
Plaintext Awareness via Key Registration

Jonathan Herzog, Moses Liskov, and Silvio Micali

MIT Laboratory for Computer Science

Abstract. In this paper, we reconsider the notion of plaintext aware-
ness. We present a new model for plaintext-aware encryption that is both
natural and useful. We achieve plaintext-aware encryption without ran-
dom oracles by using a third party. However, we do not need to trust
the third party: even when the third party is dishonest, we still guar-
antee security against adaptive chosen ciphertext attacks. We show a
construction that achieves this definition under general assumptions. We
further motivate this achievement by showing an important and natural
application: giving additional real-world meaningfulness to the Dolev-
Yao model.

1 Introduction

In this paper, we put forward and implement a new notion of plaintext-aware
encryption that is both natural and useful.

A Beautiful But Controversial Notion. As insightfully introduced by Bel-
lare and Rogaway [1] (see also [2] for refinements), an encryption scheme is
plaintext-aware (PA) if, whenever an adversary creates a ciphertext, he must
“know” its corresponding plaintext.

Despite its natural appeal, PA encryption has been somewhat controversial
for two main reasons:

1. Plaintext awareness fundamentally relies on random oracles.
Not only do all known implementations of PA encryption use random ora-
cles, but the very definition of plaintext awareness has, so far, crucially de-
pended upon them. Random oracles are fundamentally abstract constructs.
Although sometimes they can be realized algorithmically, no such hope ex-
ists here: traditional PA encryption requires the random oracle not only to
be random, but also to be an oracle.
A random oracle is in essence a trusted third party that interacts with the
rest of us only in a very rigid way: if one puts a string x on a special query
tape, it will write a random bit bx on a special answer tape. This codified in-
terface guarantees that even an adversary who purposely tries not to “know”
what he is doing must be aware of his queries to the random oracle: after all
he has to explicitly write each and every bit of x on the query tape! It is this
elementary awareness that is cleverly exploited by Bellare and Rogaway to
imply a much more sophisticated awareness: by looking at just the queries

D. Boneh (Ed.): CRYPTO 2003, LNCS 2729, pp. 548–564, 2003.
c© International Association for Cryptologic Research 2003

Plaintext Awareness via Key Registration 549

that an adversary makes to the random oracle during the computation of
a ciphertext, one can easily deduce the underlying plaintext. The random
oracle thus provides a magical “window” into the state of the encrypting
algorithm, forcing it to disclose parts of its internal state.
One can hardly fault the inventors of plaintext-awareness for depending on
random oracles: without any additional help plaintext awareness looks to be
essentially impossible.

2. Plaintext awareness has found no important and novel applications.
Plaintext-awareness is so strong a property that it immediately implies se-
curity against chosen-ciphertext attacks (CCA-2 security to be exact, in the
notation of [2]). In essence, if the adversary already “knows” the answer
that it will receive from a decryption oracle, then the oracle gives him no
additional power.
However, CCA-2 secure schemes were already known: they were constructed
by Cramer and Shoup [3] under the decisional Diffie-Hellman assumption
(yielding a very efficient scheme), and by Sahai [4] (improving on previous
work of Naor and Yung [5]) under very general complexity assumptions.
Thus, genuinely new applications of PA encryption, despite its intuitive great
power, have been somewhat scarce.

Our Contributions. The main contributions of this paper are:

1. A new definition of PA encryption that does not use the random oracle.
2. An implementation of the new definition that is based on very general com-

plexity assumptions.
3. A new and natural application of PA encryption that requires its full power.

To be sure, we still need to access a trusted third party, but our party is much
more natural (being already used in practice) and we access it only once rather
than at every encryption.

The Essence of Our Definition. Our model is very simple: encryption is
available only between users who have properly registered their public keys with
a registration authority, and plaintext-awareness is guaranteed if this authority
is honest.

This third-party model has several attractive features:

– Safety: Only the plaintext awareness of our scheme depends on the honesty
of the registration authority. In particular, the security does not. Even if
the registration authority collaborated with the adversary, our scheme is
guaranteed to be CCA-2 secure.

– Naturalness: A trusted registration authority is essentially implicit in any
actual implementation of public-key encryption. Such implementations en-
force a correct association between users and public keys by requiring that

550 J. Herzog, M. Liskov, and S. Micali

users register their public key with a certification authority. These author-
ities verify the identity of the applicant and that the applicant knows the
corresponding secret key.
In our system, users will have separate keys for sending and receiving mes-
sages, and our definitions only require that the sending keys key be regis-
tered. However, it is natural to require users to register their sending keys
at the same time that they have their receiving keys certified, and that the
certificate authority act as registering authority also.

– Efficiency: As we’ve said, a random oracle can be thought of as a trusted
third party. However, in the Bellare-Rogaway model, this trusted third party
must be accessed every time that a ciphertext is generated. By contrast, in
our model the (rather different) trusted party is accessed only once, and,
thereafter, registered users can generate ciphertexts on their own. (To be
sure, the quite general implementation that we propose is not efficient, but
this inefficiency is not due to our model.)

