
Plagiarism Detection Based on
SCAM Algorithm

Daniele Anzelmi, Domenico Carlone, Fabio Rizzello,
Robert Thomsen, D. M. Akbar Hussain ∗

Abstract—Plagiarism is a complex problem and
considered one of the biggest in publishing of scien-
tific, engineering and other types of documents. Pla-
giarism has also increased with the widespread use of
the Internet as large amount of digital data is avail-
able. Plagiarism is not just direct copy but also para-
phrasing, rewording, adapting parts, missing refer-
ences or wrong citations. This makes the problem
more difficult to handle adequately. Plagiarism detec-
tion techniques are applied by making a distinction
between natural and programming languages. Our
proposed detection process is based on natural lan-
guage by comparing documents. A similarity score is
determined for each pair of documents which match
significantly. We have implemented SCAM (Standard
Copy Analysis Mechanism) which is a relative mea-
sure to detect overlap by making comparison on a
set of words that are common between test document
and registered document. Our plagiarism detection
system, like many Information Retrieval systems, is
evaluated with metrics of precision and recall.

Keywords: Plagiarism, SCAM, WordNet, Apache

Lucene

1 Introduction

A document may be seen as a list of terms, list of key-
words, and set of related words or concepts. It seems
obvious that it is not the same to have just simple words
as the basic items of the representation, that to have a set
of words (may be structured someway) with a represen-
tation of their meaning [1]. The analysis on documents’
contents can be semantic or statistical. Regarding the
document representation, a commonly used Information
Retrieval approach is the adoption of the Vector Space
Model, where the similarity score between two documents
is calculated using the cosine formula, resulting the cosine
of the angle between the two corresponding vectors. This
representation is also called a ”bag-of-words”, since the
list of word positions are not maintained, hence relation-
ships between words are missed [2]. This seems not to be
appropriate for a plagiarism detection system that works

∗Manuscript submitted January, 2011 Dr. M. Akbar Hussain
is member of IEEE, IDA, IAENG and works at the Department
of Electronic Systems Aalborg University, Niels Bohrs Vej 8, 6700
Esbjerg, Denmark. Email: akh@es.aau.dk

on text documents, also cosine formula has issues when
documents differ in size. In natural language, a sentence
may be seen as the fundamental part of a discourse and
the minimum unit to express a concept. We considered
a good norm to build a sentence-level system to compare
documents using semantic analysis. Sentence boundaries
allow us to keep track of meaning and contest of terms,
maintaining information about their position and mutual
relationships. A phrase is extracted from each document
every time a particular punctuation mark is met; the vo-
cabulary of terms is expanded with synonyms through
Wordnet, trying to cover paraphrasing. To search for
source containing suspicious phrases a search engine is
required. Usually plagiarism detection involves Internet
sources and web search engines which is free, easy and
fast way of detecting plagiarism. The user can copy and
paste or type in suspicious phrases taken from suspected
plagiarized work into a search engine in an attempt to
find on-line material containing the suspicious phrases”
[3]. Unfortunately they are not open source and working
with them means that there is no possibility to tweak the
code according to your requirements and consequently,
user lacks complete control about elaboration and results.
In order to avoid such limitations we decided to use our
own search engine based on Apache Lucene java library.
This is a major benefit of using an open source search
engine, since one can tweak the calculation of the score
for a document to the required specifications. The scor-
ing and similarity calculations are transparent and one
can build similarity classes that are appropriate for re-
quired domain [2]. The dataset used in our system is
restricted to some local documents in text format. For
the search algorithm we combined Lucene functionalities
with our own comparison procedure. For each sentence
in each document, several searches are launched, trying
to cover all the possible forms of a plagiarized phrase.
The similarity matches are obtained with (using) SCAM
algorithm and they are displayed on a GUI. The idea is to
present a list of plagiarized documents ordered by simi-
larity score. Thus the user has the possibility to visualize
in detail the compared parts. To evaluate the effective-
ness of the detection system, ”precision and recall” are
implemented.

