will
find that like the web, this tends to also require
computational mobility.

Computational mobility means that computation
may start at one network site, but then move and
continue to execute at another network site.
Mobility may involve:

• code mobility: very useful as demonstrated by
the increasing use of Java applets.

• control mobility: moving a thread of control
from one network point to another which then
returns to its originating point, for example
Remote Procedure Call (RPC)

• data mobility: data is exchanged over the
network in the form of parameters

• link mobility: endpoint of one network
connection is sent to another network
connection to allow the receiving party to
connect to it.

Computation is not limited to code. Rather
computation is the combination of the code and the
context of its execution. When code is moved from
one network point to another, the current state of
the execution is lost and the connections that the
computation had at its original site no longer exist.
The code can only execute at the remote end if state
and connectivity is re-established at the receiving
site. Therefore control must move through some
form of dynamic binding and data must also
migrate in order to preserve the state of the
computation. As network links form part of the
state information they must move as well. The
location of computation is crucial in determining
the effectiveness of mobile applications.
Computational location influences application
behaviour and resource usage.

Points of Presence

To understand the need to consider location and
mobility within the architecture let us introduce the
notion of a Point of Presence (PoP). Again, let's
begin with the case of a single-user application over
a mobile network. In the static case this involved
simply the user's client machine and the central
server. In the mobile case, in addition to the client
and server there is some form of Point of Presence
(PoP) where the client machine has its first
connection to the physical network (Fig. 3).

68

Figure 3 Points of Presence

In the case of cellular mobile-phone-based
connectivity this PoP would be the local cell's base
station accessed via radio, in the case of a small
hand-held PDA this may be a desktop computer
accessed by an infra-red port or fixed cradle.

This effectively forms a third place where
computation and data may reside. For mobile
devices a PoP has both better network connectivity
and potentially greater computational power than a
hand-held or body-adorning device, but it is also
close to the user and will be able to engage in a
faster pace of interaction than a server-based
interaction. It is therefore a natural place for part of
a user-interface.

The role of a PoP is to make the interactions of the
user present on the network and to mediate in
appropriately presenting the effects of interaction
from the network to the user. This is somewhat like
what is being seen with proxy-based web services
for hand-held computers [Fox 1996]. When used in
this classic client server arrangement it is in fact yet
another server rather than the actual PoP, but is one
that is 'mobility aware' as compared with the web
server itself.

Just as the single server in client–server
applications may in fact be several servers for
different databases or in the case of the web several
web-servers, we will use the term PoP to include
not just literally the first point of contact, but also
'close' points. The defining feature is that these are
locations determined by the mobility and location
of the device rather than the intrinsic location of
shared data.

Collaborative Points of Presence

In considering Points of Presence let us turn now to
collaborative systems. Again we may have many
users' client computers (hand-held devices,
wearables etc.) and one (or more) central servers.
However, for each client we now have a PoP and
these clients become present in the network through
these Points of Presence. Some clients may be
close enough to have a shared PoP others may have
completely different PoPs. Also very close clients
may even be able to communicate directly rather
than via the fixed network, for example, Palm Pilots
that can communicate via iRDA.

Figure 4 Mobile collaborative network

In this arrangement we have three possible places
where data and programs may sit: client, server and
PoP; and also a variety of communication paths. In
the following section we will investigate six
possibilities in terms of three different cases.

Arranging Points of Presence

To make the three different cases we wish to
consider clearer we will draw upon a running
example. Imagine two people, Alison and Brian,
using some form of digital paper. The target
application is a shared drawing tool – as Alison
draws on her pad with a stylus, marks appear on her
own digital paper and also (with some feedthrough
delay) on Brian's pad. The question then is what
forms of software architecture may best support the
interaction needed for our shared digital paper.

Case 1 – Static network PoPs

The first pair of architectures are those when we
effectively ignore the mobile nature of the network
and treat it exactly like the static network.

Figure 5: The static network arrangement

For fast and reliable networks, such as the roving
radio-based ethernets for use within offices this
arrangement makes considerable sense. Two
sensible application configurations are possible
under this arrangement.

➀ server-based centralised architecture

Shared data is held at the server end.

➁ peer-peer architecture

69

Communication is from the client down to the
network and back to the other client, just as
when two users communicating with each other
via a mobile phone.

The PoP has no computational role in either case,
being merely a router or post office passing on
communication. This is effectively the same as ➀
and ➁ in figure 2 except that the network has both
mobile and fixed links. The issues are the same as
for fixed networks, except the delays may be
longer. In case ➀ Alsion may experience some
delay in getting feedback for her actions
(disconcerting on digital paper) in case ➁ both
Alison and Brian's digital pads contain all the
shared data and have to communicate to maintain a
consistent replicated state.

Case 2 – Power in the PoP

Now consider a similar case, but where the client
computation is spread between it and the PoP. This
may be useful if the drawing pads supporting the
digital paper have only a small amount of on-board
memory or limited computational power.

