
Plagiarism Detection in Software Designs

B. Belkhouche
∗

EECS Department
Tulane University

New Orleans, LA 70118

bb@eecs.tulane.edu

Anastasia Nix
EECS Department
Tulane University

New Orleans, LA 70118

nix@eecs.tulane.edu

Johnette Hassell
EECS Department
Tulane University

New Orleans, LA 70118

hassell@eecs.tulane.edu

ABSTRACT
Detecting plagiarism in software is a computationally com-
plex process. At the same time it is critical, for the lack of
a deterrent through detection may result in various losses.
Several systems to detect plagiarism have been proposed.
However, their lexically-based analysis is not powerfull enough
and can be foiled with minimal efforts. To address their
shortcomings, we have devised a detection framework with
the following salient features: (1) designs, instead of code,
are compared; (2) multi–level abstractions of the design are
generated; and (3) comparison follows a stepwise process
according to the abstraction levels. A comparison with ex-
isting systems shows that this strategy results in simpler
algorithms and more accurate analyses.

1. INTRODUCTION
The problem of code theft and software plagiarism has

plagued the software industry and academia for years. Of-
tentimes code is copied wholesale, without even changing
any variable names in the program. As software has become
more and more pervasive, illegal copying has become more
widespread. Consequently, billions of dollars are lost annu-
ally. Preventive measures and laws are being implemented
to discourage software piracy. Simultaneously, manual and
automated systems to detect copies are being developed. In
fact, this endeavor was triggered very early within universi-
ties in an effort to thwart students from cheating on their
programming assignments. The automated systems relied
on various strategies to detect similarities between copies. A
simple strategy consists of counting the numbers of unique
operators/operands and the total numbers of these in a pro-
gram [1]. The resulting counts are then compared for simi-
larities. A refinement of this approach was subsequently pro-
posed [2]. It took into account the numbers of each type of
statement in a program. It also performed some data anal-
ysis based on assignment statements. These systems relied

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Southeast Conference ’04, April 2-3, 2004, Huntsville, AL, USA
Copyright 2004 ACM 1-58113-000-0/00/0004. $5.00.

mostly on lexical items making them inadequate to capture
structure and contexts. Still a further refinement included
as part of its strategy the longest string matching. This sys-
tem, named Plague, outperformed several other comparison
methods [3]. An improvement in the efficiency and accuracy
of Plague resulted in the YAP system [4]. YAP succeeded
in finding as many matches out of a group of programs as
Plague, was equally efficient, and proved to be easier to port
to other languages. Another similar system known as Moss
is used to find plagiarism in students’ assignments [5]. Moss
uses a combination of preprosessing to remove comments
and unify identifiers, token counting, and string compari-
son. It is able to give a percentage of matching code and to
show the longest matching region.

This work is also motivated by Nimmer’s discussion of de-
termining software copyright infringement in which he de-
scribes a three step examination of the software [6]. The
steps are abstraction, filtration, and comparison and are ap-
plied to data structures as well as procedural code. The
approach described herein provides for the abstraction of
both data and program logic. Further, the abstraction of
program logic is multi-level and provides for comparisons
at both macro and micro levels. This approach also pro-
vides filtration of all syntactic information and filtration
on many other aspects of program logic such as ”read be-
fore you write”. The work of an expert called to determine
whether two programs/systems are substantially similar, as
specified in the law, is greatly reduced because of the ability
to automate a large part of the process. In the case of an
expert called to testify, the replicatabilty of the abstraction
and filtration process answers potential Dubert challenges.

The accuracy and efficiency of detecting similarities de-
pend strongly on the level of the linguistic analysis. At one
end of the spectrum is lexical analysis. Such an analysis
involves token classification and token counting. Compar-
ison is reduced to aggregate numbers that are stripped of
any context. Because of its simplicity and its ease of im-
plementation, it is adopted by most approaches. At the
other end resides semantic analysis, the goal of which is to
compare functionality. Unfortunately, this is not compu-
tationally feasible. Thus, accuracy and efficiency conflict
with each other. A more accurate, and meaningful, com-
parison requires a deeper analysis, which, in turn, leads to
higher complexity. To address these issues effectively, other
strategies and heuristics must be adopted to warrant any
substantial improvement in software comparison. Our ap-
proach is to break away from the linear/textual methods
of comparison proposed so far. We accomplish this task in

two stages. First, we abstract the software by translating
the code into its corresponding graphical design, and then
we perform multiple comparisons between the designs. By
choosing the design as the representation, we are able to cap-
ture essential characteristics of the software under scrutiny
and thus focus the comparison on these characteristics.

The structure of this paper is as follows. Section 2 de-
scribes the plagiarism detection process. There, we describe
how design are generated from C programs and explain in
detail our comparison technique. Section 3 introduces an
example to illustrate the comparison process and its results.
Section 4 compares the behavior of our system and other
systems.