2 Implementation

In this section we present an implementation of our pla-
giarism detection system based on Lucene search engine.
The main tools and utilities used to develop our appli-
cation are Apache Lucene and WordNet. The abstract
system architecture is shown in figure 1, however, de-
tails of the database structure and the main classes of
code carrying out the execution are also described in this
section. The programming language chosen is java, the
motivation is given by the fact that the native version
of Lucene is written in this language and this can easily
help us to manage and possibly modify it.

2.1 Database

The creation of the database has a simple scheme to keep
all the information ordered in a uniform way. As men-
tioned above, keeping some data structures in database
tables saves memory from the RAM and makes the exe-
cution faster. The database architecture is pretty simple
and we use only three tables. A representation of the

Figure 1: System Architecture

Figure 2: E-R Scheme

E-R scheme and the definition of tables and attributes
can be seen in Figure 2. The phrase table stores the
phrases obtained from dataset documents. The attribute
id is a unique identifier or primary key; it is an auto gen-
erated incremental number, which acts as surrogate key.
The attribute original is the column where we store the
phrase extrapolated from the test document. The oth-
ers columns store information about the path of the file,
the name of the file and the list of tokens contained in
the phrase. The table testphrase is the table where we
store the phrases obtained from the test document. The
table assoc is the table connecting phrases from phrase
and testphrase with the relative matching score. We have

used Mysql as it is the most common open source rela-
tional database management system available on the net
[4]. It provides support for almost all the SQL syntax
and it is compatible with many major programming lan-
guages including Java.

2.2 Detection Steps

In this section we report a detailed overview on the main
methods implemented and the steps followed to achieve
a detection system. There are four main steps:

• Indexing the dataset: The dataset is composed of several doc-
uments which are preprocessed and indexed.

• Processing the test document: The test document given in
input is processed in order to tokenize it in a list of words;
stemming and stop-word removal are applied.

• Searching on the index: The index is questioned in order to re-
trieve a match between the test document and the documents
belonging to the dataset.

• Evaluating similarity: Using SCAM formula, a similarity mea-
sure is calculated between test document and the documents
belonging to the dataset.

The code is divided in five Java packages:

• Core: Handles the project execution; all the Java classes
implementing the above four main steps are included in
this package, which are: IndexTrain.java, ProcessTest.java,
SearchDocs.java, ScamEvaluation.java.

• Utils: Includes some Java Classes for example, Config.java:
handles information about the configuration and relative
paths contained in the file Config.dat, LuceneTools.java: con-
tains methods to support extraction of tokens from raw text,
WordnetUtils.java: makes the application using WordNet dic-
tionary.

• Db: Includes all objects related to the database and its oper-
ations, DatabaseConnection.java: permits the connection to
database, QueryExecution.java: contains methods to query
the database, ScriptExecution.java: starts the execution of
database scripts, creates database, creates tables and SQL
views.

• HtmlResults: Contains the Java class in charge of showing
detailed results in html format.

• Gui: Contains Graphical User Interface.

2.3 Indexing Dataset

The first step is to create an index of the dataset docu-
ments; with this index it will be possible to retrieve useful
information that is going to be used during the evaluation
step. The Java class handling this process is IndexTrain
from the package core. Lucene provides a class called In-
dexWriter, the main class in charge of creating the index.

new IndexWriter (Directory dir, Analyzer Analyzer,
boolean option).

The constructor (IndexWriter) takes in three parameters,
the first parameter is an object of class Directory from
Lucene that has been set with the path of the directory
in which we want to write the index. The second pa-
rameter is an object of the abstract class Analyzer, this
is an important passage in order to obtain satisfactory
results because the terms generated by the analyzer are

