
Plagiarism Detection across Programming Languages

Christian Arwin S.M.M. Tahaghoghi

School of Computer Science and Information Technology
RMIT University, GPO Box 2476V, Melbourne 3001, Australia.

{carwin,saied}@cs.rmit.edu.au

Abstract

Plagiarism is a widespread problem in assessment
tasks; in computing courses, students often plagiarise
source code. For all but the smallest classes, manual
detection of such plagiarism is impractical, and, while
automated tools are available, none has been applied
to detect inter-lingual plagiarism, where source code
is copied from one language to another. In this work,
we propose a novel approach, XPlag, to detect plagia-
rism involving multiple languages using intermediate
program code produced by a compiler suite. We de-
scribe experiments to evaluate XPlag, and show that
we can detect inter-lingual plagiarism with reasonably
good precision.

Keywords: program source code similarity, plagiarism
detection

1 Introduction

Plagiarism — the representation of another’s work as
one’s own — is a serious problem for academics; a
survey performed by Sheard, Dick, Markham, Mac-
donald & Walsh (2002) on a sample of students at
Monash and Swinburne universities shows that 85.4%
of 137 Monash University students and 69.3% of 150
Swinburne University students admitted to having
engaged in academic dishonesty. Educational insti-
tutions commonly attempt to reduce the incidence
of plagiarism by applying penalties for violation of
rules on academic dishonesty, yet plagiarism remains
widespread (Zobel & Hamilton 2002).

Many computing courses have assessment tasks
that require submission of program source code; stu-
dents may plagiarise by copying code from friends,
the Web, or so-called “private tutors” (Zobel 2004).
For large cohorts, manual comparison of submissions
to identify plagiarism is impractical, and so students
may feel confident that their work will escape detec-
tion. There are also commercial concerns; organi-
sations may be unknowingly liable to litigation for
unauthorised use of program source code. Robust co-
derivative detection methods are essential.

Several approaches have been proposed for de-
tecting code plagiarism; most use source code to-
kenisation and string matching algorithms to mea-
sure similarity. These generally perform well in de-
tecting plagiarism that involves common disguising
techniques such as statement reordering or modifica-
tion of constant values and variable names (Gitchell

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

& Tran 1999, Prechelt, Malpohl & Philippsen 2000,
Wise 1996).

However, these approaches are designed and ap-
plied to detect plagiarism between programs written
in a single language, and cannot handle cases where
source code is copied from one language to another.
We propose the names intra-lingual plagiarism for the
former, and inter-lingual plagiarism or cross-lingual
plagiarism for the latter.

We hypothesise that plagiarised programs, regard-
less of the language they are written in, have a similar
code structure. We propose two solutions to address
inter-lingual plagiarism. One is to compare the tokens
produced by most existing plagiarism detection ap-
proaches that support more than one language. The
second is to compare the intermediate code produced
by a compiler suite, that is, a compiler that supports
more than one language. The former typically sup-
ports only a few languages and requires a scanner and
parser for each language, while the latter solution re-
lies on the components of an existing generic compiler
suite. We focus on the second approach in this work.

We test our new approach against three collections
using ground truth developed from an existing state-
of-the-art plagiarism detection system and through
manual comparisons. The results show that our ap-
proach detects plagiarism with reasonably good pre-
cision for all the test collections. More importantly,
it succeeds in detecting plagiarism across languages.

The remainder of this thesis is organised as follows.
In Section 2, we discuss the main computer-based ap-
proaches to plagiarism detection. In Section 3, we de-
scribe our approach for the detection of inter-lingual
plagiarism. In Section 4, we describe our experiments
and our analysis of the results. We conclude in Sec-
tion 5 with a summary of our work and thoughts for
future research.

2 Background

Two factors that complicate plagiarism detection are
the abundance of available resources and the variety
of techniques used to disguise the copied materials. A
number of approaches have been proposed to detect
plagiarism in text and in program source code; we
briefly review some of these in this section.

2.1 Text Plagiarism Detection

Text plagiarism involves copying parts of
manuscripts, papers, and documents. Hoad &
Zobel (2003) explore the ranking and fingerprint-
ing approaches for detecting plagiarism of text.
These approaches have a common preprocessing
stage that includes case folding, stemming (remov-
ing prefix/suffix from words), stopping (removing
common words), and term parsing (removing whites-

pace, punctuation, and control characters from the
document).

The ranking approach consists of two stages to find
documents similar to a query. In the first stage, doc-
uments are indexed. In the second stage, terms in
the query document are matched against the indexed
terms of each collection document, and a similarity
score is calculated. Documents are ranked by decreas-
ing similarity score for presentation to the user. This
approach relies on the use of an effective similarity
function to determine the similarity score for each
document (Hoad & Zobel 2003). The fingerprinting
approach also uses the two stages used by the rank-
ing approach. However, it compares document finger-
prints rather than document terms.

2.2 Source Code Plagiarism Detection

The nature of program source code makes it diffi-
cult to apply simple text-based detection techniques.
Copied code is typically altered to avoid detection.
Whale (1986) lists thirteen techniques that students
may use to disguise the origin of copied code; these are
“changing comments, changing formatting, changing
identifiers, changing the order of operands in expres-
sions, changing data types, replacing expressions by
equivalents, adding redundant statements, changing
the order of time-independent statements, changing
the structure of iteration statements, changing the
structure of selection statements, replacing proce-
dure calls by the procedure body, introducing non-
structured statements, combining original and copied
program fragments”. We consider there to be one
additional item: the translation of source code from
one language to another, or inter-lingual plagiarism.
For example, source code written in C may be copied
across to an implementation in Java.

There are several existing approaches to detect
code plagiarism. Prechelt et al. (2000) identify two
main categories of automated plagiarism detection for
program source code; these are feature comparison
and structure comparison. We explain these below.

