
Plan, Attend, Generate:

Planning for Sequence-to-Sequence Models

Francis Dutil∗

University of Montreal (MILA)
frdutil@gmail.com

Caglar Gulcehre∗

University of Montreal (MILA)
ca9lar@gmail.com

Adam Trischler
Microsoft Research Maluuba

adam.trischler@microsoft.com

Yoshua Bengio
University of Montreal (MILA)

yoshua.umontreal@gmail.com

Abstract

We investigate the integration of a planning mechanism into sequence-to-sequence
models using attention. We develop a model which can plan ahead in the future when
it computes its alignments between input and output sequences, constructing a matrix
of proposed future alignments and a commitment vector that governs whether to follow
or recompute the plan. This mechanism is inspired by the recently proposed strategic
attentive reader and writer (STRAW) model for Reinforcement Learning. Our proposed
model is end-to-end trainable using primarily differentiable operations. We show that
it outperforms a strong baseline on character-level translation tasks from WMT’15,
the algorithmic task of finding Eulerian circuits of graphs, and question generation
from the text. Our analysis demonstrates that the model computes qualitatively intuitive
alignments, converges faster than the baselines, and achieves superior performance
with fewer parameters.

1 Introduction

Several important tasks in the machine learning literature can be cast as sequence-to-sequence
problems (Cho et al., 2014b; Sutskever et al., 2014). Machine translation is a prime example of this: a
system takes as input a sequence of words or characters in some source language, then generates an output
sequence of words or characters in the target language – the translation.

Neural encoder-decoder models (Cho et al., 2014b; Sutskever et al., 2014) have become a standard
approach for sequence-to-sequence tasks such as machine translation and speech recognition. Such models
generally encode the input sequence as a set of vector representations using a recurrent neural network
(RNN). A second RNN then decodes the output sequence step-by-step, conditioned on the encodings.
An important augmentation to this architecture, first described by Bahdanau et al. (2015), is for models
to compute a soft alignment between the encoder representations and the decoder state at each time-step,
through an attention mechanism. The computed alignment conditions the decoder more directly on a
relevant subset of the input sequence. Computationally, the attention mechanism is typically a simple
learned function of the decoder’s internal state, e.g., an MLP.

In this work, we propose to augment the encoder-decoder model with attention by integrating a planning
mechanism. Specifically, we develop a model that uses planning to improve the alignment between input
and output sequences. It creates an explicit plan of input-output alignments to use at future time-steps, based

∗ denotes that both authors (CG and FD) contributed equally and the order is determined randomly.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

on its current observation and a summary of its past actions, which it may follow or modify. This enables the
model to plan ahead rather than attending to what is relevant primarily at the current generation step. Con-
cretely, we augment the decoder’s internal state with (i) an alignment plan matrix and (ii) a commitment plan
vector. The alignment plan matrix is a template of alignments that the model intends to follow at future time-
steps, i.e., a sequence of probability distributions over input tokens. The commitment plan vector governs
whether to follow the alignment plan at the current step or to recompute it, and thus models discrete decisions.
This is reminiscent of macro-actions and options from the hierarchical reinforcement learning literature (Di-
etterich, 2000). Our planning mechanism is inspired by the strategic attentive reader and writer (STRAW)
of Vezhnevets et al. (2016), which was originally proposed as a hierarchical reinforcement learning algo-
rithm. In reinforcement-learning parlance, existing sequence-to-sequence models with attention can be said
to learn reactive policies; however, a model with a planning mechanism could learn more proactive policies.

Our work is motivated by the intuition that, although many natural sequences are output step-by-step because
of constraints on the output process, they are not necessarily conceived and ordered according to only local,
step-by-step interactions. Natural language in the form of speech and writing is again a prime example –
sentences are not conceived one word at a time. Planning, that is, choosing some goal along with candidate
macro-actions to arrive at it, is one way to induce coherence in sequential outputs like language. Learning
to generate long coherent sequences, or how to form alignments over long input contexts, is difficult for
existing models. In the case of neural machine translation (NMT), the performance of encoder-decoder
models with attention deteriorates as sequence length increases (Cho et al., 2014a; Sutskever et al., 2014).
A planning mechanism could make the decoder’s search for alignments more tractable and more scalable.

In this work, we perform planning over the input sequence by searching for alignments; our model does not
form an explicit plan of the output tokens to generate. Nevertheless, we find this alignment-based planning
to improve performance significantly in several tasks, including character-level NMT. Planning can also
be applied explicitly to generation in sequence-to-sequence tasks. For example, recent work by Bahdanau
et al. (2016) on actor-critic methods for sequence prediction can be seen as this kind of generative planning.