the only way a document can be questioned and retrieved.
There are several implementations of Analyzer, most of
them directly provided by Lucene project; furthermore
it would take not too much effort if it is demanded to
implement your own analyzer; in our project we use an
instance of StandardAnalyzer: it provides the common
pre-processing steps as stop-word removal and stemming.
We also considered others analyzers for example nGram-
Analyzer but discarded because n-grams technique di-
vides the text in character sequences and it is not possi-
ble to treat tokens generated as single words which means
we lose the meaning of terms; we need to keep track of
the meanings because we have to work on them and lo-
cate the synonyms to discover paraphrasing plagiarism.
The third parameter of IndexWriter is a Boolean value,
needed to indicate the indexer how to behave with the
index directory; with a value set to true the index will
be rewritten each time the constructor will be launched;
with a value set to false, the indexer will open the already
existing index and will modify it; we want to write an in-
dex so we pass a value of true. The IndexWriter has a
method called addDocument that permits to add a docu-
ment to the index. The class Document is passed to that
method; each document has several fields, thus we can
add as much fields as we want, depending on how much
information we want to store about the document. Un-
fortunately Lucene does not permit to retrieve the piece
of text within the document that best matches the query,
it only retrieves the whole document containing the best
match; it does this without giving out more specific in-
formation because the query returns a set of document
objects. What we did is that we have splited each dataset
document in phrases and consider each phrase as a doc-
ument object (Figure 3). One of the methods helping us
to split text has been the use of regular expressions. The
easiest way to divide text is to locate a phrase each time
a particular punctuation mark is met. This design choice

Figure 3: Document Split

increments the number of index choices; however, it per-
mits us to be more precise later in retrieving the match
among exact phrases that have been plagiarized. The
information each document contains inside are basically
three:

• id: It is a progressive numerical identifier; id is not indexed
(Field.Index.NO) but it is stored (Field.Store.YES) since the
aim of the id is to find the corresponding chunk term in fre-
quency vector and the corresponding row in database.

• filename: The name of the document’s chunk, also this field
is not indexed but it is stored because we wanted to retrieve
the name to show in the results; which means filename is the
name of file plus the number of inner chunk.

• content: The content of document’s chunk, indexed in form
of tokens. We wanted the indexer to create a term frequency
vector with option Field.TermVector.YES; the vector will be
used in the last step of our application to calculate the similar-
ity formula. The Lucene class Document is added to the index
by the method addDocument from the class IndexWriter. In
this class (IndexTrain) we store each phrase in table phrase
after splitting process.

2.4 Processing the Test Document

In this step input data is processed and it is called a
test document. The class in charge of performing this
task is ProcessTest. The main method in this class is ex-
tractTokens; it has two main objectives: fill a data struc-
ture (a Java HashMap) and fill the table testphrase. The
method uses the same Analyzer which is used to index
the dataset; this is very important in order to keep con-
sistency in the way the text is processed and in order to
achieve better results. The test document is splited in the
same way the train documents have been splited by using
regular expressions and the same logic is used to trim a
phrase each time a particular punctuation mark is met.
The phrase is stored in the database with a unique id. Us-
ing the static method tokensFromAnalysis from the class
LuceneTools in the package utils, we transformed the text
in a bag-of-words according to the analyzer passed as pa-
rameter. It is important to remember that we use Stan-
dardAnalyzer which performs stemming and stop-word
removal. The logic behind this has been to consider each
phrase generated as a single document, so for each gener-
ated phrase we created a term frequency vector, like the
code below: if (tdocFreq.containsKey(term))

tdocFreq.put(term, tdocFreq.get(term).intValue() + 1);

else

tdocFreq.put(term, 1); This data structure is a simple term
frequency vector associating each term to the number of
its occurrences in text. For example if we had: ”Ev-
ery man dies, not every man really lives.”, the derived
structure will be as shown in Table 1. It is related to
the phrase and to keep track of this relation we associate
each phrase through its own id and term frequency vec-
tor. In the same way we operated in indexing process: we
consider and work only on phrases having more than five
tokens. To launch a more sophisticated searching, there
is a second method in the class called expandWordnet.
This method associates the terms with their own syn-
onyms creating and filling another data structure, a Java
HashMap. This method uses the class WordnetUtils in
the package utils which makes possible to query the dic-
tionary to obtain a list of synonyms. For example for the
same text of above we would have a data structure filled
in this way as shown in table 2. This structure will be
passed to a method querying the created index.