The Essence of Our Implementation. Our scheme is based on those of [6,4,
5], and makes use of the following key registration process: a sender simply gives
a zero-knowledge proof of knowledge of his secret sending key. Since the proof
system is zero-knowledge, no registration authority (honest or dishonest) gains
any information.

Following [6], we also make the encryption of a message depend on the public
keys of both sender and receiver. More precisely, and giving a self-referential twist
to the schemes of [5] and [4], our sender U encrypts a message for V both in
V ’s public receiving key as well as his own public sending key — and provides a
proof of having done so.

The Essence of Our Application. We apply plaintext awareness to the
Dolev-Yao model [7], the famous alternative for cryptographic protocol anal-
ysis.1 Unlike the more general computational models, the Dolev-Yao model has
the advantage of extreme simplicity and ease of use. Although it is impossible to
decide the correctness of a protocol in general, the correctness of an impressive
number of specific protocols has been successfully decided by automated tools [8,
9,10].

However, these successes are qualified by their reliance on extremely strong
assumptions. In particular, the Dolev-Yao model assumes that the adversary is
not allowed to perform arbitrary computations. Instead, he is limited to selecting
his actions from a small number of predetermined operations. (For example, he
is prohibited from doing anything with a ciphertext except decrypting it with
the right key.) These restrictions raise serious doubts about the meaningfulness
of the Dolev-Yao model. After all, a real-world adversary is not required to obey
them.
1 It is also known as the formal model, due to its origins in the formal methods

community.

Plaintext Awareness via Key Registration 551

However, we show that plaintext awareness ensures that the Dolev-Yao re-
strictions can be actually enforced in the real world. It is here that the natu-
ralness of our model and implementation matters crucially: were our model in
any way abstract or unachievable, we would simply be reducing one abstraction
to another. However, since our model is concrete, we show that the Dolev-Yao
adversary can be made concrete also.

2 Preliminaries

We say that an algorithm (or interactive TM) A is history-preserving if it “never
forgets” anything. As soon as it flips a coin or receives an input or a message,
A writes it on a separate history tape that is write-only and whose head always
moves from left to right. The history tape’s content coincides with A’s internal
configuration before A executes any step.

If A is an history-preserving algorithm, then if A appears more than
once in a piece of GMR notation (e.g, Pr[. . . ; a R← A(x); . . . ; b R←
A(y); . . . : p(· · · , a, b, · · ·)]) then the history and state of A is preserved from the
end of one “use” to the beginning of the next. The notation h

H←− A indicates
that h is the content of the current history tape of A.

An adversary is an efficient history-preserving algorithm (interactive TM).
Following [11], we consider a two-party protocol as a pair, (A, B), of interac-

tive Turing machines. By convention, A takes input (x, rA) and B takes input
(y, rB) where x and y are arbitrary and rA and rB are random tapes. On these
inputs, protocol (A, B) computes in a sequence of rounds, alternating between
A-rounds and B-rounds. In an A-round only A is active and sends a message
(i.e., a string) that will become an available input to B in the next B-round.
(Likewise for B-rounds.) A computation of (A, B) ends in a B-round in which
B sends the empty message and computes a private output.

If E is an execution of (A, B) on inputs (x, rA) and (y, rB), then the output
of A in E (denoted OUTA,B

A (x, rA|y, rB)) consists of the string z output by A

in the last A-round. Similarly, OUTA,B
B (x, rA|y, rB) is the output of B in the

same execution. We also define the random distribution OUTA,B
A (x, ·|y, ·) to be

OUTA,B
B (x, rA|y, rB) where rA and rB are selected randomly.

We say that an execution of a protocol (A, B) has security parameter k if
the private input of A is of the form (1k, x′) and the private input of B is of the
form (1k, y′).

3 The Notion of Plaintext Awareness via Key
Registration

3.1 Informally

Plaintext-awareness via key registration requires a significantly different defini-
tion than those of other plaintext-aware cryptosystems. We insist that not only

552 J. Herzog, M. Liskov, and S. Micali

the receiver of encrypted messages have a public key but also that the sender
have a public key, registered in advance with the registration authority. In this
setting, plaintext awareness means the following: the adversary can decrypt any
ciphertext it creates, so long as the (apparent) sender has registered its sending
key with the proper registration authority.

Also, we ask that plaintext-awareness hold for any key registered with the
honest registration authority. However, as mentioned before, the security of our
scheme should not depend on the honesty of the registration authority. The
scheme should remain CCA-2 secure (i.e., the most secure possible without a
trusted third party) even if the registration authority collaborates with the ad-
versary.

A plaintext-aware encryption scheme consists of an encryption scheme (G, E,
D), and a key-registration protocol (RU,RA).

Algorithm G is used for the generation of the receiver’s encryption and de-
cryption keys. In this model, E and D must also be given the public key of the
sender as input.