2. PLAGIARISM DETECTION PROCESS
The plagiarism detection algorithm takes two C programs

as input and performs the following operations:

• Design generation: a C program is transformed into a
corresponding structure chart design (reverse–engineering).

• Region delineation: a structure chart is partioned into
strongly–coupled regions.

• Abstract comparison: the structures as defined by the
partitions are compared for similarities.

• Micro comparison: corresponding regions and nodes
are compared for similarities.

• Data dictionary comparison: entries in the data dic-
tionary are compared for similarities.

2.1 Design Generation
The design generation process takes a C program and

translates it into a structure chart. A structure chart is
a graphical design method used to express algorithms at a
fairly abstract level. A complete structure chart design con-
sists of two components: a tree representing the algorithm
and a data dictionary (symbol table) representing the vari-
ables and data structures used in the algorithm. The root
of the tree specifies the header of the algorithm. Children
nodes specify statements and control structures. The order
of the nodes from left to right captures the statements se-
quencing order. Figure 1 shows a structure chart example,
and Table 1 shows the data dictionary.

Rather than manipulating the source code directly, we
translate it into its abstract design form. From the source
code (C programs in this case), the translation process cre-
ates a parse tree and a symbol table. The parse tree is
then mapped into an internal binary tree representation of
the corresponding structure chart. To a certain extent, this
process can be viewed as transforming a linear (textual) rep-
resentation into a two–dimensional (graphical) representa-
tion. As a final step, the structure chart tree is encoded in
the DaVinci format to be displayed in the DaVinci graphing
program [7]. This tools takes our encoding and generates the
actual graph.

2.2 Region Delineation
The structure chart is divided into three types of regions:

groups of sequential statements, repetition segments and se-
lection segments. A region must have at least one statement
and up to as many statements as are in the chart. The par-
tition is done recursively, so initially the regions will be the

largest groups of control flow structures. Then these regions
are divided into smaller regions and so on, until every re-
gion has only one control structure or a sequence of nodes
with no possible control flow changes. Identifying regions is
similar to the process of identifying basic blocks in dataflow
analysis [8].

The partioning of the structure chart into regions is in fact
an abstraction mapping whose input is the detailed struc-
ture chart and whose output is the abstract region tree. This
abstraction process groups together strongly–coupled state-
ments into one piece (region), and thus, abstracts details of
the design. For example, the following set of statements

while (x < 0)

{y = 5;

x = x + 1;

while (y > 0) y = y - 1;

}

is initially alloted one region for the outside while statement.
After all of the recursive steps, this code would consist of
4 regions: (1) A looping region for while(x < 0) (R1). (2)
A sequential regions for the first two statements inside that
loop (R2). (3) A looping region for while(y > 0) (R3). (4)
A sequential region for the statement y = y − 1 (R4).

The structure of the corresponding region tree has region
1 as the root, region 2 as its child, region 3 as 2’s sibling and
4 as 3’s child.

2.3 Abstract Comparison
Root nodes in each region subtree are assigned a given

type according to their syntactic category (repetition, se-
lection, sequencing, I/O, etc.). At this stage, the goal is
to find whether the charts are conceptually the same. If
the control structures are basically similar, comparison is
continued. Otherwise, we can reasonably rule out the possi-
bility of plagiarism without having to go through the effort
of the detailed comparison.

Region comparison involves generating an ordered sequence
of regions at each level starting from the top. The or-
dered sequence captures the types of regions, the number
of occurrences, and the order of occurrence. For exam-
ple, in the first iteration, from the chart shown in Figure 3
we get the sequence S1 = < A1 : (sequence, 1), A2 :
(selection, 1), A16 : (sequence, 1), A17 : (1, selection) >,
and from the chart shown in Figure 4 we get the sequence
S2 = < B1 : (sequence, 1), B2 : (selection, 1), B16 :
(sequence, 1), B17 : (selection, 1), B22 : (sequence, 1) >.
The premise is that, when copying a program, the over-
all structure (i.e., the logic) of the program is maintained
in the two charts, and that major modifications in the logic
are unlikely. The next step in the abstract comparison is to
find the longest sequence of matching regions at each level.
This consists in traversing the two sequences in locksteps
and comparing the corresponding elements. A mismatch
stops the search. The longest subsequence is then used to
generate the next level sequences and the process is repeated
until all levels are exhausted. The length of the matched se-
quences is used to determine a similarity percentage for this
category. A skeleton algorithm for this stage is:

1. Recursively consider level i for tree 1 and tree 2.

2. Build the sequence S1 of regions in tree 1 and S2 of
regions in tree 2.

3. Compare S1 and S2.

4. Generate the longest matching sequence from S1 and
S2.

If the similarity percentage is below a certain threshold, say
below 50%, the charts are considered not similar and com-
parison stops. To continue the process would result in an
exponential explosion.