Table 1: Term Frequency: Test Document
Term Synonyms

Every 2

Man 2

Die 1

Really 1

Lives 1

2.5 Searching on the Index

In this step which is performed by the class SearchDocs,
the index is questioned to retrieve documents containing

terms also in the test document. Lucene class permitting
to query an index is IndexSearcher:

IndexSearcher is = new IndexSearcher(directory);

where directory is an object of class Directory contain-
ing the path of the index previously written. Within
SearchDocs two methods having the same name are de-
clared: queryDocs; the first one takes only the structure
with test phrase id associated to its term frequency vec-
tor (tdocFreq, Table 1); the second method takes also the
WordNet structure (Table 2). In both cases we scanned
this structure and for each test phrase it is operated in
this way:

for each term
create a query
question the index
for each result obtained (for each document)
get the term frequency vector
fill two data structures:
- docVectors: document - vector
- docSumOfFreq: document - sum of the term frequencies
end for each
end for each

Creating a query with Lucene has been pretty simple;
first we created the TermQuery with the Term we wanted
to include; in this case we specify that we wanted to
search a term, which is taken from the test document
and stored in a variable (in field contents). Indexed the
dataset, we create this field and put inside the content of
the phrase. A BooleanQuery has been created and passed
to the method search of IndexSearcher, like in code:

TermQuery tq = new TermQuery

(new Term(”contents”, term));

BooleanQuery theQuery = new BooleanQuery();

theQuery.add(tq, BooleanClause.Occur.SHOULD);

Hits hits = is.search(theQuery); Hits is a list of Document re-
sulting from the query; for each Document we took the
respective term frequency vector, as we specified to In-
dexWriter. We did this using methods getIndexReader
and getTermFreqVector from class IndexSearcher, speci-
fying id and field to retrieve.

TermFreqVector tfVector =
is.getIndexReader().getTermFreqVector(Integer.parseInt(id),
”contents”);
We associated each retrieved document with respective term
frequency vector in a data structure called docVectors.
docVectors.put(filename, tfVector);

Table 2: Term Synonyms WordNet
Term Occurrence

Man adult male, homo, human being, human...

Die decease, perish, pass away, expire...

Really truly, actually, in truth...

Lives survive, endure, exist, alive...

Term frequency vector is a structure similar to the one
shown in table 3, used for test document, every term in

the text is associated with its occurrence number. In the
other data structure we associated the document with a
number resulting from the following formula:

∑
j=1

tf2
j (1)

This structure supports the SCAM formula: for each

Table 3: Document Vectors
Document Vector

d1.txt animal=1, jungle=1, africa=3, ...

d2.txt stadium=1, soccer=2, ball=4, ...

d3.txt Denmark=2, queen=2, snow=3, ...

.....

.....

.....

term in the vector we calculated the sum of squares of
occurrence number. In equation 1, n is the total number
of terms in the vector and tf is the number of occurrences
in the text. The code implementation is:

for (int j = 0; j ¡ frequencies.length; j++)
sumOfFreq += (frequencies[j] * frequencies[j]);

The overloaded method queryDocs takes the WordNet structure
associating term - synonyms. The logic behind this is really simple:

if the query by term does not return results
create a new query with the term’s synonyms.

A practical example could be applied to the previous
sentence: ”Every man dies, not every man really lives”
Searching for plagiarism in the following sentence using
synonyms: ”Every human decease, actually not every hu-
man lives.” We would not find a good match between
the two sentences even if it is clearly a plagiarized part.
In fact, the query results of the following terms: human,
decease and actually, would not return anything. But
taking in consideration the synonyms, results can be im-
proved; scanning out the synonyms’ data structure we
would find that man, die and really are synonyms of hu-
man, decease and actually. The following code imple-
ments the case, if previous query has no result, get the
synonyms of that term and for each synonym create a
new query. We decided to create WordNet search to pro-
vide an optional functionality. In the end we have a data
structure: in which for each test phrase id is associated
with the respective list of documents retrieved.