The sender must participate in the key-registration protocol in order to gen-
erate a key. The registration is performed by having U run protocol RU on input
1k with the registration authority running RA on input 1k. If the registration is
successful, the registration authority simply outputs the key es, and U should
also output this key. One can think of the key as then being inserted in a pub-
lic file or that U is given a certificate for es, but the precise mechanism of the
publication is irrelevant here. What is crucial, however, is that the registration
protocol be a secure atomic operation. That is, we can think of it as being run
one user at a time, in person, and from beginning to end.2

It is worth noting that either RU or RA may reject in the registration protocol
(presumably when the other party is dishonest), in which case we assume the
output is ⊥. For ease in the definitions, we assume that if ⊥ is any input to
either E or D, the output will also be ⊥.

3.2 More Formally

A registration-based plaintext-aware encryption scheme consists of a pair (G, E,
D) and (RU, RA), where

– (G, E, D) is a public-key encryption scheme, where:
• G(1k) produces (er, dr), a key pair for the receiver, where k is a security

parameter;
• E(m, er, es) produces c, where c is a ciphertext, m is the message to

encrypt, and er and es are the receiver’s and sender’s public keys; (The
ciphertext c is assumed to explicitly indicate which public keys were used
in its creation.)

2 Without this assumption, we would have to worry about man-in-the-middle, con-
currency and other types of attacks which will obscure both the definitional and
implementation aspects of our model.

Plaintext Awareness via Key Registration 553

• D(c, dr, es) produces m, a message, where c is the ciphertext to decrypt,
dr is the receiver’s private key, and es is the sender’s public key. (If the
ciphertext is invalid, the output is ⊥.)

– (RU,RA) is a two-party protocol in which both parties should output es, a
public key for the sender;

which satisfy the following conditions (in which ν is a negligible function):

– Registration Completeness: The key registration protocol between an hon-
est registrant and an honest registration authority will almost always be
successful, and the user and the authority will agree on the key.

∀k
Pr[r1

R← {0, 1}∗; r2
R← {0, 1}∗;

es
R← OUTRU,RA

RA

(
1k, r1|1k, r2

)
;

e′
s

R← OUTRU,RA
RU

(
1k, r1|1k, r2

)
;

es = e′
s �=⊥] = 1− ν(k)

– Encryption Completeness: If an honest sender encrypts a message m into a
ciphertext c, then the honest recipient will almost always decrypt c into m.

∀k,∀m ∈ {0, 1}k
Pr[es

R← OUTRU,RA
RU

(
1k, ·|1k, ·) ;

(er, dr)
R← G(1k);

c
R← E(m, er, es);

g
R← D(c, dr, es) :

g = m] = 1− ν(k)

– Honest Security: If recipient and sender are honest, the encryption is adap-
tively chosen-ciphertext secure even if the adversary controls the registration
authority.

∀ oracle-calling adversaries A,∀ sufficiently large k

Pr[(dr, er)
R← G(1k);

es
R← OUTRU,A

RU

(
1k, ·|1k, ·) ;

m0, m1
R← AD(·,dr,·)(er, es);

b
R← {0, 1} ;

c
R← E(mb, er, es);

g
R← AD(·,dr,·)−{c}(c) :

b = g] ≤ 1
2 + ν(k)

where
• m0 and m1 have the same length, and
• D(·, dr, es) − {c} is the oracle that returns D(c′, dr, es) if c′ �= c and

returns ⊥ if c′ = c.

554 J. Herzog, M. Liskov, and S. Micali

Note that if es =⊥ the adversary will get only ⊥ from the oracle, and c =⊥
as well, so the probability of success will be just 1/2. Also, recall that the
adversary is assumed to be history-preserving, so that it remembers every
input it has ever seen.

– Plaintext Awareness: If the registration authority is honest and player X
(either the adversary or an honest player) registers a key, then the adversary
can decrypt any string it sends to an honest participant ostensibly by X:

∀ adversaries A,∀X ∈ {A,RU} ,∃ efficient algorithm SX, ∀ s.l. k

Pr[(er, dr)
R← G(1k);

eX
R← OUTX,RA

RA

(
er, ·|1k, ·) ;

h
H←− A;

c
R← AD(·,dr,·)(eX, er);

SX(h, c, er, eX) = D(c, dr, eX)] ≥ 1− ν(k)

Remarks. Note in the definition of plaintext awareness that if X = RU, then it
expects its input to be 1k and not er. Hence, we assume that if RU finds input
er that it extracts 1k from it and proceeds as normal.

Also in the definition of plaintext-awareness, if the sender key is registered
by an honest participant (X = RU) then h, the history of the adversary, will be
empty.

Lastly, note that these definitions do not guarantee anonymity of the sender.
That is, senders must register their keys, and so it might be that they can no
longer send messages without their name attached in some way. We note three
things with respect to this.

1. If plaintext-awareness is not required, a sender may simply use an unreg-
istered key. Plaintext awareness will no longer be guaranteed, but chosen
ciphertext security will still hold.

2. Each registered key does not necessarily represent a sender but rather one
incarnation of a sender. Senders may register many keys in order to bolster
their anonymity.