2.2.1 Feature Comparison

In feature comparison, the similarity of two programs
is estimated from the similarity of various software
metrics, such as the average number of characters per
line, the number of comment lines, the number of
indented lines, the number of blank lines, and the
number of tokens (for example, keywords, operator
symbols, and standard library module names). Jones
(2001) proposes a feature comparison category that
compares two programs based on three profiles:

Physical profile characterises a program based on
its physical attributes, such as the number of
lines, words, and characters.

Halstead profile characterises a program based on
its token types and frequencies. These includes
the number of token occurrences (N), the num-
ber of unique tokens (n), and volume (N log2 n).

Composite profile a combination of the physical
profile and the Halstead profile.

To detect plagiarism, the profiles of each program
are calculated, and then normalised. The similarity
of two programs is estimated by computing the Eu-
clidean distance between their profiles (Jones 2001).

Prechelt et al. (2000) note that systems that use
feature comparison may be very insensitive (can eas-
ily be misled), or very sensitive (producing many false

positives) since they ignore program structure. Of-
fenders may easily add or remove comments, vari-
ables, or redundant lines of code to escape detec-
tion (Chen, Li, McKinnon & Seker 2002, Prechelt
et al. 2000, Whale 1990).

2.2.2 Structure Comparison

This approach relies on the belief that the similarity
of two programs can be estimated from the similarity
of their structure. Programs are compared in two
stages; the first stage parses the code and generates
token sequences, while the second stage compares the
tokens. Three systems that fall into this category are
Sim (Gitchell & Tran 1999), YAP3 (Wise 1996), and
JPlag (Prechelt et al. 2000).

Sim

Sim detects similarities between programs by evaluat-
ing their correctness, style, and uniqueness (Gitchell
& Tran 1999). Each program is first parsed using
the flex lexical analyser, producing a sequence of
integers (tokens). The tokens for keywords, special
symbols, and comments are predetermined, while the
tokens for identifiers are assigned dynamically and
stored in a shared symbol table; whitespace is dis-
carded. The token stream of the second program is
grouped into sections, each representing a module of
the program; each section is separately aligned with
the token stream of the first program. An alignment
of two strings is performed by inserting spaces be-
tween characters to equalise their length. An align-
ment scoring scheme is used to calculate similarity.
This rewards matches involving two identifiers by two
points, and other matches by one point. It also pe-
nalises mismatches involving two identifiers by two
points, and other mismatches by one point. Gaps
also attract a two-point penalty. Sim can handle name
changes and reordering of statements and functions.

YAP3

YAP3 (Wise 1996) is another structure-based plagia-
rism detection system; it detects plagiarism through
two phases. In the first phase, token sequences are
generated from the source code. Comments and
string constants are removed, and characters are con-
verted to lower case. Functions are mapped to their
base equivalents (such as strncmp to strcmp). In
the second phase, the maximum, non-overlapping
matches of the tokens sequences are then obtained
using the running Karp-Rabin greedy string-tiling al-
gorithm (Karp & Rabin 1987). YAP3 is able to detect
plagiarism with modified subsequences of lines and
additional statements.

JPlag

JPlag (Prechelt et al. 2000) is a web-based detection
system that uses a comparison algorithm similar to
that of YAP3. In this system, the source code is parsed
and converted into token strings. To minimise simi-
larity by chance, JPlag includes some context of the
program structure into the token strings, for example
using the “BEGIN METHOD” token to indicate an open
brace at the beginning of a method and “OPEN BRACE”
to indicate other open braces. Whitespace, com-
ments, and identifier names are ignored. The greedy
string tiling algorithm is then used to compare token
strings and identify the longest, non-overlapped com-
mon substrings. The result of the detection process
is shown to the user in colour-coded HTML format.

Source Code

if (i==99) {
 int j=i+123;
}

Register Transfer Language (RTL)

...
(insn 14 12 15 (nil) (set (reg:CCZ 17 flags)
 (compare:CCZ (mem/f:SI (plus:SI (reg/f:SI 54 virtual-stack-vars)
 (const_int -4 [0xfffffffc])) [0 i+0 S4 A32])
 (const_int 99 [0x63]))) -1 (nil)
 (nil))

(jump_insn 15 14 16 (nil) (set (pc)
 (if_then_else (ne (reg:CCZ 17 flags)
 (const_int 0 [0x0]))
 (label_ref 22)
 (pc))) -1 (nil)
 (nil))

(note 16 15 17 0x4017d2c0 NOTE_INSN_BLOCK_BEG)

(note 17 16 19 NOTE_INSN_DELETED)

(insn 19 17 20 (nil) (parallel [
 (set (reg:SI 61)
 (plus:SI (mem/f:SI (plus:SI (reg/f:SI 54 virtual-stack-vars)
 (const_int -4 [0xfffffffc])) [0 i+0 S4 A32])
 (const_int 123 [0x7b])))
 (clobber (reg:CC 17 flags))
]) -1 (nil)
 (nil))

(insn 20 19 21 (nil) (set (mem/f:SI (plus:SI (reg/f:SI 54 virtual-stack-vars)
 (const_int -8 [0xfffffff8])) [0 j+0 S4 A32])
 (reg:SI 61)) -1 (nil)
 (expr_list:REG_EQUAL (plus:SI (mem/f:SI

 (plus:SI (reg/f:SI 54 virtual-stack-vars)
 (const_int -4 [0xfffffffc])) [0 i+0 S4 A32])
 (const_int 123 [0x7b]))
 (nil)))
...

Optimised RTL

...
(insn 14 12 15 (nil) (set (reg:CCZ 17 flags)
 (compare:CCZ (reg/v:SI 61 [i])
 (const_int 99 [0x63]))) -1 (nil)
 (nil))

(jump_insn 15 14 16 (nil) (set (pc)
 (if_then_else (ne (reg:CCZ 17 flags)
 (const_int 0 [0x0]))
 (label_ref 21)
 (pc))) -1 (nil)
 (nil))

(note 16 15 17 0x4017d318 NOTE_INSN_BLOCK_BEG)

(note 17 16 19 NOTE_INSN_DELETED)

(insn 19 17 20 (nil) (parallel [
 (set (reg/v:SI 62 [j])
 (plus:SI (reg/v:SI 61 [i])
 (const_int 123 [0x7b])))
 (clobber (reg:CC 17 flags))
]) -1 (nil)
 (nil))
...