We evaluate our model and report results on character-level translation tasks from WMT’15 for English
to German, English to Finnish, and English to Czech language pairs. On almost all pairs we observe
improvements over a baseline that represents the state-of-the-art in neural character-level translation. In
our NMT experiments, our model outperforms the baseline despite using significantly fewer parameters
and converges faster in training. We also show that our model performs better than strong baselines on
the algorithmic task of finding Eulerian circuits in random graphs and the task of natural-language question
generation from a document and target answer.

2 Related Works

Existing sequence-to-sequence models with attention have focused on generating the target sequence by
aligning each generated output token to another token in the input sequence. This approach has proven
successful in neural machine translation (Bahdanau et al., 2016) and has recently been adapted to several
other applications, including speech recognition (Chan et al., 2015) and image caption generation (Xu
et al., 2015). In general these models construct alignments using a simple MLP that conditions on the
decoder’s internal state. In our work we integrate a planning mechanism into the alignment function.

There have been several earlier proposals for different alignment mechanisms: for instance, Yang et al.
(2016) developed a hierarchical attention mechanism to perform document-level classification, while Luo
et al. (2016) proposed an algorithm for learning discrete alignments between two sequences using policy
gradients (Williams, 1992).

Silver et al. (2016) used a planning mechanism based on Monte Carlo tree search with neural networks
to train reinforcement learning (RL) agents on the game of Go. Most similar to our work, Vezhnevets
et al. (2016) developed a neural planning mechanism, called the strategic attentive reader and writer
(STRAW), that can learn high-level temporally abstracted macro-actions. STRAW uses an action plan
matrix, which represents the sequences of actions the model plans to take, and a commitment plan
vector, which determines whether to commit an action or recompute the plan. STRAW’s action plan and
commitment plan are stochastic and the model is trained with RL. Our model computes an alignment plan
rather than an action plan, and both its alignment matrix and commitment vector are deterministic and
end-to-end trainable with backpropagation.

2

Our experiments focus on character-level neural machine translation because learning alignments for long
sequences is difficult for existing models. This effect can be more pronounced in character-level NMT,
since sequences of characters are longer than corresponding sequences of words. Furthermore, to learn
a proper alignment between sequences a model often must learn to segment them correctly, a process
suited to planning. Previously, Chung et al. (2016) and Lee et al. (2016) addressed the character-level
machine translation problem with architectural modifications to the encoder and the decoder. Our model
is the first we are aware of to tackle the problem through planning.

3 Planning for Sequence-to-Sequence Learning

We now describe how to integrate a planning mechanism into a sequence-to-sequence architecture with
attention (Bahdanau et al., 2015). Our model first creates a plan, then computes a soft alignment based on the
plan, and generates at each time-step in the decoder. We refer to our model as PAG (Plan-Attend-Generate).

3.1 Notation and Encoder

As input our model receives a sequence of tokens,X=(x0,···,x|X|), where |X| denotes the length ofX. It
processes these with the encoder, a bidirectional RNN. At each input position i we obtain annotation vector
hi by concatenating the forward and backward encoder states,hi=[h→i ;h←i], whereh→i denotes the hidden
state of the encoder’s forward RNN and h←i denotes the hidden state of the encoder’s backward RNN.

Through the decoder the model predicts a sequence of output tokens, Y =(y1,···,y|Y |). We denote by
st the hidden state of the decoder RNN generating the target output token at time-step t.

3.2 Alignment and Decoder

Our goal is a mechanism that plans which parts of the input sequence to focus on for the next k

time-steps of decoding. For this purpose, our model computes an alignment plan matrix At ∈R
k×|X|

and commitment plan vector ct∈R
k at each time-step. Matrix At stores the alignments for the current

and the next k−1 timesteps; it is conditioned on the current input, i.e. the token predicted at the previous
time-step, yt, and the current context ψt, which is computed from the input annotations hi. Each row
of At gives the logits for a probability vector over the input annotation vectors. The first row gives the
logits for the current time-step, t, the second row for the next time-step, t+1, and so on. The recurrent
decoder function, fdec-rnn(·), receives st−1, yt, ψt as inputs and computes the hidden state vector

st=fdec-rnn(st−1,yt,ψt). (1)

Context ψt is obtained by a weighted sum of the encoder annotations,

ψt=

|X|
∑

i

αtihi, (2)

where the soft-alignment vector αt=softmax(At[0])∈R
|X| is a function of the first row of the alignment

matrix. At each time-step, we compute a candidate alignment-plan matrix Āt whose entry at the ith row is

Āt[i]=falign(st−1, hj, β
i
t, yt), (3)

where falign(·) is an MLP and βit denotes a summary of the alignment matrix’s ith row at time t−1. The

summary is computed using an MLP, fr(·), operating row-wise on At−1: βit=fr(At−1[i]).