The final step in the abstract comparison concentrates
on node types. Using the sequences generated previously
the types of the corresponding nodes pairs are compared.
If equal, an equal counter is incremented. The comparison
stops after all the nodes are visited. Again a similarity per-
centage is computed. The skeleton algorithm for this stage
is:

1. Consider two corresponding sequences S1 and S2.

2. While traversing them in lockstep consider nodes (N i
s1,N

j
s2).

3. Increment count if their types match

4. Next pair.

2.4 Micro Comparison
The comparison process is finally refined to address the

details of the nodes by performing micro comparison. At
this low level, each node represents an individual statement.
Such a statement is itself represented as a subtree (evalua-
tion tree). The purpose of this comparison is to compare the
structure of these evaluation trees. The comparison consists
of two steps: (1) shape comparison to determine whether the
two subtrees are similar; and (2) token comparison to deter-
mine whether the operands are similar. Under the premise
that it is more dangerous to change semantics than syn-
tax, shape comparison carries a more important value than
token comparison. Indeed, it is much easier to rename vari-
ables than to change expressions. The shape comparison
algorithm is a tree–isomorphism algorithm.

2.5 Data Dictionary Comparison
The data dictionaries are also compared in two ways.

First, the number of each type of element is calculated sepa-
rately. So, one may find that there are 3 ints and two floats
in the first data dictionary and only 2 ints with 4 floats in
the second. Secondly, as we look at each element in the first
data dictionary, a matching element in type and id is sought
out in the second one. Each type–id pair with a correspond-
ing type–id pair in the other data dictionary is computed.
Two percentages are computed: one for type similarity and
the other for type–id pairs similarity.

3. AN ILLUSTRATIVE EXAMPLE
Consider the two structure charts shown in Figures 1 and

2. The first is assumed to be the original and the second
is the copy. Chart 2 differs from chart 1 in that two nodes
have been added.

3.1 Abstract Comparison
First the two trees are divided into major regions, repre-

sented by the region trees shown in Figures 3 and 4. Regions
are delineated by blobs. Then ordered sequences are gen-
erated and compared. In the first iteration the following

true

big = y

false

big = z

y > z

Return sqr

PandR x

big = 0

x > y

true

big = x big = z

x > z

falsetrue

false

big > 0

true

cnt < big cnt = 0

cnt = cnt + 1sqr = sqr + big

cnt = 0 sqr = 0PandR z

PandR y

Figure 1: Structure Chart of the Original Program

true

big = y

false

big = z

y > z

Return sqr

PandR x

big = 0

x > y

true

big = x big = z

x > z

falsetrue

false

big > 0

true

cnt < big cnt = 0

cnt = cnt + 1sqr = sqr + big

sqr = 0PandR z

PandR y

cnt = 0

sqr = 0

sqr = sqr

Figure 2: Structure Chart of the Copied Program

Chart 1 Data Chart 2 Data
int x int x
int y int y
int z int z
int sqr int sqr
int cnt int cnt
int big int big

Table 1: Data Dictionaries for the two Structure

Charts

A1

A2

A3A4

A5

A6

A7
A8

A9

A10

A11

A12
A13

A14
A15

A16

A17

A18

A19

A20

A21

Return sqr

PandR x

big = 0 true

big = x big = z

x > z

falsetrue

false

big > 0

cnt < big cnt = 0

cnt = cnt + 1

cnt = 0 sqr = 0PandR z

x > y

PandR y

big = y

y > z

true

big = z

true

sqr = sqr + bigfalse

Figure 3: Region Tree for Chart 1

Return sqr

PandR x

B22

sqr = sqrcnt = 0 sqr = 0

sqr = 0

false sqr = sqr + big

true

big = z

true

y > z

big = y

PandR ybig = 0 true

big = x big = z

x > z

falsetrue

false

big > 0

cnt < big cnt = 0

cnt = cnt + 1

PandR z

x > y

B21

B20

B19

B18

B17

B16

B15
B14

B13
B12

B11

B10

B9
B8

B7

BA6

B5

B4 B3

B2

B1

Figure 4: Region Tree for Chart 2

Region General Exact Near NoMatch1 NoMatch2
92.31 71.43 71.43 21.43 0.00 7.14

Table 2: Comparison Results

Change YAP MOSS Brass
1 Immune Immune Immune
2 Immune Immune Notes-MC
3 Immune Notes Notes-MC
4 Immune Immune DD-Notes, Tree-Immune
5 Notes Notes Notes-MC
6 Notes Notes Notes
7 Notes Notes* Notes-MC
8 Notes Notes Notes-MC
9 Notes Notes Notes-MC
10 Notes Notes Notes
11 Notes Notes Notes-MC
12 Notes Notes Notes