Figure 1: An example of source code (top left), the corresponding unoptimised RTL (bottom left), and the
optimised RTL (right).

3 Plagiarism Detection Using Intermediate
Code

Existing plagiarism detection systems, whether based
on feature or structure comparison, are developed to
detect plagiarism in a particular language such as C,
Java, Pascal, or Scheme. We refer to this as intra-
lingual plagiarism. However, none has been applied
to detect inter-lingual plagiarism, where code in one
language is plagiarised and rendered in another.

In this section, we describe our novel approach,
that we call XPlag, to detect inter-lingual plagiarism
by comparing the structure of intermediate code pro-
duced by a compiler suite.

A compiler typically processes source code in two
passes (Hernandez-Campos 2002). In the front end
pass, a source code file is scanned (lexical analysis),
parsed (syntax analysis), and semantically analysed
to produce intermediate code. In the back end pass,
the intermediate code is optimised and its binary code
(executable) is generated.

Since we wish to detect plagiarism that involves
multiple languages, we need a compiler that supports
more than one language. We refer to this type of
compiler as a compiler suite.

3.1 The Compiler Suite

Two popular compiler suites are Microsoft Visual Stu-
dio .NET and the GNU Compiler Collection (GCC).
Microsoft Visual Studio .NET is based on the .NET
framework1 and supports many languages, among
them Microsoft Visual C#, Visual Basic .NET, Vi-
sual J#, and Visual C++ .NET. Program source code
is compiled first by the appropriate front-end compiler
to produce the the common intermediate language
(CIL) — also known as the Microsoft Intermediate
Language (MSIL). At run time, a Just-In-Time (JIT)

1http://www.microsoft.com/net/basics/framework.asp

compiler is then used generate the executable (native)
code from the intermediate code.

The popular GNU Compiler Collection (GCC)2

also supports several languages including C, C++,
Java, Fortran, and Objective C, and produces in-
termediate code in a common format (Jain, Sanyal
& Khedker 2003). There is also ongoing work
to integrate support for the .NET framework into
GCC (Singer 2003). The GCC front end contains sep-
arate lexical analysis, syntax analysis, semantic anal-
ysis, and tree optimisation modules for each language;
from this, a representation in a common intermediate
code — the Register Transfer Language (RTL) — is
generated. The back end optimises this RTL to pro-
duce machine code that is executable by the target
machine.

The bulk of our work to date has focused on the
GCC compiler suite using the C and Java languages,
acknowledged to be the most popular3 of those sup-
ported by this compiler suite.

3.2 The Register Transfer Language

The GCC Register Transfer Language4 contains a se-
ries of instructions represented in nested parentheses.
Each instruction contains a line number, a pointer to
the previous instruction, and a pointer to the next
instruction followed by expressions.

GCC provides three levels of compiler optimisa-
tion5. Figure 1 shows an example where the expres-
sions in the optimised RTL — Figure 1 (right) — are
simpler than the unoptimised RTL — Figure 1 (bot-
tom left). In the optimised RTL, variable initialisa-
tion is performed by storing a value in a virtual regis-
ter (represented by a reg token) rather than a virtual
stack (represented by a reg and an offset value). This

2http://gcc.gnu.org
3http://www.developer.com/lang/article.php/3390001
4http://gcc.gnu.org/onlinedocs/gcc-3.3.3/gccint/RTL.html
5http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compiler Suite
(front end)

Source code Assembly
code

Groups of
significant tokens

Filtering
&

Grouping

Code
optimisation

Lexical,
syntactic,
semantic
analysis

Intermediate
code

generation Intermediate
code

Optimised
intermediate

code

Code
generation

Unused

Compiler Suite
(back end)

XPlag

Figure 2: XPlag stages; the input source code is scanned and parsed by a compiler suite, producing the
intermediate code. The intermediate code is optimised, filtered, and clustered, to produce a group of significant
tokens.

insn and call gt truncate NOTE INSN FUNCTION BEG
const int parallel call insn lt ashiftrt NOTE INSN FUNCTION END
reg clobber call placeholder eq ashift NOTE INSN LOOP BEG
set plus expr list le lshiftrt NOTE INSN LOOP CONT
mem minus label ref ge lshift NOTE INSN LOOP END TOP COND
code label unspec symbol ref compare sign extend NOTE INSN LOOP END
use jump insn pc or barrier if then else

Table 1: The list of RTL keywords we consider significant.

makes the RTL file — and consequently the search en-
gine index — more compact. Selecting optimisation
also causes function inlining, where the compiler inte-
grates functions shorter than a threshold (the default
is 600 lines) into the calling code.

In our preliminary research, we determined that
the highest optimisation level brings the most ben-
efit to our approach, since the RTL instructions are
simplified. Moreover, optimisation allows straightfor-
ward detection of cases where function inlining is used
to disguise copied code (Whale 1986). GCC also pro-
vides a compilation option to add debugging infor-
mation in the intermediate code. Our observations
indicate that this additional information is not help-
ful, and so we do not report experiments using this
option.

3.3 The XPlag approach

The XPlag mechanism comprises two stages. In the
indexing stage, all programs in the collection are con-
verted into tokens, and token information is stored
in an inverted index. In the detection stage, source
code is used to query the index and produce a list
of programs in the collection, ranked by decreasing
similarity.

The internal process of XPlag is illustrated in Fig-
ure 2. The source code input is scanned and parsed
by a compiler suite, producing the intermediate code.
After optimisation, the intermediate code is filtered
and clustered, producing groups of overlapping to-
kens — n-grams — as the output. We follow with a
detailed description of this approach.