3. Lastly, we note that in our motivating application, channels will be authen-
ticated anyway, so this is no additional loss. Indeed, authentication is almost
necessary, as our definition guarantees only that a message encrypted under
a registered key will be known to the party that registered that key.

We choose to regard the possibility of sender authentication as an opportunity
rather than a drawback, and use it in an essential way in our implementation.

4 Implementing Plaintext Awareness via Key
Registration

Our scheme uses non-interactive zero-knowledge proofs (e.g. [12,13,14,15]) in
order to enhance encryption security. This approach has been pioneered by Naor

Plaintext Awareness via Key Registration 555

and Yung [5], and greatly refined by Sahai [4]. Another fount of inspiration comes
from the work of Rackoff and Simon [6] which used a very powerful registration
authority (indeed, one that chooses every user’s secret keys) to obtain chosen-
ciphertext security.

We make use of the following three cryptographic tools:

– (G′,E′,D′), a semantically secure cryptosystem in the sense of [16].
– (f, P, V, S), a non-malleable NIZK proof system for NP in the sense of [4],

where P is the proving algorithm, V is the verification algorithm, S is the
simulator, and f(k) is the length of the reference string for security parameter
k.

– a zero-knowledge proof of knowledge for NP, and [17,18,11].
– Authenticated channels that allow a recipient to determine if a ciphertext

(c, e, e′) was sent by the entity that registered the sending key e′.

The first three of the above rely only upon the existence of trapdoor permu-
tations. The authenticated channels may introduce additional assumptions.

4.1 The Scheme S

The scheme S = (G, E ,D,RU ,RA) is as follows.3

– G (receiver key generation): Generate (e1, d1) and (e2, d2) according to
G′(1k). Pick a random σ from {0, 1}f(k). The public (receiver’s) key is
er = (e1, e2, σ) and the secret key is dr = (d1, d2).

– RU and RA: First, Generate (e3, d3) according to G′(1k). The public
(sender’s) key is es = e3. Next, we engage in a zero-knowledge proof of
knowledge that the user knows d3. If the zero-knowledge proof of knowledge
terminates correctly, RA outputs the sender’s public key, otherwise it out-
puts ⊥. RU outputs es so long as the zero-knowledge proof of knowledge
was not aborted, otherwise it outputs ⊥.

– E , on input (m, (e1, e2, σ), (e3)) first computes c1 = E′(e1, m), c2 = E′(e2, m),
and c3 = E′(e3, m). Here, naturally, e1, e2, and σ are from the receiver’s
public key, while e3 is the sender’s public key. Then, it computes π, a non-
malleable NIZK proof that c1, c2, and c3 all encrypt the same message rela-
tive to e1, e2, and e3, respectively. It outputs (c1, c2, c3, π).

– D, on input ((c1, c2, c3, π), (e1, e2, σ, d1, d2), (e3)) first determines if the ci-
phertext (c1, c2, c3, π) was sent by the entity that registered e3. (Authenti-
cated channels are essential for this step.) If not, it outputs ⊥. If so, it then
determines if π is a valid proof that c1, c2 and c3 are encryptions of the same
message under e1, e2 and e3, respectively, relative to the reference string σ.
If so, it outputs D′(d1, c1). Otherwise, it outputs ⊥.

3 In these definitions, we liberally assume that any secret key contains any needed
information from the associated public key.

556 J. Herzog, M. Liskov, and S. Micali

4.2 Security of S
S Satisfies Registration Completeness. This is natural: the registration
process is a zero-knowledge protocol. By its completeness property, an honest
prover will almost always be able to prove a true theorem (es) to an honest
verifier if it possesses a witness (ds). Since the honest registrant has access to the
witness and engages in the protocol honestly, the honest registration authority
will almost always accept the proof and output the public key, and the user will
output the same key.

S Satisfies Encryption Completeness. This should be clear. If the sender
is honest, then it produces (c1, c2, c3, π) where c1, c2 and c3 all contain the same
plaintext m and π is an honest proof of that fact. Since the proof is honest,
the recipient will almost always accept it and decrypt c1 to receive m, the same
message encrypted by the sender.

S Satisfies Honest Security. We will prove chosen-ciphertext security by the
contrapositive. Suppose there is an adversary A that succeeds in an adaptive
chosen ciphertext attack against an honest sender and an honest recipient. We
will give two reductions, R and R′, and we will prove that one of the two must
break the underlying encryption scheme.

R simulates the adversary A so as to break the semantic security of the
underlying encryption scheme (G′,E′,D′). So, on input (e, 1k), R runs as follows:

1. First, we create the receiver’s public key (e1, e2) and the sender’s public
key (e3) as follows. Pick a at random from {1, 2}. Set e3−a to be e and set
(ea, da) R← G′(1k). Generate σ according to the simulator S for the NIZK
proof system4. Set (e3, d3)

R← G′(1k).
2. Run A on input ((e1, e2, σ), (e3)). Whenever A asks for a decryption of

(c′
1, c

′
2, c

′
3, π

′), encrypted with sending key e′, we check the correctness of
π′ using V . If it verifies, we decrypt c′

a using da and output that as the
result. Otherwise we return ⊥.

