
http://wrap.warwick.ac.uk/

Original citation:
Joy, Mike and Luck, Michael (Michael M.) (1998) Plagiarism in programming
assignments. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-345

Permanent WRAP url:
http://wrap.warwick.ac.uk/61058

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61058
mailto:publications@warwick.ac.uk

Research R.port 315

Plagiarism in Programming Assignments

Nl Joy and Nl Luck

RR345

The number of students following programming courses is steadily increasing at the same time as

access to compLrters and networks is readily available. There is a significant minority of students
who -- for a variety of reasons -- take advantage of the available technology and illicitly copv
other students'programming assignments and attempt to disguise their deception. Software that
can help tutors to detect plagiarism is therefore of immense assistance in detecting -- and so
helping to prevent -- such abuse.

We introduce a novel approach to designing such software which performs well in comparison to
sophisticated software available elsewhere, yet is simple both in concept and in implementation.
Our approach reduces sr,rbstantially the effort needed to upgrade to new programming languages,
and has been tested on a variety of classes and several different programming languages.

Department of Computer Scicncc
University of Warwick
Covcnrry CV.l 7AL
Unitcd Kingdorn

June l99u

Plagiarism in Programming Assignments

Mike Joy and Michael Luck,
Department of Computer Science,

University of Warwick,
COVENTRY,

CV4 7 AL,
UK

email : { M. S. Joy,Michael.Luck} @ dcs.warwick. ac. uk

June 19, 1998

Abstract

The nurnber of students following programming courses is steadily in-

creasing at the same time as access to computers and networks is readily

available. There is a significant minority of students who - for a variety of
reasons - take advantage of the available technology and illicitly copy other

students' programming assignments and attempt to disguise their deception.

Software that can l-relp tutors to detect plagiarisnt is therefore of ilnrnense

assistance in detecting - and so helping to prevent - such abuse.

We introduce a novel approach to designing such software which per-

forms well in comparison to sophisticated software available elsewhere, yet

is simple both in concept and in implementation. Our approach reduces sub-

stantially the effort needed to upgrade to new programming languages, and

has been tested on a variety of classes and several different programming

languages.

Introduction

The numbers of students fbllowing computer progran-rming courses - either within
a computing degree or as part of another course - are increasing. One conse-
qLrence of this increase in numbers is a corresponding increase in difficr,rlty in de-
tecting isolated instances of students engaging in unacknowledged collaboration
or even copying of coursework.

Assessntent of programming coLlrses typically involves students writing pro-
grams, either individr,rally or in teams, which are then marked against criteria such
as correctness and style. Unfortunately, it is very easy fbr students to exchange
copies of code they have written. A student who has produced working code may
be tempted to allow a colleague to copy and edit their program. This is discour-
aged, and is likely to be regarded as a serious disciplinary offence.

It is not sufficient to remind students of regulations fbrbidding plagiarisrn;
they must understand that it vvill be detected, and that it will not be condoned.
However, it is easy fbr a lecturer to fail to detect plagiarism, especially when class
sizes are measured in hundreds of students.

Automation provides a means with which to address these concerns [10].
Much of the program submission, testing and marking process has the potential
to be automated, since programs are, by definition, stored in a machine-readablc
form. We have been developing sottware which will allow students to submit
programming assignments on-line. An integral part of our software consists of a

module to assist in the detection of instances of possible plagiarism, using a sim-
ple but novel technique. In this paper, we discuss the software and its implications
fbr the management of large courses.

2 What is Plagiarism?

Plagiarism - unauthorised copying of documents or programs - occurs in m:-rny

contexts. In indu,stry, a company may seek competitive advantage; acudenic'.t
ntay seek to publish results of their research in advance of colleagues. In these
insternces, the issue is treated very seriously by both parties, and the person per-
fbrming the unauthorised copying may be backed by significant technical and/or
linancial resoLlrces. Detection becomes correspondingly diffi cult.