3.4 The Filtering Process

The RTL of a program contains a sequence of instruc-
tions, each containing a set of keywords. Some key-
words, such as variable names, register names, and
constants, are insignificant for two reasons. First,
they do not represent the structure of a program; sec-
ond, variable names and constants can be altered to
disguise plagiarism. We therefore consider these key-
words to be stop words, and filter them from the op-

Optimised RTL

...
(insn 14 12 15 (nil) (set (reg:CCZ 17 flags)
 (compare:CCZ (reg/v:SI 61 [i])
 (const_int 99 [0x63]))) -1 (nil)
 (nil))

(jump_insn 15 14 16 (nil) (set (pc)
 (if_then_else (ne (reg:CCZ 17 flags)
 (const_int 0 [0x0]))
 (label_ref 21)
 (pc))) -1 (nil)
 (nil))

(note 16 15 17 0x4017d318 NOTE_INSN_BLOCK_BEG)

(note 17 16 19 NOTE_INSN_DELETED)

(insn 19 17 20 (nil) (parallel [
 (set (reg/v:SI 62 [j])
 (plus:SI (reg/v:SI 61 [i])
 (const_int 123 [0x7b])))
 (clobber (reg:CC 17 flags))
]) -1 (nil)
 (nil))
...

Filtered RTL

insn
 set
 reg
 compare
 reg
 const_int

jump_insn
 set
 pc
 if_then_else
 reg
 const_int
 label_ref
 pc

insn
 parallel
 set
 reg
 plus
 reg
 const_int
 clobber
 reg

filtering

RTL
code
block

RTL
code
block

RTL
code
block

Figure 3: RTL example before filtering (left) and after
filtering (right).

timised RTL6. The keywords we retain are listed in
Table 1.

Figure 3 shows an example of RTL, before and
after the filtering process. The indentation of the
filtered RTL represents the depth of the nested ex-
pression in an RTL instruction. Constants, variable
names, and machine modes — for example SI, indi-
cating that the number is a single integer — are not
retained. We discovered that filtered RTL for vari-
able declarations, branching statements, and func-
tion calls have similar sequences of keywords across C
and Java. However, we observed that the RTL struc-
ture of looping statements is different although the
programs are similar. To address this, we keep the
NOTE INSN LOOP BEG and NOTE INSN LOOP END key-
words that are used to indicate the beginning and
the end of a loop in the RTL generated from both
languages.

3.5 The Mapping and Grouping Process

The significant keywords retained by the filtering pro-
cess are between two and twenty-two characters, as
listed in Table 1.

6We use the flex lexical analyser for this purpose.

Mapping

0z1w2x2bg3x3y

0ai1w2pc2ba4x4y3an3pc

0z1ad2w3x3af4x4y2ae3x

0z1w2x2y

insn
 set
 reg
 const_int

insn
 set
 reg
 compare
 reg
 const_int

jump_insn
 set
 pc
 if_then_else
 reg
 const_int
 label_ref
 pc

insn
 parallel
 set
 reg
 plus
 reg
 const_int
 clobber
 reg

Filtered RTL Grouping (3-grams)

0z1w2x2y0z1w2x2bg3x3y0ai1w2pc2ba4x4y3an3pc

0z1w2x2bg3x3y0ai1w2pc2ba4x4y3an3pc0z1ad2w3x3af4x4y2ae3x

1
2

3

1
2

3

Note:
z : insn
w : set
x : reg
y : const_int
bg : compare
ai : jump_insn

pc : pc
ba : if_then_else
an : label_ref
ad : parallel
af : plus
ae : clobber

Figure 4: An example of the RTL mapping and grouping processes. Each significant keyword in the filtered
RTL is converted to a one- or two-character code. Then, the mapped RTL is grouped into 3-grams. The
number before each mapped RTL keyword represents the depth of indentation in the filtered RTL.

Two programs may contain similar instructions
even where no plagiarism has occurred. Hence, the
similarity of two programs should not be estimated by
simply comparing the pairs of instructions contained
in both programs. XPlag groups instructions into n-
grams, where each gram contains n instructions, and
each instruction contains a set of significant keywords.

We consider each RTL code block as a gram, with
the indentation level indicated by a number. Figure 4
illustrates how the optimised RTL representation of
a program is mapped and then grouped into 3-grams.
The value of n is chosen empirically — we discuss this
in further detail in Section 4.

3.6 The Search Engine

Plagiarism detection systems that are based on pair-
wise comparisons are not scalable; a good alterna-
tive approach is to index and query the tokens with a
search engine (Burrows, Tahaghoghi & Zobel 2004).
We incorporate a search engine into XPlag to perform
two tasks:

1. In the indexing stage, the grouped RTL of the
source code files in the collection is indexed.

2. In the detection stage, the grouped RTL of the
query source code is used to search the index, and
the programs of the collection are listed ranked
by decreasing similarity to the query.

XPlag consists of two stages, namely the indexing
and detection stages. In the indexing stage, a collec-
tion of programs is compiled with the compiler suite
using the highest optimisation option, producing the
intermediate code. This is then filtered, mapped, and
grouped to n-grams, producing groups of significant
keywords that are then indexed by the search engine.
In the detection stage, the source code to be checked
is similarly compiled, filtered, mapped, and grouped
to n-grams, producing a group of significant interme-
diate code keywords. These keywords are then used
as a query to the search engine, returning a list of
similar programs ordered by decreasing similarity.

The similarity between a collection program and
the query is estimated using a similarity measure or
ranking function. The Okapi BM25 similarity func-
tion is highly effective for general text search, and is

defined as (Robertson & Walker 1999):

∑

t∈Q

wt ·
(k1 + 1) fd,t

K + fd,t

·
(k3 + 1) fq,t

k3 + fd,t

where:

wt = loge

(

N − ft + 0.5

ft + 0.5

)

, K = k1 ·

(

(1 − b) +
b · Wd

WD

)

Wd = document length K1 = 1.2
WD = average document length k3 = infinite

N = documents in collection b = 0.75
fq,t = query-term frequency ft = collection frequency
fd,t = within-document frequency

BM25 is more suited to retrieval of text documents
rather than to code, since the more often a query term
occurs in a document, the higher the score given to
the document. Chawla (2003) proposes the Plagi-
Rank ranking function as more appropriate for code
retrieval. This gives a higher score to documents in
which query terms have the same frequency:

Score(Q, Qd) =
∑

t∈Q∩Dd

(

ln
fqt

fdt

+ 1

)

·fqt·
1

WdWq

wherefqt ≤ fdt

Score(Q, Qd) =
∑

t∈Q∩Dd

(

ln
fdt

fqt

+ 1

)

·fqt·
1

WdWq

wherefqt ≥ fdt

We evaluate our approach using both these mea-
sures and discuss the results in Section 4.