3. Eventually A will output (m0, m1) Output (m0, m1) and obtain challenge c.
For notation later, let us say that mβ is the message c encrypts.

4. We then simulate the ciphertext challenge for A. Pick b at random from
{0, 1}. Let ca

R← E′(ea, mb), and set c3−a
R← c. With probability 1/2, let

c3
R← E′(e3, mb) and otherwise, let c3

R← E′(e3, m1−b). Fake the NIZK proof
π using the simulator S.

5. Run A on input (c1, c2, c3, π).
6. Again, whenever A asks for a decryption, we check the proof and decrypt

using da.
7. Eventually A outputs an answer b′. If b = b′, output b′. Otherwise, output a

random bit.
4 Here, we assume the simulator S is history-preserving.

Plaintext Awareness via Key Registration 557

There are three kinds of input the adversary can get.

I. First, it is possible that c1, c2, and c3 all encrypt the same message mβ .
In this case, the input given to the adversary is indistinguishable from the
input in the real attack the adversary succeeds in. Thus, the adversary must
return β with probability 1/2 + ε, where ε is some non-negligible function of
k.

II. Second, it may be that c1 and c2 both encrypt the same message mβ but
c3 encrypts m1−β . Let x be such that in this case, the adversary returns β
with probability x.

III. Finally, it may be that c1 and c2 encrypt different messages. Note that there
are two subcases:
– ca and c3 encrypt the same message while c3−a encrypts the other, and
– c3−a and c3 encrypt the same message while ca encrypts the other

These two cases are indistinguishable to the adversary. Since the adversary
cannot make any proofs of false theorems, the oracle will return ⊥ if the
adversary ever makes a decryption query when c1 and c2 encrypt different
messages. Thus, the case a = 1 and the case a = 2 give the same distribution.
(See [4]. This is just like one of the main details from Sahai’s proof that his
scheme is CCA2-secure.)
Let mβ′ be the message encrypted in c3, and let y be such that in this case
the adversary returns β′.

This reduction is parameterized by the values x and y, both of which can be
chosen by the adversary. However, we will show that the only value of interest to
us is x. In fact, we will show that for almost all values of x, the above reduction
breaks the security of (G′,E′,D′). However, the reduction R will not work for
certain values of x, so we give a different reduction R′ and show that it does.

To begin: what is the probability that R returns the correct answer? Again,
we consider two cases: when b = β and when b �= β:

– In the case that b = β, the adversary sees an input of type I with probability
1/2. When the adversary sees an input of type I, R is correct with probability(1

2 + ε
)

+ 1
2

(1
2 − ε

)
= 3

4 + ε
2 . If the adversary does not see an input of type

I though b = β then it sees an input of type II, in which case R is correct
with probability x + (1 − x)/2 (since whenever the adversary returns β in
an input of type 2, R is correct, and the rest of the time, R is correct with
probability 1/2). Thus, the total probability that R is correct when b = β is
1
2 ((3/4 + ε/2) + (1/2 + x/2)).

– Now let us examine the case that b �= β. Any time this is true, we give input
type III to the adversary. However, with probability 1/2, mb encrypted into
c3 and with probability 1/2, m1−b is encrypted into c3. (Recall, these two
cases are indistinguishable to the adversary.) Thus, the adversary returns b
with probability 1

2y + 1
2 (1− y), and otherwise returns 1− b. In this case, our

total probability of being correct is (y/4) + (1 − y)/4 = 1/4 , since we are
only correct when the adversary returns 1− b, and then, only half the time.

558 J. Herzog, M. Liskov, and S. Micali

Taking into account all cases, the probability that R is correct is

1
2

(
1
2
(3/4 + ε/2) +

1
2
(1/2 + x/2) +

1
4

)

This expression evaluates to

3
16

+
ε

8
+

1
8

+
x

8
+

1
8

=
7
16

+
ε + x

8
.

Now if ε+x is non-negligibly different from 1/2 then the above expression is
also, and R breaks (G′,E′,D′). If, on the other hand, x ≈ 1/2 − ε, then we can
use A to break the security of (G′,E′,D′) directly. Let R′ be the reduction that
works as follows, on input e:

1. Generate (e1, d1) and (e2, d2) by running G′(1k). Generate σ according to
the simulator S for the NIZK proof system. Set e3 to e.

2. Run A on input ((e1, e2, σ), (e3)). Whenever A asks for a decryption query
we check the correctness of the included NIZK proof using V . If it verifies,
we decrypt c1 using d1 and output that as the result, otherwise we return
⊥.

3. Obtain m0, m1 as the output of A. Output (m0, m1) and obtain challenge c.
For notation later, let us say that mβ is the message c encrypts.

4. Pick b at random from {0, 1}. Let c1
R← E′(e1, mb), let c2

R← E′(e2, mb), and
let c3 be c.