Alternatively, ,students may iittempt to improve marks in assessments. They
ilre, however, unlikely to enjoy financial or technical sr-rpport for such an activity,

and the amount o1-tirne available to them is short. The rnethods used to conceal

copied work are therefore, in general. unsubtle" Only rnoderately sophisticated

software tools are requireci to isolate potentierl instances of plagiarisrn"

There are man\/ reasons lor students cop,ving material fl'om each clther, or col-

luding in producing a specific piece of work^ These inch-rde the following:

o A weak stLrdent produces work in close collaborartion tzn'ith a colleagr-re, in

the belief that it is acceptabie.

o A weak stLrclent copies. and then edits, a colleague's program, with or with-
out the colleague's permission, hoping that this will go unnoticed.

o A poorly ntotivated (but not necessarily weak) student copies. and then

edits. a colleague's progrant. with the intention of tntntmising the work
needed.

In the hrst case, the students concerned are lreading on a potentially grey area

of acceptability -
we expect. and desrre. that students shourlci share knowledge.

therebry reinfbrcing the learning process. The boLrndarv between plagiarism and

legrtimate cooperatior-r is poorl,v defined, and some students may be used to dif:
ferent customs and norms. It is, nevertheless, still necessary to discover collabo-

ration, so that anv rnisunderstandings are rescllved. and so that extra resources can

be targetted at the students involved, if though it appropriate.

In the second case. the weak student is likely to have a poor understanding of
the program they have eclited, and the similarities between the two programs are

likely to be strong. Not only may disciplinary actioll be lequired, but also -
and

perhaps more inportantly -
the tutor has been alerted that rernedial tuition mav

be requiled to itssist thc weak student.

In the final case. it may be that the stlrdent has very good knowledge of the

subject, and is able to rnake sophisticated rnodiflcations to the original program.

Such a student will be more difficult to identif,v; it might be argued that if a student

can edit a progrerm so much that it is undetected. then that very act is itself a sub-

stantial software development task" However. a genuinely lazy student is unlikely

to fall into that catcgory/.

It must be realised that it rs c/vuay.s possible for undetectable plagiarism to

occur. no matter l-urw sophisticated the tools available. There is a tradeoff on the

part of the lecturer between the resources invested in detecting plagiarism, and

the diminishing returns of finding the t'ew (if any) cases which are difficult to

3

detect. The dishonest student must also balance the work needed to conceal their
plagiarisrn against the effort to create a prece of coursework on their own.

2.1 Techniques for Plagiarism

It is not f"easible to classify a/l possrble methods by which a program can be trans-
formed into another of rclenticai ior similar.) tunctionality

- such a task would be

open-ended, as the number of languages ervailable is steadily growing. However,
two common transfonnation stratesies can be identilied.

2.1.1 Lexical Changes

Lexicul chunges are those which could, in principle, be pertbrmed by a sophis-
ticated text editor. They clo not recluire knowiedge of the language sufficient to
parse a program. For instance, all of the ibllowing come under this banner.

o Comments can be reworded. added and omitted.

o Formatting can be changed.

o Identifier names can be modified.

o Line numbers can be changed irn ianguages such as FORTRAN).

2.1.2 Structural Changes

A structurul chtmg,e requires the sort ot knowledge o1' a program that would be

necessary to parse it. It rs highly langLrage-dependent. Some examples (appropri-
ate to the langr-rage Pascal) are given below"

o Loops can be replacecl (e.9. awhiie" " .do loop in Pascai can be substi-
tuted fbr a repeat. . untrl loop).

o Nested if staternents can be replaced by case statements, and vice-versa.

o Statement order can be changed, provrded this does not aff'ect the meaning
of the progl'erm.

o Procedure calls may be repiaced by functron calls, i.rnd vlce-versa.

a

,r)

Calls to a procedure rnay be replaced by a copy of the body of the procedure.

Ordering of operands mav be changed (e.g. x < y may becorne y > x).

The Burden of Proof

Not only do we need to detect rnstances of plagiarism, we must also be able to

demonstrate be,t,ond reusortuble doubt that those instances are not chance sirnilar-

ities.
In our experience. most students who plagrarise do so because they do not

understand f-ully how to program. The modifications thev make - once spotted

-
are usually suf'ficiently obvious that thev will readily admit their guilt.