3.6.1 The Indexing and Detection Stages

In the indexing stage, the n-grams of the RTL of each
program in the collection are collated into the TREC
format7, and then indexed by the search engine.

In the detection stage, the RTL n-grams of the
program to be checked are run as a query by the
search engine, and a list of programs similar to the
queried program is returned. We examine the top
twenty documents.

The search engine provides an absolute similarity
score for each document. This is unlikely to be mean-
ingful to the average user, and so we instead refer to
the Relative Percentage Similarity (RPS); this is the

7http://www.seg.rmit.edu.au/zettair/zettair/doc/Readme.html

ratio between the similarity score of a source code
document and the similarity score of the query doc-
ument to itself. To calculate this, the query source
code must also be indexed by the search engine, and
will be returned as the first answer. This represents
the perfect match, with an RPS of 100%.

Relative Percentage Similarity (RPS)i =

{

100% if i = 1
Si/S1 if i > 1

where i, RPSi, and Si represent the rank, Relative
Percentage Similarity of the i-th document, and the
search engine score of the i-th document, respectively.
For example, if the search engine score of program
file 0.c is 0.5 and the score of 67.c is 0.4328, then
the relative percentage similarity of 0.c is 100% (be-
cause i = 1), and the score of program file 67.c
is 0.4328/0.5=86.55%.

4 Experiments and Analysis

We continue with a discussion of our experiments, our
analysis, and the external baseline we use to evaluate
our technique.

All source code in our experiments was compiled
using GCC version 3.3.3 on an Intel Pentium IV 2.4
GHz processor running the Linux SuSe 9.1 operating
system. We also used version 0.6.1 of the Zettair8

search engine developed by the RMIT University
Search Engine Group.

The aim of our experiments is twofold. First, to
evaluate the performance of XPlag in detecting pla-
giarism among programs written in one particular
language, that is, intra-lingual plagiarism. Second,
to evaluate the performance of XPlag to detect inter-
lingual plagiarism. For this purpose, we use three
different collections of program source code:

1. Collection-C: contains 79 C programs from stu-
dent submissions for an assignment in a course on
Secure Electronic Commerce offered in Semester
2 2003.

2. Collection-J: contains 107 Java programs from
the same assignment as Collection-C.

3. Collection-X: contains 206 programs from
the combination of Collection-C and
Collection-J and with the addition of ten
equivalent pairs of C and Java program files
from the Web. This collection was used to see
how well XPlag can detect plagiarism across C
and Java programs.

Some programs in Collection-X were obtained by
translating programs written in the C language to the
Java language using the Jazillian online translation
tool9 to reflect an approach students may take when
copying. We could not find any translation tools to
translate programs written in the Java language to
the C language. We found that some minor edit-
ing is still required to allow the code translated by
Jazillian to be compiled under GCC. For exam-
ple, we have to add the ‘static’ keyword before each
function called from the static main() function, and
replace ‘int int’ to ‘int’ because Jazillian trans-
lates ‘unsigned int’ as ‘int int’.

There are other automatic C-to-Java translation
programs available10, but most, such as C2J and
Ephedra produce output that is clearly machine-
generated code.

8http://www.seg.rmit.edu.au/zettair/
9http://www.jazillian.com

10http://www.jazillian.com/competition.html

4.1 Ground Truth and Evaluation

To evaluate the effectiveness of our approach, we need
the ground truth, that is, a list of programs that are
known to be plagiarised. The ground truth of each
set was determined as follows:

1. For Collection-C, we used exhaustive manual
comparisons. There were twelve groups of pro-
grams that we regarded as copied.

2. For Collection-J, because of time constraints,
we manually verified pairs of similar programs
identified by JPlag. We found seven groups of
plagiarised programs.

3. For Collection-X, we used the known cross-
plagiarised programs downloaded from the Web,
and the pairs which we translated using
Jazillian.

The difference in the way the ground truth for each
collection was prepared is likely to affect the absolute
performance of JPlag and XPlag. Nevertheless, we
believe that the experimental results reflect the rela-
tive performance of the two approaches within each
collection.

To quantify the performance of our detection, we
use the standard information retrieval measures of
precision and recall (Witten, Moffat & Bell 1999).
Precision is the ratio of documents retrieved that are
relevant, while recall is the proportion of the relevant
documents that have been retrieved.

Precision (P) =
relevant documents retrieved

retrieved documents

Recall (R) =
relevant documents retrieved

relevant documents

In the context of source code plagiarism detection,
precision represents the number of plagiarised pro-
grams at some point in the returned list. The higher
the precision, the more accurate the detection (fewer
false positives). Recall represents the number of pla-
giarised programs detected out of all plagiarised pro-
grams in the collection. The higher the recall, the
fewer copied programs escape detection (fewer false
negatives).

Three measures derived from precision and re-
call include R-precision, Precision@n, and interpo-
lated precision-recall. R-precision is the precision at
the R-th program on the list, where R is the number
of correct answers for the query; Precision@n is the
precision at the n-th program on the list; finally, the
interpolated precision at a particular recall level is the
highest precision observed at that or any higher recall
level. Interpolated precision-recall is usually shown at
the eleven 10% steps of recall from 0% to 100%.

Important to us are the Precision@2 (P@2), Pre-
cision@5 (P@5), Precision@10 (P@10), R-Precision
(R-P), and interpolated precision-recall scores. Pre-
cision@2 is useful for measuring how effective XPlag
ranks a copied program at the second position on the
list. Since the first program on the list is always the
query program, Precision@2 is effectively the preci-
sion when only the most similar collection document
to the query is examined. Precision@5 is used to eval-
uate the accuracy of XPlag in returning the top five
programs; this is a useful cut-off point, assuming that
a program is unlikely to have more than four other co-
derivatives in the collection.