5. Fake the NIZK proof π using the simulator S (which we assume to be history-
preserving).

6. Run A on input (c1, c2, c3, π). Again, whenever A asks for a decryption, we
check the proof and decrypt using d1. Eventually A outputs an answer b′.
Output b′.

The proof that R′ works is simple. If R′ picks b = β then A outputs b with
probability 1/2+ε. If R′ picks b �= β then A sees input type II and so it outputs b
with probability x = 1/2− ε+ν′ where ν′ is (positively or negatively) negligible.
Thus in either case, we output β with probability at least 1/2 + ε− |ν′/2|.

S Enjoys Plaintext Awareness. This is fairly simple, and we show it infor-
mally. There are two cases. If X = RU, then eX was registered by an honest user.
Hence, when the adversary creates a ciphertext ostensibly from that honest user,
it will fail to decrypt. (The use of authenticated channels will tell the receiver
that it was sent by the adversary, and not the entity that registered eX.) Hence,
SX simply outputs ⊥ on all input.

In the other case, X = A, and the adversary registered eX. We extract plain-
text as follows. On input (h, (c1, c2, c3, π), er, eX), we use h to rewind the adver-
sary to the point where A engages in key registration with RA. We then use the
extractor from the interactive zero knowledge proof of knowledge to find a value
d, the secret key associated with eX. We then check π; if π is invalid, we output
⊥. Otherwise, we use d to decrypt c3 and give the result as the answer. From

Plaintext Awareness via Key Registration 559

the extractibility property of the proof system, d must be a secret key relative
to key so this answer is correct.

However, we do need to show that the decryption under d will always be the
same as the decryption under dr. If the proof π in c is invalid, then certainly we
are correct to output ⊥. If π is valid, then by the soundness of the NIZK proof
system, it must be that c1, c2, and c3 all encrypt the same message, so we are
still correct.

5 Plaintext Awareness and the Dolev-Yao Adversary

We conclude by considering a naturally-arising application of plaintext-
awareness: the adversary of the Dolev-Yao model of cryptographic protocols
[7].

The Dolev-Yao model is an alternate model of cryptographic protocol ex-
ecution which grew out of the formal methods community. It differs from the
standard, computational, model in two important ways:

1. The representation of messages, and
2. The ability of the adversary.

In this model, messages are not bit-strings but parse trees. The atomic elements
(leaves) are considered to be abstract symbols with no internal structure, and
are partitioned into three sets: names (M), random numbers (R) or keys (KPub

and KPriv).5 Compound messages are formed using two operations:

– encrypt : KPub ×A → A
– pair : A×A → A

We denote encrypt(K, M) by {|M |}K , and denote pair(M, N) by M N . We de-
note by A the set of all messages. Because messages are parse trees, every mes-
sage has a unique interpretation. We assume for our purposes that the algebra
contains a finite number of atomic elements, though the model itself has no such
restriction.

Whereas the standard adversary is an arbitrary algorithm, the Dolev-Yao
adversary is much more limited. As in the standard model, the adversary is
able to know all public and predictable values. Likewise, the adversary controls
the network in both models, meaning that it sees and routes all traffic between
honest participants. However, when it comes to the ability of the adversary to
create new messages, the two models sharply differ.

Where the standard adversary is able to create any efficiently computable
bit-string, the Dolev-Yao adversary can only create new parse trees by apply-
ing to known ones a limited number of operations: pairing, separation of pairs,
encryption in public keys, and decryption in known keys. Formally, the power
of the Dolev-Yao adversary to create new messages is given by a set-theoretic
operation:
5 We will only consider the case of asymmetric encryption, though the Dolev-Yao

models symmetric encryption also.

560 J. Herzog, M. Liskov, and S. Micali

Definition 1 (Closure) The closure of S, written C [S], is the smallest set
such that:

1. S ⊆ C [S],
2. If {|M |}K ∈ C [S] and K−1 ∈ C [S], then M ∈ C [S],
3. If M ∈ C [S] and K ∈ C [S], then {|M |}K ∈ C [S],
4. If M N ∈ C [S], then M ∈ C [S] and N ∈ C [S], and
5. If M ∈ C [S] and N ∈ C [S], then M N ∈ C [S].

(It is assumed that S contains all public values such as names and public keys.)
It is the central assumption of the Dolev-Yao model that the closure operation

is the extent of the adversary’s ability to manipulate cryptographic material:
Definition 2 (Formal Adversary) The formal adversary is a non-
deterministic process on A that, given a set S of messages, produces messages
in C [S].

The Dolev-Yao is an attractive model in which to work. Proofs are simple and
easily found, and protocol verification is easily automated. However, it is not
clear how the Dolev-Yao model relates to the standard computational model.
The above restriction makes the formal adversary seem fairly weak: the standard
adversary can certainly calculate any value available to the formal adversary, and
many more besides. Hence, security against the formal adversary seems like a
fairly weak property. However, it turns out that if the underlying cryptography is
plaintext aware, then the standard adversary is no more powerful than the formal
adversary. That is, computational cryptography can limit the computational
adversary to this closure operation.