If modifications to a program have been made which are so large as to radically

alter the structure of the program. then it is difficult. if not irnpossible. to prove

a charge of plagiarism to a disciplinary officer'. However. there is small incentive

for a student to engage in sr-rch a significant modificatior-t, since the time and effort

required wor-rld be of a sirnliar magnitude to thiit involvecl in writing the program

afresh"

3 Techniques for Detection

The ability to detect instances of sirnilar programs can be distilled into being able

to decide whether or not a pair of programs are sufficiently similar to be of inter-

est. Management of er larger collection of programs is a topological exercise Il I].

That is, consider a graph whose nodes represent programs, and an at'c denotes

that the nodes it ioins have been detected as "similar". A connected sub-graph

represents a collection o1'prograrns all of which mary be related. Note, however,

that the similarity relationship is not transitive. if prograrns A and B are similar,

and also B and C are similar, it may not be the cerse that our detection mechanism

would positively identify the similary when given as input the pair of programs

consisting of just A and C. Detection and analysis of clusters of programs repre-

sented by connected sub-graphs enables us to discover groups of more than two

similar programs.
There erre two principal comparison techniqures.

o Calculirte and colnpare uttribure corutt.slT . 1. 2). This involves assigning

to each progt'arn a single number representirtg ciipturing a sirnple quanti-

tative analysis of some program f-earture. Programs with similar attribute
counts are potentially similar programs. The size of a program, for exam-
ple, wor:ld be a very sin-rple attribute count. These nretrics can be combined
so that each plogram is assrgned a tupie of numbers, and programs are con-
sidered sinrilar if most or all of the corresponcling tLrple elements are simr-
lar. Such rleasllres as counts of operators and operancls arre typically used to
construct attribllte coLlnts, and more sophisticated br-rt related metrics such
zrs cyclomatic complexity[6] and scope number[3] have been examined.

o Compare programs according to their structurefS, -5]. This is a potentially
more complex procedure than companng attribute coLlnts, and depends fun-
damentally on the langr-rage in which the programs are written.

Whale [l 1, l2l anci Verco []01 have carriecl out a detailed comparison of vau-

ious attribute count and structure cornparison aigorithrns. They conclude that at-
tribute count methods irlone provide a poor detection mechanism, outperformed
by structure comparison. while the structrlr-e compauson software developed by
Whale (Plugue) [11] and Wise llap) [3]. report a high measLlre of success, a re-
cr-rrring f-eaturre of structure companson soltwurc rs its cornplexity, and a detailed
understanding is required of the target language. Wise reports 2.5 days to adapt
Yap to handle the Pascai language rather than C [3], fbr instance.

A system which incorporate-\ sophisticated companson algorithms is, by its
natllre, complex to implement, potentiaily reqr-rrnng the progralns lt examines tcr

be fully parsed. The investrnent tn resources to produce such a system is hezrvy.

but this may be justifiable in the cornmercial context, if it is necessary to prove
copyright violation. In an educzrtionai context. the effbrt cxpended by students to
hide their plagrarism is likely to be much less. Furtherrnore. students will not nec-
essarily use a single programmrng langLrage thror-rghout their degree course. and

any detection software must be readily upgradeable to handle new languages trnd

packages. There is, theretbre. it need for a relativelir simple method of program
comparison which can be updated fbr a new' progrummlng langurage with mini-
mal effort. and yet which is sutlicrentiy reliable to detect plagiarism with a high
probability of success.

4 The Warwick Approach

Several criteria were isolated which we

package.

o The program comparison algorithrn
comparison rnethocl.

t-elt essential to a robust and practical

must be reliable - ideally a structure

o The progriun conrpiirison algorithm rnust be siu'rple to chitnge fbr a new

language

o The lectulel using the package must have an easy-to-use tnterface (pref-er-

ably with glaphical output) to enable them to isolate potential instances of
plagiarism rapidly.

o The output tl"oni the package must be in a form which is clear to someone

unf'amiliar with the programs it is examining. lf two students are suspected

of being involved in plagiarism. clear evrdence needs to be presented both

ro them untl t'tnd to a third party (such as a disciplinary otficer) who might

neecl to becomc involved.

In order to preserve the correct functioning of a copied program, only lim-
ited editing can be performed. unless the person copying the program already

understands well how' it works. It is thus reasonable to assume that some lexical

changes. as described above. would probably be implemented. together with a

limited number of structural changes.