The commitment plan vector ct governs whether to follow the existing alignment plan, by shifting it forward
from t−1, or to recompute it. Thus, ct represents a discrete decision. For the model to operate discretely,
we use the recently proposed Gumbel-Softmax trick (Jang et al., 2016; Maddison et al., 2016) in conjunction
with the straight-through estimator (Bengio et al., 2013) to backpropagate through ct.

1 The model further
learns the temperature for the Gumbel-Softmax as proposed in (Gulcehre et al., 2017). Both the commitment
vector and the action plan matrix are initialized with ones; this initialization is not modified through training.

1We also experimented with training ct using REINFORCE (Williams, 1992) but found that Gumbel-Softmax
led to better performance.

3

Alignment Plan

Matrix

tokens in the

source

steps to plan ahead (k)

At

Commitment plan ct

ht

Tx

Softmax()

+ ψt

At[0]

yt

st−1

s0t

Figure 1: Our planning mechanism in a sequence-to-sequence model that learns to plan and execute
alignments. Distinct from a standard sequence-to-sequence model with attention, rather than using a
simple MLP to predict alignments our model makes a plan of future alignments using its alignment-plan
matrix and decides when to follow the plan by learning a separate commitment vector. We illustrate the
model for a decoder with two layers s′t for the first layer and the st for the second layer of the decoder.
The planning mechanism is conditioned on the first layer of the decoder (s′t).

Alignment-plan update Our decoder updates its alignment plan as governed by the commitment plan.
We denote by gt the first element of the discretized commitment plan c̄t. In more detail, gt= c̄t[0], where
the discretized commitment plan is obtained by setting ct’s largest element to 1 and all other elements
to 0. Thus, gt is a binary indicator variable; we refer to it as the commitment switch. When gt=0, the
decoder simply advances the time index by shifting the action plan matrix At−1 forward via the shift
function ρ(·). When gt=1, the controller reads the action-plan matrix to produce the summary of the
plan, βit. We then compute the updated alignment plan by interpolating the previous alignment plan matrix
At−1 with the candidate alignment plan matrix Āt. The mixing ratio is determined by a learned update

gate ut∈R
k×|X|, whose elements uti correspond to tokens in the input sequence and are computed by

an MLP with sigmoid activation, fup(·):

uti=fup(hi, st−1),

At[:,i]=(1−uti)⊙At−1[:,i]+uti⊙Āt[:,i].

To reiterate, the model only updates its alignment plan when the current commitment switch gt is active.
Otherwise it uses the alignments planned and committed at previous time-steps.

Commitment-plan update The commitment plan also updates when gt becomes 1. If gt is 0, the
shift function ρ(·) shifts the commitment vector forward and appends a 0-element. If gt is 1, the model
recomputes ct using a single layer MLP, fc(·), followed by a Gumbel-Softmax, and c̄t is recomputed
by discretizing ct as a one-hot vector:

ct=gumbel_softmax(fc(st−1)), (4)

c̄t=one_hot(ct). (5)

We provide pseudocode for the algorithm to compute the commitment plan vector and the action plan
matrix in Algorithm 1. An overview of the model is depicted in Figure 1.

3.2.1 Alignment Repeat

In order to reduce the model’s computational cost, we also propose an alternative to computing the
candidate alignment-plan matrix at every step. Specifically, we propose a model variant that reuses the

4

Algorithm 1: Pseudocode for updating the alignment plan and commitment vector.

for j∈{1,···|X|} do
for t∈{1,···|Y |} do

if gt=1 then
ct=softmax(fc(st−1))

β
j
t =fr(At−1[j]) {Read alignment plan}

Āt[i]=falign(st−1, hj, β
j
t , yt) {Compute candidate alignment plan}

utj=fup(hj, st−1, ψt−1) {Compute update gate}
At = (1 − utj)⊙At−1+utj⊙Āt {Update alignment plan}

else
At=ρ(At−1) {Shift alignment plan}
ct=ρ(ct−1) {Shift commitment plan}

end if
Compute the alignment as αt=softmax(At[0])

end for
end for

alignment vector from the previous time-step until the commitment switch activates, at which time the
model computes a new alignment vector. We call this variant repeat, plan, attend, and generate (rPAG).
rPAG can be viewed as learning an explicit segmentation with an implicit planning mechanism in an
unsupervised fashion. Repetition can reduce the computational complexity of the alignment mechanism
drastically; it also eliminates the need for an explicit alignment-plan matrix, which reduces the model’s
memory consumption also. We provide pseudocode for rPAG in Algorithm 2.