Figure 6: The use of computational PoPs

In figure 6, we see versions of ➀ and ➁ where the
PoP has a greater role. Two potential configurations
emerge.

➂ centralised data, PoP as intermediary

The data sits at a central server, but the PoP
takes an active role as a proxy client/server. The
PoP runs part of the application and also
communicates with the client for I/O.

➃ decentralised replicated solution

Replicated data sits at the PoP (and possibly
part of the application) – the PoP acts as a
virtual server. Although the data resides at the
PoP, it is likely to reside their only temporarily,
so long as there are local users. (The exception
being ubiquitous data such as telephone
directories.)

One example of ➂ would be if the digital pads were
configured as X servers (this in fact is the
arrangement used in the early versions of the PARC
ubicom environments), the shared drawing program
could then be comprised of X clients at each PoP
which each access a shared server. As in case ➀,

Alison will experience feedback delays, unless
there is additional caching.

Although we described ➃ as a virtual server, it will
have a far greater pace of feedback than a
centralised solution – Alison's stylus strokes only
have to register on the replica at the local PoP
before being echoed back to her pad.

Case 3 –Moving PoPs together

Finally, there are two options that are only possible
when devices are physically close. For example,
imagine that Alison and Brian have brought their
digital pads with them to a meeting. As they talk
they start to sketch on their pads. If any of the
previous architectures are used the feedthrough of
Alison's actions on Brian's pad will experience full
network delays, little different than as if they were
hundreds of miles apart. However, being so close
they might reasonably expect virtually
instantaneous response.

Figure 7: colocated PoPs

Two arrangements exist that might enable the level
of response anticipate by Alison and Brian.

➄ distributed centralised solution

The server gives some of the functionality to
PoP to allow the clients to communicate with
the PoP – the PoP therefore assumes the role of
server

➅ peer-peer communication

Direct communication using local
communication (e.g. infrared). The shared data
is at the client end.

➄ and ➅ are similar to ➀ and ➁ in figure 2 but the
communication takes place entirely in a mobile
environment, thus ensuring faster feedback and
feedthrough.

Of the two ➅ is very simple in that it is really only
a local network version of ➁, the only difference
being a greater pace of feedthrough for Brian and
the problems of hand over etc. within the network.

Although in some ways ➄ is the same as ➀ it has
the crucial difference that the machine to act as the
server for the shared application, the PoP, is
dynamically configured rather than at a fixed

70

location. For example, if Alison and Brian are in a
reactive meeting room, the PoP may be in a device
embedded within the wall that senses the presence
of the two pads and downloads relevant software
from a remote server. Thereafter Alison will
experience almost instant feedback (just a roundtrip
to the wall and back) and Brian equally fast
feedthrough. In addition, being a centralised
application is has all the advantages of software
simplicity that go with server-based solutions.

Issues
As we expected, the mobility of physical devices
means a constantly shifting topology within the
infrastructure and so, as with web-based solutions,
issues about data and code mobility resurfaces in
mobile settings.

In cases ➃ and ➄, some of the functionality of the
server has migrated to the PoP. In case ➅, it is
some of the client functionality that is in the PoP.
So how does it get there? Unless the application is
ubiquitous it will not be sensible to have copies of
the code sitting at every PoP, so it must either
download from the client or a server. Also in cases
➃ and ➄ shared data must migrate to the PoPs.

The resulting security and management
implications are somewhat daunting: will public
carriers allow foreign code to run inside their
network, will users trust devices embedded in the
environment to run parts of their (perhaps private)
applications.

However, the usability (and indeed infrastructure
efficiency) gains of moving computation close to
users is obvious. The demands to move a
reconfigure netorks in tis way suggest that much of
the on-going work in 'active networks' within the
communications community may hold some
promise.

References
1. Bentley, R., Rodden, T., Sawyer, P. and

Sommerville, I. (1994) Architectural support for
cooperative multi-user interfaces. In IEEE
COMPUTER special issue on CSCW, 27(5), pp 37-
46.

2. Bentley, R., U. Busbach, D. Kerr and K. Sikkel
(Eds.), (1997). Groupware and the World Wide
Web, Dordrecht, Kluwer

3. Borovoy, R., Martin, F., Vemuri, S., Resnick, M.,
Silverman, B. and C Hancock (1998) Meme tags and
community mirrors: moving from conferences to
collaboration, Proceedings of the ACM 1998
conference on Computer supported cooperative
work, pages 159-168

4. Clarke, D. and A. Dix (1999). Proceedings of The
Workshop on the Active Web. 20th January 1999.

5. Coutaz, J. (1987). PAC, an object oriented model for
dialogue design. Human–Computer Interaction –

INTERACT'87, Eds. H.-J. Bullinger and B. Shackel.
Elsevier (North-Holland). pp. 431-436.