We might expcct. then, that b;r filtcring out all this infbrmation. and reducing

a program to mere tr*ens or prin-ritive language components, similarities would

becone apparent" Evcn with substantial structural changes. we would expect there

to be significantly large sections of the programs which are tokenwise the same. In

practice. this filteling process rerloves mr-rch data. For simpler programs typical of
introductory progfamming courses, students have a limited choice of algorithms tcr

use, and tokenised represe ntations of their programs vield many spurious matches.

lndeed, sinilarity of tokenised representations alone is insutficient to demonstrate

plagiarisrn, unless a proglam is complex or of an unusual structure.

4.1 IncrementalComparison

We iidopted the following approach. which we call irtc'remental compurison. A
pair of programs is cornparecl three times,

in their original torm,

with the whitespace ancl all colrments removed, ancl

translated to a flle t-tl- tokens.

A token is a value, surch as tTutne, operiltor, begin, loop-stutemenr, which is
:rppropriate to the langr"rage in use. The tokens necessary to detect plagiarism
may not be the salne as those usecl in the parsel' for a real implementation of the

language - we do not need to parse a program Lrs LrccLu'ately as a compiler. Our
scheme will work even with er very simple choice of tokens, and a rudimentary
parser. Thus it is easy tc'r lrpdate for a new langr-riige. Each Iine in the file of tokens
will r-rsr-rally correspond to a single statement in the original program.

If a pair contains similarities. then it is likely that one or more of these compar-
isons will indicate as much. By exarnining the sirnilalities and the corresponding
sections of code in the original program, it should be possible to arrive at a pre-

liminary decision as to whether the sirnilarities are accidental. or are worthy of
further invest i gut ion.

4.2 Implementation

We have implemented this scheme ln ir program, called SHERt.ocK, which al-
lows a lecturer to examine a coliection of sr-rbrnittcd prograrns tbr similarities. It
assumes that each program is storeci as a single flle, anc'l is written using a specific
predefined language. Each pair of programs in the collection ls compared three
times, as described above.

4.2.1 Runs and Anomalies

A run is a sequence of lines comnron to two liles, whel'e the sequence might not
be quite contiguous. That is, there rnay be a lpossibly small) number of extra
or deleted lines inten'Lrpting the seclr-rence. 'fhe allowzrlrle size of interruptrons
(which we call unorrutlie,s), and clensit,v within the seclue nce. are configurable. For

instance, (r-rsing a cleluLrlt configuration) in Table l, Seqr"rence I and Sequence 2

form a run with two ilnolnalies conprising one extra and one deleted line. By con-

trast, Sequence I and Secluence 3 do not form a run since there are six anomalies

in nine lines.
When comparing two programs. SueRLocK traverses the two programs look-

ing for runs of maximum length. An entry is appended to a rer:ord fi1a fbr each

run, indicating which two progralns irre being contpared. whet'e the rutts itt'e lo-

cated rn the files, the nuntber of anomalies rn each run, and the size ot'the run as

a percentage of thc length of each progriltn.

4.2.2 Presentation of Data

When all pairs o1'progritms have been compared, it neuretl network program (a

Kohonen seft'-orgutt'zing.feuture nlup [al) is invoked which reads the record file

and creates an image which illustrates the sin-rilarities between the programs listed

in the record file" The urain purpose of the neural network program ls to arrange

the components witl-rin the image so that it is clear ancl uncluttered (insofar at that

is possible with a givcn set of data)"

This image is a graph. whose nodes represent the files being cotnpared, and

whose arcs inclicate that significant sin-rilarities havc been tound between the files

whose nodes are their encl-points. The shorter the line, the stronger the sirnilari-

ties. The function o1 the neural network is to design the layout for the itnage, a

procedure which would be difficult by other rleans.