if(hits.length()==0)
if(expandedTokens.containsKey(term))
Iterator<String> it = expandedTokens.get(term).iterator();
while(it.hasNext())
String newterm = it.next();
TermQuery tq = new TermQuery(new
Term(”contents”,newterm));
BooleanQuery theQuery = new BooleanQuery();
theQuery.add(tq, BooleanClause.Occur.SHOULD);
hits = is.search(theQuery);

2.6 Evaluating Similarity with SCAM

Detecting plagiarism is not a simple string match; it
should give a positive result for example by indicating
either the registered document is a superset or a subset
of the test document. Simple cosine similarity measure
typically used is not enough to recognize overlap between
documents; SCAM formula is a relative measure to detect
overlap, irrespective of the differences in document sizes
[2]. We have implemented the SCAM formula to detect
similarity among documents. This similarity formula re-
turns a high value when the content of test document is
either a subset or a superset of the registered document.
It is an alternative to the cosine similarity formula and it
works on a set of words that are in common between test
and registered document, a word wi is included in the set
C, if the following condition is true:

ε−
(
fi(R)

fi(T)
+

fi(T)

fi(R)

)
> 0 (2)

ε is a constant value greater than 2; a large vale of ε ex-
pands the above set including words sometimes not rel-
evant, a lower value of ε reduces the ability to detect
minor overlap, since some words can be excluded. fi(R)
and fi(T) are the number of times wi occurs in registered
documents (R) and test document (T). The score for the
measures is given by:

S(T,R) =

∑
wiεC

fi(R)× fi(T)∑N
i=0 fi(T)× fi(T)

(3)

Equation 3 returns the degree to which R overlaps T,
normalized with the document T alone. The numerator
works, as we said, on the frequencies of words in the pair
of document from the set C. The relative similarity which
is limited to the range 0 to 1, is given by:

similarity(T,R) = max [S(T,R), S(R, T)] (4)

where S(R, T) is the same formula with reversed
operands as;

S(R, T) =

∑
wiεC

fi(R)× fi(T)∑N
i=0 fi(R)× fi(R)

(5)

Now we have all the information and data structures to
be used in the implementation of SCAM formula. The
class ScamEvaluation has evaluation as the main method.
For each test phrase, according to equation 3, we calcu-
lated first the denominator then the determine sum of
the squares of occurrences number of every term in test
phrase. We call the denominator denom1 and this is how
it is calculated:

while (iterator.hasNext())
Map.Entry¡String, Integer¿ element = iterator.next();
denom1 += (element.getValue().intValue())
(element.getValue().intValue());

This code iterates on occurrences’ structure and sums the value of
each term in denom1. The implementation of the formula follows
this logic:

for each retrieved Document
get the terms
for each term
if the term appear in the test Document
get the test term frequency
get the term frequency
if condition EPSILON
calculate S(T, R)
calculate S(R, T)
end if
end if
end for
end for

The outer loop iterates on docVectors as shown in table
3 (a structure containing all retrieved documents associ-
ated to term frequency vector).

String[] terms = tfVector.getTerms();
int[] freqs = tfVector.getTermFrequencies();
Here is the second loop iterating on each term:
for (int i = 0; i < terms.length; i++)
if (tdocFreq.containsKey(terms[i]))
int f1 = tdocFreq.get(terms[i]);
int f2 = freqs[i];

For each term in test phrase, tdocFreq is the data struc-
ture enclosing the bag-of-words from test phrase, (table
1); f2 is the frequency of test term and f1 is the frequency
of the term we are processing. According to SCAM for-
mula, now we can calculate:

if ((EPSILON - ((f1 / f2) + (f2 / f1))) > 0)
double delta = 1.0 * f1 * f2 / denom1;
docScores1.put(filename, docScores1.get(filename) + delta);
delta = 1.0 * f1 * f2 / denom2;
docScores2.put(filename, docScores2.get(filename) + delta);

EPSILON is a constant with a value of 2.5, declared pri-
vate static final double EPSILON = 2.5. If the condition
is true, we calculate S(T; R) and S(R; T), with denom1 al-
ready found and denom2 contained in the data structure
created previously (each document retrieved was associ-
ated with the sum of its terms frequencies, figure 2. At
the end of the loop we have two data structures contain-
ing the documents with relative score in both cases S(T,
R) and S(R, T). The similarity measure is the maximum
of the values associated to the document:
double score1 = docScores1.get(filenam);

double score2 = docScores2.get(filenam);

double score = ((score1 > score2) ? score1 : score2);

if (score > THRESHOLD)