Table 3: Performance of Similar Copy Detection

Programs

sequences are generated: (1) for chart 1: S1 = < A1 :
(sequence, 1), A2 : (selection, 1), A16 : (sequence, 1), A17 :
(1, selection) >; and for for chart 2: S2 = < B1 :
(sequence, 1), B2 : (selection, 1), B16 : (sequence, 1), B17 :
(selection, 1), B22 : (sequence, 1) >. By comparing S1 and
S2 it is determined that (A1, A2, A17, A17) matches (B1,
B2, B16, B17) and that B22 has no match. Thus the longest
string of matching regions between the two trees is set to be
(B1, B2, B16, B17). The next iteration then concentrates
on the sequences (A1, A2, A16, A17) and (B1, B2, B16,
B17) by generating subsequences for each of corresponding
regions pairs. In this case regions A1 and B1 do not have any
subregions, so no further comparison is carried out on them.
Comparison is moved to the next pair of regions A2 and B2.
Their sequences are: A2: SA2 =< A4A10 : (selection, 2) >

and B2: SB2 =< B4B10 : (selection, 2) >. Again SA2 and
SB2 are compared and the longest sequence (A4, A10) is
identified. The process continues until all the subsequences
are determined and compared.

The region comparison provides a good overview of how
the two trees are structurally compatible. Being less ex-
tensive, this strategy is a quick overall check to determine
whether a detailed comparison is warranted.

Now, node types comparison starts. It checks for exact
matches in type and location of nodes in sequences gener-
ated previously. This kind of comparison mainly points out
nodes that a user might want to take a closer look at. The
comparison process traverses each region pair by visiting
the nodes in a breadth firsth order. For example, by con-
sidering the region pair A1 and B1, the following lists are
generated: for A1: (header, assign, I/O, I/O, I/O), and for
B1: (header, assign, I/O, I/O, I/O). A comparison of these
two lists results in complete similarity. After the compari-
son process is finished, the system generates a summary of
the tree comparison – a set of percentages representing the
matching nodes against the total number of nodes as shown
in table 2.

4. ANALYSIS
Whale suggests twelve copy masking strategies when he

compared his system against similar ones [3]. These include
changing comments, formats, data types, identifiers, etc. We
will use these here to show how our system (named Brass)
performs in comparison to MOSS and YAP [5, 4]. The three
systems were run on the same sample. Results are shown in
Table 3. (in the table, Immune that the program will not no-
tice this change in the copy; Notes means that the program
will notice this change; and Notes-MC means that Brass
does not notice the change until the micro–comparison part
of the algorithm. Moss will not notice this change unless
the statements have some difference other than just their
identifiers.)

Brass is the only algorithm that tries to notice differences.
The other two systems try to mask most changes that do
not effect the functionality of the program. Because Brass
uses structure charts, comments and formatting do not af-
fect the matching. However, it does take into consideration
every other type of change at some stage of its compari-
son. This provides much more informative information to
the user. One can look at the structural comparison or just
at the matching percentages for general data and the tree
comparison will highlight specific areas for further study.

5. CONCLUSION
We presented a framework and an automated system whose

the task is software plagiarism detection. Our framework
constitutes a departure from traditional systems. It relies
on designs and diivides up the detection process into levels
of abstraction. The implemented system successfully no-
tices similarities and differences between structure charts,
and presents these in a useful form to the user. Compared
to other plagiarism detection mechanisms, Brass provides
more detailed information, allowing the user to draw accu-
rate conclusions.

6. REFERENCES
[1] K. J. Ottenstein, “An Algorithmic Approach to the

Detection and Prevention of Plagiarism,” CSD-TR 200,
AUGUST 1976.

[2] A.-M. L. John L. Donaldson and P. H. Sposato, “A
Plagiarism Detection System,” in Twelfth SIGCSE

Technical Symposium on Computer Science Education,
February 1981.

[3] G. Whale, “Identification of Program Similarity in
Large Populations,” The Computer Journal, vol. Vol
33, No. 2, pp. 140–146, 1990.

[4] M. J. Wise, “Detection of Similarities in Student
Programs: Yap’ing may be Preferable to Plague’ing,”
in ACM SIGCSE Bulletin Volume 24 , Issue 1, March
1992.

[5] A. Aiken, “Moss.html,” tech. rep., Computer Science
Division of University of California, Berkeley, 2002.

[6] M. B. Nimmer and D. Nimmer, Nimmer on Copyright.
Matthew Bender, 2002.

[7] M. Frohlich and M. Werner, daVinci - Online

Documentation V2.1. University of Bremen, Germany.

[8] M. S. Hecht, Flow Analysis of Computer Programs. The
Computer Science Library, North–Holland, Inc., 1977.