In Figure I, which is typical of the sort of outpLlt produced by the neural

network, the named files arc glouped into 3 clusters. Files in separate clusters

have essentially no sintilarities; those in the A-C cluster and the E-I ch-rster have

similarities, but these are t'clativelv weak. ClLtster J-K is very trght, and large parts

of files J and K are aln.tost iclcntical.
The image may be vicwed or printed. 'fhe lecturrer is then presented with a

copy of the record frle . and invited to select an entry from the file. Typically, an

entry representing a long run for two programs close together in the image would

be selected initially. The line sequences f'orming the run would then be displayed

in separate windows. so they can easilv be compared.

By repeatedly selecting entries frorn the record hle. the lecturer is quickly be

able to arrive at a prelirlinary judgement as to which programs are worth a detailed

examination"

Secluenc'a 2 Satluence -l
'haa i n

I ine
I ine
I ine
1 ..i

-^I II]C

1 ine
r .i -^a r!f c

i ine
end

ho,ri n

I I -^I Tlf U

g L! G

i ine
I ine
line
I . ^--I t!f c

I -. -^I irlg-

encl

i I ha

2

3

4

5

6

E

2

3

4

5

beqin
extra line
line 3

extra line
line 4

extra iine
another iine
iine i
end

Table l. Illurstration o1'Runs

,7

\,

,U
\6v

Fq

.,,1' .-,""1'.r.
:"-.-:7:: - i---l:, H.
',,.,., ,,.,/ |

---'l
:1,'

E

FigLrre l. \ctrrli Nel OLrtprrt

It,

4.3 Testing

Our software has been used for several coul'ses:

an intloductorv programming collrse (in Pascal) for Con-rputing students;

an introductory pfogramming coul'se (in Pascal) rLlll as a service course fbr
the Mathematics Departments.

a data strllctures coLlrse attended by compr-rtin-g stLldents (again. using Pascal

as the programrnrng langr,rage);

o a course in l'unctronal programrr-ring (in Miranda) for first year Computing
students;

a course on UNIX shell and r-rtilities, and

a second vear soltwat'e engincerittg coLttse using C++.

E,ach course is attended by ovel 100 students. We thus had a useful environ-

ment tn whlch we could implemenl and test sol'twitre whrch might assist us it-t

detecting unauthoriscd collr-rsion. Adapting the software to handle a difTerent lan-

guage has been done comfortably rn a single afternoon. A number of instances of
copied work have been detected in all of these courses.

It is not possible to demonstrate exactly what proportion of plagiarised pro-

grams such software will detect, for the reasons outlined at the start of this paper.

However, we are confident that SHERt.ocK has enabled thert proportion to be high,

and to demonstrate this we Lret'formed two tests.

4.3.1 First Test: Attempted Deception

We selected a progran.r of medium length and gooci qLrality (2: I standald) submit-

ted for a later assignment ir-r the Pascal course for Cornputing students. This we

felt was a typical program which might lend itself to being copied. We then passed

this to two postgraduate students who are skilled in Pascal, and requested them to

attempt to edit the program with the intention of fboling SupRlocrc. Neither was

able to do so without making substantizil changes requiring a good understanding

of Pascai and of the solutic'rlr - a student with such knowledge wourld be unlikely
to tre motivated to plagiarise.

il

4.3.2 Second Test: Comparison with Plague

The sofiware was testecl r)n a sLllte ot" l5zl programs written in Modula-2 [9], and

on which Plagr-re had been n-rn. Ol' 22 rnstances of plagiarisrn rnitially detected
by SuenlocK, Plagr-re lbr,rnd 21, and cletected 2 others ntrssed by SuEnlocr.
"Fine-tuning" the pal'irmeters to SHgRI-oCK improvecl its perfbrrrelnce and it then
detectecl all24 cases. We claim that SHERLoCK is canable of achievins a similar
level of performance as Whale's Plague .

4.4 Some Statistics

Another measure of the efl'ectiveness of our approach is to ask the question: "has

it decreersed the volr-rrne of plagiarisrn?" Of collrse, this cannot be unequivocally
answered, but the number of detecteci rnstances has clecreased substantraliy since
we began to Llse the software. anci our students becamc awa.re of it. In Table 2,

we present the numbers o1' students sLrspected of plagiarisrr and detected by our
software for whom the sr,rspicion was weli-tbr,rncled. This is tabulated against the
total nurnber of students submittrng assignments in which the sottware was used,

and the ratio as a perentage.