We also evaluate the precision and recall values at
every 5% of the Relative Percentage Similarity (RPS)
to estimate an RPS value that can be used by users
as a good cut-off value to stop manual verification,

No g
ro

up
ing

2-
gr

am

4-
gr

am

6-
gr

am

8-
gr

am

10
-g

ram

Group size

0

20

40

60

80

100

A
ve

ra
ge

 (
%

)

BM25 P@2
PlagiRank P@2
BM25 P@5
PlagiRank P@5
BM25 P@10
PlagiRank P@10
BM25 R-P
PlagiRank R-P

Figure 5: Performance comparison of the BM25 and
PlagiRank similarity measures for varying n-gram
sizes on Collection-C.

0 10 20 30 40 50 60 70 80 90 100

Recall (%)

50

60

70

80

90

100

P
re

ci
si

on
 (

%
)

XPlag (2-gram)
XPlag (4-gram)
XPlag (6-gram)
XPlag (8-gram)
XPlag (10-gram)
JPlag

Figure 6: Interpolated precision-recall using the
BM25 similarity measure and various grouping sizes
on Collection C.

although this is likely to be somewhat dependent on
the preference of the user for high precision or for high
recall.

To test whether differences in performance are sig-
nificant, we use the Wilcoxon signed rank test at
the 95% confidence level.

4.2 Experiments with Collection-C

In our first series of experiments, we aim to evalu-
ate the performance of XPlag in detecting plagiarism
involving only C programs (Collection-C), identify
the best grouping size to be used, and investigate
which ranking function, BM25 or PlagiRank, pro-
duces better results. Our query set contains twelve
programs taken from our ground truth. We find that
grouping keywords into n-grams improves the preci-
sion of XPlag, as shown in Figure 5. Although we
initially expected the PlagiRank similarity measure,
specifically designed for plagiarism detection, to out-
perform BM25, the reverse is true for most combina-
tions of n-gram sizes and evaluation measurements.
Interestingly, all XPlag results are better than the
JPlag baseline.

In our experiment, the BM25 with a group size
of 6 produces the highest precision of all evaluation
measurements. Figure 6 shows the interpolated pre-
cision at standard recall levels using the BM25 and 6-
grams. We see that precision drops sharply after 50%
recall (when half the incidents of known plagiarism in-
stances have been retrieved), but remains above 75%
for most n-gram sizes tested.

For comparison, we performed plagiarism detec-
tion using JPlag with the sensitivity value — or the
minimum match length — set to 6; this value is equiv-
alent to the grouping size of 6 that we used for XPlag.

Average
Precision at XPlag (%) JPlag (%)

2 100.00 79.00
5 44.00 32.00

10 22.00 16.00
R 80.00 71.00

Table 2: Performance comparison of XPlag and JPlag
on Collection-C.

0 10 20 30 40 50 60 70 80 90 100

Relative Percentage Similarity (RPS)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

Precision at percentage-similarity
Recall at percentage-similarity

Figure 7: Average precision and recall values at 5%
intervals of Relative Percentage Similarity using the
BM25 and 6-grams on Collection-C.

Table 2 shows that XPlag outperforms JPlag in all
evaluation measurements. Furthermore, the inter-
polated precision of XPlag at standard recall levels
is significantly higher than JPlag, as shown in Fig-
ure 6. Table 2 also shows that XPlag accurately re-
turns copied C programs at the second position on
the list (Precision@2 is 100%).

In application, manual examination of highly
ranked documents is likely to be impractical, and
so we explore how the Relative Percentage Similarity
value relates to the tradeoff between recall and preci-
sion. We plot the average precision and recall values
at 5% Relative Percentage Similarity intervals in Fig-
ure 7. At 0% RPS, the recall reaches 100% (because
all programs in the collection are listed) and the aver-
age precision is around 4% (because many false posi-
tives are returned). When RPS is equal to or greater
than 60%, precision reaches 100% (no false positives),
but recall decreases from 66% (at 60% RPS) to 48%
(at 100% RPS). Requiring matches to have a higher
RPS results in more false negatives.

4.3 Experiments with Collection-J

In our next series of experiments, we evaluated the
performance of XPlag in detecting plagiarism in-
volving only Java programs (Collection-J). We in-
spected the JPlag detection result to obtain groups
of copied programs, and verified seven program pairs
as copied.

Using the copied pairs as the query set, we find
the result to be consistent with our experiments on
Collection-C. Figure 8 demonstrates that grouping
improves the performance of XPlag, and that BM25
produces better results than PlagiRank for most com-
binations of grouping sizes and evaluation measure-
ments. The figure also shows that BM25 with group
sizes of 4 and 6 produces the highest precision for all
evaluation measures, although Figure 9 shows that
using 4-grams leads to the highest interpolated preci-
sion results.

Table 3 compares the performance of XPlag and
JPlag for detection of plagiarism among Java pro-
grams. Since the ground truth of Collection-J
was generated from the JPlag detection result, JPlag
performance represents ideal performance here; this
is shown as a constant 100% interpolated precision-
recall in Figure 9. While XPlag appears to perform

No g
ro

up
ing

2-
gr

am

4-
gr

am

6-
gr

am

8-
gr

am

10
-g

ram

Group size

0

20

40

60

80

100

A
ve

ra
ge

 (
%

)

BM25 P@2
PlagiRank P@2
BM25 P@5
PlagiRank P@5
BM25 P@10
PlagiRank P@10
BM25 R-P
PlagiRank R-P

Figure 8: Performance comparison of the BM25 and
PlagiRank similarity measures for varying n-gram
sizes on Collection-J.