To formalize the limitation on the formal adversary in terms of computa-
tional cryptography, we need to somehow translate the parse-tree messages of
the Dolev-Yao model into bit-strings. To do this, we adapt the “encoding” op-
eration from Abadi and Rogaway [19] from the symmetric-encryption setting to
that of asymmetric encryption. In brief, the “encoding” of a message M , written
[[M]]n, depends on the parse tree of M , the security parameter, and the choice of
underlying public-key encryption scheme (G,E,D).6 Recursing on the structure
of M :
– If M is the nonce of an honest participant, then [[M]]n is a specific n-bit

string, chosen at random.
– If M is a nonce of the formal adversary, then [[M]]n is a specific n-bit string

chosen by the computational adversary
– If M is a public or private key of an honest participant, then [[M]]n is a specific

computational key chosen at random from G(1n).
– If M is a public or private key of the formal adversary, then [[M]]n is a specific

computational key chosen by the computational adversary
– If M = M1 M2, then [[M]]n is the concatenation of [[M1]]n and [[M2]]n.
– If M = {|M1|}K , then [[M]]n is the distribution on bit-strings defined by

E([[M1]]n , [[K]]n).
6 Our definition of plaintext-aware encryption contains several more algorithms, which

we ignore for the moment.

Plaintext Awareness via Key Registration 561

Now that we can relate Dolev-Yao messages and bit-strings, we can formalize
the intuition of Definition 2. We will call a computational encryption scheme
ideal if it restricts the computational adversary to the limit on the Dolev-Yao
adversary:

Attempt 3. An encryption scheme (G,E,D) is ideal if

∀APPT , ∀S ⊆ A, ∀M �∈ C [S] , ∀ polynomials q, ∀ sufficiently large n :
Pr[s

R← [[S ∪ KPub ∪ KSubv ∪M]]n ;
m

R← A(1n, s) :
m ∈ supp [[M]]n] ≤ 1

q(n)

(Here, supp(D) means the support of distribution D.)
However, our results are subject to one technical limitation: S must be

acyclic. A formal definition of an acyclic set can be found in [20]. Informally,
it means that if K1 encrypts K−1

2 in S K2 encrypts K−1
3 , and so on, this se-

quence never loops back on itself.7.
Hence, we revise the security condition:

Definition 4 An encryption scheme (G,E,D) is ideal if the adversary cannot
create something outside the closure:

∀APPT ,∀ acyclic S ⊆ A,∀M �∈ C [S] , ∀ polynomials q, ∀ sufficiently large n :
Pr[s

R← [[S ∪ KPub ∪ KSubv ∪M]]n ;
m

R← A(1n, s) :
m ∈ supp [[M]]n] ≤ 1

q(n)

This definition, it turns out, is no stronger than plaintext-awareness. Before
we can prove this, however, we need to address a small technical issue. Encryption
in the Dolev-Yao model depends only on the message and the receiver’s public
key. In our definition of plaintext-aware encryption, however, encryption uses the
receiver’s public receiving key and the sender’s public sending key. Hence, we
consider a slight variant of the Dolev-Yao model in which the formal encryption
operation uses two public keys: the sender’s and the receiver’s. The encoding
of a formal key contains both a sending portion and a receiving portion (public
or private, as appropriate). The encoding of a formal encryption is then defined
using, in the natural way, a computational plaintext-aware encryption scheme
and the encodings of the public keys.

Theorem 5. Any encryption scheme that achieves plaintext-awareness is also
ideal, if all public keys are registered with an honest RU.

Proof Sketch. Suppose that the encryption scheme were not ideal. Then with
non-negligible probability the adversary could create an encoding m such that
m is the valid encoding of an M not in C [S].
7 This is a reasonable assumption for most “real-world” protocols, for reasons discussed

in [20]

562 J. Herzog, M. Liskov, and S. Micali

Consider the parse tree of M . Each node in this tree is a message. Further-
more, if the adversary can create an encoding of an internal node of this tree
with some probability p, then either

1. That node is in C [S], or
2. The adversary can, with probability almost p, create encodings of both chil-

dren.

To see this, suppose the node is not in C [S] and consider its type. It is easy to
separate the components of a pair. On the other hand, if the adversary creates
an encryption, then plaintext-awareness tells us that there exists a simulator
that can extract the plaintext (which by construction, is never ⊥.) Hence, the
adversary can create the encoding of an encryption, then run the simulator to
extract the plaintext of the encryption. Also, since all public keys are known
to the adversary, it can create both encryption keys. Thus, the adversary can
create all children of a encryption node.

Furthermore, membership in C [S] is closed up the tree: if both children are
in C [S], then their parent is in C [S] also. Hence, if M is not in C [S] then there
must be one path from root to leaf in the parse tree of M where no element of
the path is in C [S]. (If there were no such path, then M would be in C [S], a
contradiction.)

By recursing down the tree and making both children of every node along
this path, the adversary can create an encoding of the leaf at the end of this
path. Hence, the adversary can make M , the root message, with probability p,
then with probability p

q(n) (for some polynomial q) the adversary can create the
encoding of some atomic message M ′ outside of C [S].