6. Crowley (1990) … MMConf …
7. Davies, N., G. Blair, K. Cheverst, and A. Friday.

"Supporting Adaptive Services in a Heterogeneous
Mobile Environment." Proc. Workshop on Mobile
Computing Systems and Applications (MCSA), Santa
Cruz, CA, U.S., Editor: Luis-Felipe Cabrera and
Mahadev Satyanarayanan, IEEE Computer Society
Press, Pages 153-157. December 1994.

8. Dewan, P, A tour of the Suite user interface
software, in Proceedings of UIST’90 (1990), ACM
Press, 57-65.

9. Dix, A. J. (1995). Cooperation without (reliable)
Communication: Interfaces for Mobile Applications.
Distributed Systems Engineering, 2(3): 171–181.

10. Dix, A. (1998). The Active Web - Parts 1&2.
Interfaces, 38:18-21, 39:22-25.

11. Glasgow University (1998). Workshop on Human
Computer Interaction with Mobile Devices,
Glasgow, 21st & 22nd May 1998

12. Gram, C. and G. Cockton, Eds. (1996). Design
Principles for Interactive Software. UK, Chapman
and Hall.

13. Greenberg S.,Marwood D., 'Real Time Groupware
as a Distributed System; Concurreny Control and its
effect on the Interface' Proceedings of CSCW'94,
North Carolina, Oct 22-26, 1994, ACM Press.

14. Gust (1988) … shared X …
15. Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F.

and Wilner, W. (1994). The Rendezvous
architecture and language for constructing multi-
user applications. ACM Transactions on Computer-
Human Interaction, 1(2), 81–125.

16. ICQ ("I Seek You"). http://www.icq.com/
17. Johnson, C. W. (1997). The impact of time and

place on the operation of mobile computing devices.
Proceedings of HCI'97: People and Computers XII,
Bristol, UK, pp. 175–190.

18. Johnson, C. (ed.), (1998). Proceedings of the First
Workshop on Human Computer Interaction with
Mobile Devices. University of Glasgow, 21-23rd
May 1998., GIST Technical Report G98-1.

19. Joseph, A., A. deLespinasse, J. Tauber, D. Gifford,
and M.F. Kaashoek. "Rover: A Toolkit for Mobile
Information Access." Proc. 15th ACM Symposium
on Operating System Principles (SOSP), Copper
Mountain Resort, Colorado, U.S., ACM Press, Vol.
29, Pages 156-171. 3-6 December 1995.

20. Lewis (1995). The Art and Science of Smalltalk.
Prentice Hall.

21. Long, S., R. Kooper, G.D. Abowd, and C.G.
Atkeson (1996). "Rapid Prototyping of Mobile
Context-Aware Applications: The Cyberguide Case
Study." Proc. 2nd ACM International Conference on
Mobile Computing (MOBICOM’96), Rye, New
York, U.S., ACM Press,

22. Palfreyman, K. and Rodden, T. A Protocol for User
Awareness on the World Wide Web, in Proceedings
of CSCW'96, (Boston, Massachusetts, Nov. 1996),
ACM Press, 130–139.

23. Patterson, J.F, Day, M. and Kucan, J. Notification
Servers for Synchronous Groupware, in

71

Proceedings of CSCW‘96 (Cambridge
Massachusetts, 1996), ACM Press, 122–129.

24. Pfaff, G. and Hagen P.J.W., editors (1985) Seeheim
Workshop on User Interface Management Systems,
Springer-Verlag, Berlin.

25. Ramduny, D. and A. Dix (1997). Why, What,
Where, When: Architectures for Co-operative work
on the WWW. Proceedings of HCI'97, Bristol, UK,
Springer. pp. 283–301.

26. Rodden, T. , K. Cheverst, N. Davies and A. Dix
(1998). Exploiting context in HCI design for Mobile
Systems. Workshop on Human Computer
Interaction with Mobile Devices, Glasgow, 21st &
22nd May 1998.

27. UIMS (1992) The UIMS tool developers workshop:
A metamodel for the runtime architecture of an

interactive system. In SIGCHI Bulletin, 24(1), pp
32-37.

28. Want R., Schilit, B. N., Adams, N. I., Gold, R.,
Petersen, K., Goldberg, D., Ellis, J. R. and M.
Weiser (1995) An Overview of the ParcTab
Ubiquitous Computing Experiment. IEEE Personal
Communications, December 1995, Pages 28-43.

29. Welie, V.M. and Eliëns, A. (1996) Chatting on the
Web. In ERCIM workshop on CSCW and the Web
(Sankt Augustin, Germany), GMD/FIT.

30. Yahoo! Chat. http://chat.yahoo.com/
31. Fox, A., S.D. Gribble, E.A. Brewer, and E. Amir.

1996 "Adapting to Network and Client Variation via
On-Demand, Dynamic Distillation." Proc. ASPLOS-
VII, Boston, Masachusetts, U.S.,