Algorithm 2: Pseudocode for updating the repeat alignment and commitment vector.

for j∈{1,···|X|} do
for t∈{1,···|Y |} do

if gt=1 then
ct=softmax(fc(st−1,ψt−1))
αt=softmax(falign(st−1, hj, yt))

else
ct=ρ(ct−1) {Shift the commitment vector ct−1}
αt=αt−1 {Reuse the old the alignment}

end if
end for

end for

3.3 Training

We use a deep output layer (Pascanu et al., 2013a) to compute the conditional distribution over output tokens,

p(yt|y<t,x)∝y⊤t exp(Wofo(st,yt−1,ψt)), (6)

where Wo is a matrix of learned parameters and we have omitted the bias for brevity. Function fo is
an MLP with tanh activation.

The full model, including both the encoder and decoder, is jointly trained to minimize the (conditional)
negative log-likelihood

L=−
1

N

N
∑

n=1

logpθ(y
(n)|x(n)),

where the training corpus is a set of (x(n),y(n)) pairs and θ denotes the set of all tunable parameters.
As noted by Vezhnevets et al. (2016), the proposed model can learn to recompute very often, which
decreases the utility of planning. To prevent this behavior, we introduce a loss that penalizes the model
for committing too often,

Lcom=λcom

|X|
∑

t=1

k
∑

i=0

||
1

k
−cti||

2
2, (7)

where λcom is the commitment hyperparameter and k is the timescale over which plans operate.

5

(a)

(b) T a t s ä c h l i c h i d e n t i f i z i e r t e n r e p u b l i k a n i s c h e R e c h t s a n w ä l t e i n e i n e m J a h r z e h n t n u r 3 0 0 F ä l l e v o n W a h l b e t r u g i n d e n U S A .

Indeed
,

Republican
lawyers

identified
only
300

cases
of

electoral
fraud

in
the

United
States

in
a

decade
.

(c)

Figure 2: We visualize the alignments learned by PAG in (a), rPAG in (b), and our baseline model with
a 2-layer GRU decoder using h2 for the attention in (c). As depicted, the alignments learned by PAG
and rPAG are smoother than those of the baseline. The baseline tends to put too much attention on the
last token of the sequence, defaulting to this empty location in alternation with more relevant locations.
Our model, however, places higher weight on the last token usually when no other good alignments exist.
We observe that rPAG tends to generate less monotonic alignments in general.

4 Experiments

Our baseline is the encoder-decoder architecture with attention described in Chung et al. (2016),
wherein the MLP that constructs alignments conditions on the second-layer hidden states, h2, in the
two-layer decoder. The integration of our planning mechanism is analogous across the family of attentive
encoder-decoder models, thus our approach can be applied more generally. In all experiments below,
we use the same architecture for our baseline and the (r)PAG models. The only factor of variation is
the planning mechanism. For training all models we use the Adam optimizer with initial learning rate
set to 0.0002. We clip gradients with a threshold of 5 (Pascanu et al., 2013b) and set the number of
planning steps (k) to 10 throughout. In order to backpropagate through the alignment-plan matrices and
the commitment vectors, the model must maintain these in memory, increasing the computational overhead
of the PAG model. However, rPAG does not suffer from these computational issues.

4.1 Algorithmic Task

We first compared our models on the algorithmic task from Li et al. (2015) of finding the “Eulerian
Circuits” in a random graph. The original work used random graphs with 4 nodes only, but we found
that both our baseline and the PAG model solve this task very easily. We therefore increased the number
of nodes to 7. We tested the baseline described above with hidden-state dimension of 360, and the same
model augmented with our planning mechanism. The PAG model solves the Eulerian Circuits problem
with 100% absolute accuracy on the test set, indicating that for all test-set graphs, all nodes of the circuit
were predicted correctly. The baseline encoder-decoder architecture with attention performs well but
significantly worse, achieving 90.4% accuracy on the test set.