0 10 20 30 40 50 60 70 80 90 100

Recall (%)

50

60

70

80

90

100

P
re

ci
si

on
 (

%
)

XPlag (2-gram)
XPlag (4-gram)
XPlag (6-gram)
XPlag (8-gram)
XPlag (10-gram)
JPlag

Figure 9: Interpolated precision-recall using the
BM25 similarity measure and various grouping sizes
on Collection J.

less than this ideal, the difference is statistically in-
significant11. XPlag successfully returns all occur-
rences of plagiarism in the collection within the first
five answers — the Precision@5 is equal for both
XPlag and JPlag — and returns copied Java pro-
grams at the second position on the list with an av-
erage precision of 92.86%.

Figure 10 shows that the precision increases at
a constant rate from 10% RPS, and reaches 100%
at 55% RPS. From 25% RPS onwards, recall decreases
gradually from 100% to 48% at 100% RPS. We ob-
serve that for both Collection-C and Collection-J,
precision is greater than 90% (less than 10% false pos-
itives) and recall is greater than 80% (less than 20%
false negatives) at 50% RPS.

4.4 Experiments with Collection-X

We have shown that XPlag can detect intra-lingual
plagiarism with reasonable precision and recall val-
ues. To investigate the XPlag performance in de-
tecting inter-lingual plagiarism, we use Collection-X
and two different query sets: Queryset-C (containing
only the ten C programs); and Queryset-Java (con-
taining only the ten Java programs).

To explore whether we can use JPlag again as
our baseline, we tried to perform plagiarism detec-
tion on Collection-X using the JPlag C/C++ and
Java parsers in turn. However, neither was able to re-
veal inter-lingual plagiarism. The detection using the
Java parser excludes 97 programs due to unsuccess-
ful compilation; this is understandable since the Java
parser cannot process the submitted C programs. In

11We used the Wilcoxon signed rank test at the 95% confidence
level to compare the interpolated precision at standard recall levels
of XPlag (4-grams) and JPlag.

Average
Precision at XPlag (%) JPlag (%)

2 92.86 100.00
5 42.86 42.86

10 21.43 21.43
R 92.86 100.00

Table 3: Performance comparison of XPlag and JPlag
on Collection-J.

0 10 20 30 40 50 60 70 80 90 100

Relative Percentage Similarity (RPS)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

Precision at percentage-similarity
Recall at percentage-similarity

Figure 10: Average precision and recall values at 5%
interval of Relative Percentage Similarity using the
BM25 and 4-grams on Collection-J.

contrast, although the C parser can process most of
the Java programs, only one incidence of inter-lingual
plagiarism is reported, and that because one of the
subroutines in both programs is identical. While this
is not surprising — after all, JPlag is not designed to
detect inter-lingual plagiarism — it leaves us with no
external baseline for Collection-X.

Figure 11 and Figure 12 show that BM25 with a
group size of 2 produces the best Precision@2 and
interpolated precision-recall for both query sets. Us-
ing Queryset-C, precision increases sharply from 0%
to 30% RPS, as shown in Figure 13 (a); while using
Queryset-Java, precision increases sharply from 0%
to 40% RPS, as shown in Figure 13 (b). Precision
reaches 100% for both query sets when RPS is equal
to or greater than 60%, while recall is above 90%
when RPS is equal to or less than 20%.

5 Discussion and Future Work

Plagiarism is a serious and widespread problem. Sev-
eral approaches have been proposed to reveal plagia-
rism in source code, but these only aim to detect pla-
giarism involving one programming language. In this
paper, we have described our novel approach, XPlag,
to detect inter-lingual plagiarism by inspecting the
intermediate code produced by a compiler suite. Us-
ing three different collections and employing the pop-
ular JPlag system as our baseline, we have shown
that XPlag can detect intra-lingual plagiarism in and
Java programs with reasonably good precision. Sig-
nificantly, we have also shown that XPlag can detect
inter-lingual plagiarism, albeit with lower accuracy
than for intra-lingual plagiarism.

While the RTL for variable declarations, function
calls, and branching statements of C and Java pro-
grams are similar, the RTL of Java programs often
contains instructions for processing classes and func-
tion calls of the standard Java library. For example,
there are fewer RTL instructions for the C ‘printf()’
function call than the Java ‘System.out.println()’
method call. We believe that the performance of
XPlag can be improved by enhancing the filtering pro-
cess to remove insignificant instruction groups, and
by classifying equivalent function calls in C and Java
RTL.

There are some limitations to our approach that

No grouping 2-gram 4-gram 6-gram 8-gram 10-gram

Group size

0

20

40

60

80

100
A

ve
ra

ge
 (

%
)

OKAPI; Precision@2/R-Precision
PlagiRank; Precision@2/R-Precision
OKAPI; Precision@5
PlagiRank; Precision@5
OKAPI; Precision@10
PlagiRank; Precision@10

No grouping 2-gram 4-gram 6-gram 8-gram 10-gram

Group size

0

20

40

60

80

100

A
ve

ra
ge

 (
%

)

OKAPI; Precision@2/R-Precision
PlagiRank; Precision@2/R-Precision
OKAPI; Precision@5
PlagiRank; Precision@5
OKAPI; Precision@10
PlagiRank; Precision@10

(a) (b)

Figure 11: Performance comparison of the BM25 and PlagiRank similarity measures for varying n-gram sizes
on Collection-X using (a) Queryset-C and (b) Queryset-Java.

0 10 20 30 40 50 60 70 80 90 100

Recall (%)

0

10

20

30

40

50

60

70

80

90

100

P
re

ci
si

on
 (

%
)

XPlag (2-gram)
XPlag (3-gram)
XPlag (4-gram)
XPlag (5-gram)
XPlag (6-gram)

0 10 20 30 40 50 60 70 80 90 100

Recall (%)

0

10

20

30

40

50

60

70

80

90

100

P
re

ci
si

on
 (

%
)

XPlag (2-gram)
XPlag (3-gram)
XPlag (4-gram)
XPlag (5-gram)
XPlag (6-gram)

(a) (b)

Figure 12: Interpolated precision-recall using the BM25 similarity measure and various grouping sizes on
Collection X using (a) Queryset-C and (b) Queryset-Java.