There are two cases:

1. If M ′ is related to S, then it must be either as the plaintext of an encryption
or as the private key of some public key used in S (or both). In this case,
the adversary has broken the security of the encryption. If we assume that
every party has engaged in the setup phase with every other party, then the
encryption scheme is secure, leading to a contradiction.

2. If M ′ is not related to S, then the adversary has managed to guess a random
value from input independent of that value. If there are n1 elements of R
then the adversary has a n1

2n chance of guessing any given nonce. If there are
n2 elements of KPriv and each key is l(n) bits long, then the adversary has
a n2

2l(n) chance of guessing any private key. Since both of these are negligible,
then the adversary must have a negligible change creating an encoding of
M ′.

Hence, p
q(n) must be negligible, which means that p must have been negligible

to begin with.

Hence, plaintext-aware encryption limits the computational adversary to the
operations available to the Dolev-Yao adversary. It is unknown whether any
weaker form of encryption achieves the same limitation, making this the first
naturally arising application of plaintext-aware cryptography.

Plaintext Awareness via Key Registration 563

Acknowledgments. The authors would like to thank Ron Rivest and Nancy
Lynch, under whose supervision part of this work was done. They would also
like to thank the anonymous referees for their insightful comments.

References

1. Bellare, M., Rogaway, P.: Optimal asymmetric encryption– how to encrypt with
RSA. In Santis, A.D., ed.: Advances in Cryptology – Eurocrypt 94 Proceedings.
Volume 950 of Lecture Notes in Computer Science., Springer-Verlag (1995) 92–111

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among
notions of security for public-key encryption schemes. In Krawczyk, H.,
ed.: Advances in Cryptology (CRYPTO 98). Volume 1462 of Lecture Notes
in Computer Science., Springer–Verlag (1998) 26–45 Full version found at
http://www.cs.ucsd.edu/users/mihir/papers/relations.html.

3. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Advances in Cryptology — CRYPTO 1998.
Number 1462 in LNCS, Springer–Verlag (1998) 13–25

4. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proceedings of 40th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS). (1999) 543–553

5. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd Annual ACM Symposium on Theory of Computing.
(1990) 427–437

6. Rackoff, C., Simon, D.: Noninteractive zero-knowledge proof of knowledge and the
chosen-ciphertext attack. In: Advances in Cryptology– CRYPTO 91. Number 576
in Lecture Notes in Computer Science (1991) 433–444

7. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transactions
on Information Theory 29 (1983) 198–208

8. Lowe, G.: Breaking and fixing the Needham–Schroeder public-key protocol using
FDR. In Margaria, Steffen, eds.: Tools and Algorithms for the Construction and
Analysis of Systems. Volume 1055 of Lecture Notes in Computer Science. Springer–
Verlag (1996) 147–166

9. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6 (1998) 85–128

10. Song, D.: Athena, an automatic checker for security protocol analysis. In: Proceed-
ings of the 12th IEEE Computer Security Foundations Workshop. (1999) 192–202

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowedge complexity of interactive
proof systems. In: Proceedings of the 17th ACM Symposium on Theory of Com-
puting. (1985) 291–304 Superseded by journal version.

12. Blum, M., Feldman, P., Micali, S.: Non-interactive zero knowledge proof systems
and applications. In: Proceedings of the 20th Annual ACM Symposium on Theory
of Computing. (1988) 103–112

13. Santis, A.D., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof sys-
tems. In Pomerance, C., ed.: Proceedings Crypto ’87, Springer-Verlag (1988) 52–72
Lecture Notes in Computer Science No. 293.

14. Blum, M., Santis, A.D., Micali, S., Persiano, G.: Noninteractive zero knowledge.
SIAM Journal on Computing 20 (1991) 1084–1118

15. Boyar, J., Damg̊ard, I., Peralta, R.: Short non-interactive cryptographic proofs.
Journal of Cryptology: the journal of the International Association for Cryptologic
Research 13 (2000) 449–472

564 J. Herzog, M. Liskov, and S. Micali

16. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and
System Sciences (1984) 270–299

17. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In Brickell, E., ed.:
Advances in Cryptology – Crypto 92 Proceedings. Volume 740 of Lecture Notes in
Computer Science., Springer–Verlang (1992) 390–420

18. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM
38 (1991) 691–729

19. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). In: IFIP International Conference on Theoretical
Computer Science (IFIP TCS2000). Number 1872 in Lecture Notes in Computer
Science, Springer-Verlag (2000) 3–22

20. Herzog, J.: Computational soundness for formal adversaries. Master’s thesis, Mas-
sachusetts Institute of Technology (2002)

	Introduction
	Preliminaries
	The Notion of Plaintext Awareness via Key Registration
	Informally
	More Formally

	Implementing Plaintext Awareness via Key Registration
	The Scheme $@mathcal {S}$
	Security of $@mathcal {S}$

	Plaintext Awareness and the Dolev-Yao Adversary