/ ∗ the document is probably plagiarized ∗ /

THRESHOLD is a value we set to 0.9, declared as private static

final double THRESHOLD = 0.90;

Our goal has been to fill a database table, precisely as-
soc shown in figure 2 where we associated train phrase
with the test phrase with their relative score. All needed
elements to fill the table assoc, are now available:

• idtr : from Lucene field id.

• idte : from test phrase id.

• score: from SCAM similarity measure.

The table assoc contains all the information to show it
to the user; a screen shot of this table is given in figure
4. We can see that idtr 392 (which corresponds to a text
phrase in the table phrase), and idte 7 (which corresponds
a text phrase in the table testphrase) have a score of 100
%, and so on.

Figure 4: assoc

2.7 Graphical User Interface

We developed a simple GUI allowing the user to accom-
plish two main tasks as indexing a dataset and checking
for plagiarism. It has been chosen a windows interface,
common and easy to understand; the screen shot in Fig-
ure 5 represents the main window. The index window in-

Figure 5: Screen-Shot Main Window

cludes the path of the directory containing the documents
to index (Figure 6). The list of indexed documents and
time are shown to the user. Figure 7 shows some phrases
from the selected document and some suspected plagia-
rized phrases.

3 Conclusion

The two fundamental concepts for the evaluation of an
information retrieval system are:

• Precision: Expresses the number of retrieved documents that
are relevant over the number of retrieved documents, a per-
centage of how many documents are relevant among the re-
trieved ones.

• Recall: Expresses the number of retrieved documents that are
relevant over the number of relevant documents present in the
data source, a percentage of all relevant documents that are
retrieved.

These two parameters are necessary for establishing the
effectiveness of plagiarism detection. The copy detection
technique we developed works good in finding exact or
partial plagiarism copies; the algorithm is able to pre-
cisely detect copy of entire phrases or parts of them. Re-
wording, in terms of changing words by synonyms were

also identified relatively easily. The use of the Word-
Net module, in order to expand the vocabulary of terms
with similar words, increases the effectiveness of our algo-
rithm; it must be clarified that it is an attempt to cover
simple forms of paraphrasing; a more complex linguistic
analysis should be necessary to be able to discover more
complex rewrites. The analysis of suspicious documents
and phrases involves a great amount of comparisons, es-
pecially when the synonyms’ substitution is taking place
for each sentence; however it has been noticed that the be-
havior of the system is constant and acceptable, in terms
of performance. About accuracy, from a Precision and
Recall perspective, best results are obtained starting with
a similarity threshold higher than 70% - 80%.

Figure 6: Screen-Shot Create Index Window

Figure 7: Screen-Shot Detailed View in Browser

References

[1] C. Justicia de la Torre, Maria J. Martn-Bautista,
Daniel Sanchez, and Mara Amparo Vila Miranda.
Text mining: intermediate forms on knowledge rep-
resentation.

[2] Manu Konchady. Building Search Applications:
Lucene, Lingpipe, and Gate. Mustru Publishing,
Oakton, Virginia, 2008.

[3] Higher Education Academy ICS (Information and
Computer Sciences) University of Ulster. Plagiarism
prevention and detection. (n.d.). Retrieved March
17, 2010, from http://www.ics.heacademy.ac.uk/
resources/assessment/plagiarism/detectplagiarism.html.

[4] Oracle Corporation. Mysql, 2010. Retrieved April
12, 2010, from http://www.mysql.com.

[5] Eduard Montseny and Pilar Sobrevilla, editors. Pro-
ceedings of the Joint 4th Conference of the European
Society for Fuzzy Logic and Technology and the 11th
Rencontres Francophones sur la Logique Floue et
ses Applications, Barcelona, Spain, September 7-9,
2005. Universidad Polytecnica de Catalunya, 2005.