0 10 20 30 40 50 60 70 80 90 100

Relative Percentage Similarity (RPS)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

Precision at percentage-similarity
Recall at percentage-similarity

0 10 20 30 40 50 60 70 80 90 100

Relative Percentage Similarity (RPS)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

Precision at percentage-similarity
Recall at percentage-similarity

(a) (b)

Figure 13: Average precision and recall values at 5% interval of Relative Percentage Similarity using the BM25
and 2-grams on Collection-X using (a) Queryset-C and (b) Queryset-Java.

should be addressed in future work. First, all submit-
ted programs must be successfully compiled by the
compiler suite; if a program cannot be successfully
compiled, it must be corrected manually for further
processing. In an educational setting, this might per-
haps be addressed by penalising non-compilable code
as a matter of assessment policy.

Second, the results of our experiments are only
valid when using the GCC compiler suite for plagia-
rism detection involving programs written in the C
and Java languages. Preliminary experiments indi-
cate that the intermediate language produced by the
Microsoft Visual Studio .NET compiler suite can be
used for intra-lingual plagiarism detection. We plan
detailed experiments with this compiler suite.

Third, while the collections we used are realis-
tic for a typical computing courses, we must inves-
tigate how the effectiveness of our approach behaves
across other collections, and also for very large repos-
itories of historical or crawled program source code.
Associated work on intra-lingual plagiarism detec-
tion indicates that the underlying approach scales
well in both effectiveness and efficiency (Burrows
et al. 2004, Chawla 2003).

Finally, we plan to explore the alternative ap-
proach of using tokens produced by existing ap-
proaches (for example Sim or JPlag) instead of using
intermediate code.

Overall, we believe that our approach can greatly
help address the problem of inter-lingual plagiarism,
and in this way help reduce the incidence of code pla-
giarism in general.

Acknowledgments

We thank Professor Justin Zobel and Guido Mapohl
for their advice on this project, and Steven Burrows
for donating Collection-C.

References

Burrows, S., Tahaghoghi, S. M. M. & Zobel, J.
(2004), Efficient and effective plagiarism detec-
tion for large code repositories, in ‘G. Abraham
and B.I.P. Rubinstein Editors, Proceedings of
the Second Australian Undergraduate Students’
Computing Conference (AUSCC04)’, pp. 8–15.

Chawla, M. (2003), An indexing technique for effi-
ciently detecting plagiarism in large volumes of
source code, Honours thesis, RMIT University,
Melbourne, Australia, October.

Chen, X., Li, M., McKinnon, B. & Seker, A. (2002),
‘A theory of uncheatable program plagiarism de-
tection and its practical implementation’.
URL: http://www.cs.ucsb.edu/∼mli/sid.ps
[13 August 2005].

Gitchell, D. & Tran, N. (1999), Sim: a utility for
detecting similarity in computer programs, in
‘Proceedings of the Thirtieth SIGCSE Technical
Symposium on Computer Science Education’,
ACM Press, pp. 266–270.

Hernandez-Campos, F. (2002), ‘Lecture 31: Building
a runnable program’.
URL: http://www.cs.unc.edu/∼stotts/
COMP144/lectures/lect31.pdf
[13 August 2005].

Hoad, T. & Zobel, J. (2003), ‘Methods for identifying
versioned and plagiarised documents’, Journal of
the American Society of Information Science and
Technology 54(3), 203–215.

Jain, N., Sanyal, A. & Khedker, U. (2003), Re-
targeting GCC for cradle’s DSE processor, Tech-
nical report, Department of Computer Science
& Engineering, Indian Institute of Technology,
Bombay, Bombay, India.

Jones, E. L. (2001), Metrics based plagiarism mon-
itoring, in ‘Proceedings of the Sixth Annual
CCSC Northeastern Conference, Middlebury,
Vermont’, pp. 1–8.

Karp, R. M. & Rabin, M. O. (1987), ‘Effi-
cient randomized pattern-matching algorithms’,
IBM Journal of Research and Development
31(2), 249–260.

Prechelt, L., Malpohl, G. & Philippsen, M. (2000),
JPlag: Finding plagiarisms among a set of pro-
grams, Technical Report 2000-1, Fakultat fur
Informatik Universität Karlsruhe, D76128 Karl-
sruhe, Germany.

Robertson, S. E. & Walker, S. (1999),
Okapi/Keenbow at TREC-8, in ‘The Eighth
Text Retrieval Conference (TREC-8)’, pp. 151–
162.

Sheard, J., Dick, M., Markham, S., Macdonald, I. &
Walsh, M. (2002), Cheating and plagiarism: Per-
ceptions and practices of first year IT students,
in ‘Proceedings of the Seventh Annual Confer-
ence on Innovation and Technology in Computer
Science Education’, pp. 183–187.

Singer, J. (2003), GCC .NET—a feasibility study, in
‘Proceedings of the First International Workshop
on C# and .NET Technologies’, University of
West Bohemia, Plzen, Czech Republic.

Whale, G. (1986), Detection of plagiarism in stu-
dent programs, in ‘Proceedings of the Ninth
Australian Computer Science Conference, Can-
berra’, pp. 231–241.

Whale, G. (1990), ‘Identification of program similar-
ity in large populations’, The Computer Journal
33, 2.

Wise, M. J. (1996), ‘YAP3: Improved detection
of similarities in computer program and other
texts’, SIGCSE Bulletin 28(1), 130–134.

Witten, I. H., Moffat, A. & Bell, T. C. (1999), Manag-
ing Gigabytes: Compressing and Indexing Docu-
ments and Images, Morgan Kaufmann Publish-
ers, second edition.

Zobel, J. (2004), “Uni cheats racket”: a case study
in plagiarism investigation, in ‘Proceedings of
the Sixth Conference on Australian Computing
Education’, Australian Computer Society, Inc.,
pp. 357–365.

Zobel, J. & Hamilton, M. (2002), ‘Managing student
plagiarism in large academic departments’, Aus-
tralian Universities Review 45(1), 23–30.