There were. of course. "fr,rlse hits". br-rt the numbels of them are similar to
the numbers of students actr,rally detected copving work. and would be flltered
manually.

----';-_.--.r
Yettr 1)ttrpr'r'ls lttlttl '/t i

i lL)c)6ll I r rfs f\??
- -1-'

\J.t-'

t99-5/6 I

19()415 ;

1A

i 484 3.10
i

564 i (r.03

Table 2: Startistics

It is clear that the volume oI detected plagrarisni has

This is due either to a reduced ievel of plagiarism. or to
students berng able to hide the changes they have urade.

already remarked, is a clifficr-rlt exerclse, anci we theretore
of plagiarism has decreased.

clecreased substantially.
a greater proportion of
The latter, as we have

clarm that the incidence

t2

5 Conclusions

We have designed a sitnple method which assists us with the detection of in-

stances of plagiarism in computer plograms. Our scheme is easy to adapt for the

large variety of programming languages in use, and is sufficiently robust to be

highly effective in an educational environment. Whilst having a detection rate

as good as other more complex sotlware, it presents its report as a slmple graph,

enabling large numhers ol programs to be checked c1r-rickly and effliciently. By

using "runs". SHtrRLocK provrdes strarghtfbrwarcl documentatron which cetn be

used ers clear and convir-rcing evidence shouricl a suspected instance of plagiarism

be disputed.

6 Acknowledgements

The authors wish to thank GeofT Whale tor providing the test data and William
Smith for the initial software development.

References

[] Faidhi, J.A.W and Robinson, S.K.. 'An Empirical Approach for Detecting

Program Similarity within a Universitv Programrning Environment", Con-
puter Educ'utiort 11 pp. I | -19 t 1987).

[2] Grier, S., 'A Tool that detects Plagiarism in Pascal Programs", in l2th
SIGCSE Techrtical S v-nrpo,siutn, St. Louis, Missouri. pp. l5-20 (l98l).

[3] Harrison. W"A. and Magel, K.1.. "A Complexity Measure Based on Nesting

Level". ACM SIGPLAIV Notices l6(3), pp. 63-74 (1981).

[4] Kohonen, T., Scl./-Orguniz.utiort in A,ssocitttitte Menutry', Springer-Verlag,

Berlin (1988)"

[5] Magel, K., "Regular Expressions tn a Program Cornplexity Metric", ACM

SIGPIAN Notices 16(7). pp.6l-65 (1981).

[6] McCabe, T.J., 'A Colnplexity Measr,rrc". IEEE Trunsuctions on Softwure En-

gineering SE-2('l). pp. 308-320 (l 976).

l3

[7] Rambally, G.K. and Le Sage. NlaLrlicio, "An Incluctive Inference Approach
to Plagiarism Detection in Compr-rtel programs", Proccedings oJ'the Nutionttl
Ed.ucationttl Computittg Cont'erenca, Nusht,ill.e, TN,ISTE, Eugene, OR, pp.

23-29 (1990).

[8] Robinson, S.S. and Soffa, M.L., "An lnstructional Aid for Sturdent Programs",
ACM SIGCSE BuLletin l2(l), pp. I lE-129 (1980).

[9] Smith, W.O., 'A Suspicious Program Checker", BSc Dissertation, Depalt-
ment of'CompLrter Science, Univcrsity of Warwick (1994).

[0] Verco. Kristina L. and Wise. Michaei J.. "Plagiansm a la Mode: A Compar-
ison of Automated Systems for Detectrng Sr-rspectecl Plagiarism", The Com-
puter JourntLl 39(9), pp. 7 4l-7-50 (1997).

[11] Whale, G., "ldentification of Program Similarity in Large Populations",
Contputer JournuL 33(2), pp 140-146 i1990).

[12] Whale, G., "Software Metrics ancl Plagiarism Detection".Journttl.of'Systems
utdSo.frwure 13. pp. l3l-138 (19901.

[3] Wise, M.J., "Detectrcln of Sirnilantie s in Stuclent Programs: YAP'ing may be

preferable to Plague'ing" , ACM SIGCSE llullerin 24{lJ, pp.268-27 t (1992).

t4