4.2 Question Generation

SQUAD (Rajpurkar et al., 2016) is a question answering (QA) corpus wherein each sample is a (document,
question, answer) triple. The document and the question are given in words and the answer is a
span of word positions in the document. We evaluate our planning models on the recently proposed
question-generation task (Yuan et al., 2017), where the goal is to generate a question conditioned on a
document and an answer. We add the planning mechanism to the encoder-decoder architecture proposed
by Yuan et al. (2017). Both the document and the answer are encoded via recurrent neural networks, and

6

the model learns to align the question output with the document during decoding. The pointer-softmax
mechanism (Gulcehre et al., 2016) is used to generate question words from either a shortlist vocabulary
or by copying from the document. Pointer-softmax uses the alignments to predict the location of the word
to copy; thus, the planning mechanism has a direct influence on the decoder’s predictions.

We used 2000 examples from SQUAD’s training set for validation and used the official development set
as a test set to evaluate our models. We trained a model with 800 units for all GRU hidden states 600
units for word embedding. On the test set the baseline achieved 66.25 NLL while PAG got 65.45 NLL.
We show the validation-set learning curves of both models in Figure 3.

0 5 10 15
1200x Updates

54

56

58

60

62
N

LL

Baseline
PAG

Figure 3: Learning curves for question-generation models on our development set. Both models have
the same capacity and are trained with the same hyperparameters. PAG converges faster than the baseline
with better stability.

4.3 Character-level Neural Machine Translation

Character-level neural machine translation (NMT) is an attractive research problem (Lee et al., 2016;
Chung et al., 2016; Luong and Manning, 2016) because it addresses important issues encountered in
word-level NMT. Word-level NMT systems can suffer from problems with rare words (Gulcehre et al.,
2016) or data sparsity, and the existence of compound words without explicit segmentation in some
language pairs can make learning alignments between different languages and translations more difficult.
Character-level neural machine translation mitigates these issues.

In our NMT experiments we use byte pair encoding (BPE) (Sennrich et al., 2015) for the source sequence
and characters at the target, the same setup described in Chung et al. (2016). We also use the same
preprocessing as in that work.2 We present our experimental results in Table 1. Models were tested on
the WMT’15 tasks for English to German (En→De), English to Czech (En→Cs), and English to Finnish
(En→Fi) language pairs. The table shows that our planning mechanism improves translation performance
over our baseline (which reproduces the results reported in (Chung et al., 2016) to within a small margin).
It does this with fewer updates and fewer parameters. We trained (r)PAG for 350K updates on the training
set, while the baseline was trained for 680K updates. We used 600 units in (r)PAG’s encoder and decoder,
while the baseline used 512 in the encoder and 1024 units in the decoder. In total our model has about
4M fewer parameters than the baseline. We tested all models with a beam size of 15.

As can be seen from Table 1, layer normalization (Ba et al., 2016) improves the performance of PAG
significantly. However, according to our results on En→De, layer norm affects the performance of rPAG
only marginally. Thus, we decided not to train rPAG with layer norm on other language pairs.

In Figure 2, we show qualitatively that our model constructs smoother alignments. At each word that the
baseline decoder generates, it aligns the first few characters to a word in the source sequence, but for the re-
maining characters places the largest alignment weight on the last, empty token of the source sequence. This
is because the baseline becomes confident of which word to generate after the first few characters, and it gen-
erates the remainder of the word mainly by relying on language-model predictions. We observe that (r)PAG
converges faster with the help of the improved alignments, as illustrated by the learning curves in Figure 4.

2Our implementation is based on the code available at https://github.com/nyu-dl/dl4mt-cdec

7

https://github.com/nyu-dl/dl4mt-cdec

Model Layer Norm Dev Test 2014 Test 2015

En→De

Baseline ✗ 21.57 21.33 23.45

Baseline† ✗ 21.4 21.16 22.1

Baseline† ✓ 21.65 21.69 22.55

PAG
✗ 21.92 21.93 22.42
✓ 22.44 22.59 23.18

rPAG
✗ 21.98 22.17 22.85
✓ 22.33 22.35 22.83

En→Cs

Baseline ✗ 17.68 19.27 16.98

Baseline† ✓ 19.1 21.35 18.79

PAG
✗ 18.9 20.6 18.88
✓ 19.44 21.64 19.48

rPAG ✗ 18.66 21.18 19.14

En→Fi

Baseline ✗ 11.19 - 10.93

Baseline† ✓ 11.26 - 10.71

PAG
✗ 12.09 - 11.08
✓ 12.85 - 12.15

rPAG ✗ 11.76 - 11.02

Table 1: The results of different models on the WMT’15 tasks for English to German, English to
Czech, and English to Finnish language pairs. We report BLEU scores of each model computed via the
multi-blue.perl script. The best-score of each model for each language pair appears in bold-face. We use
newstest2013 as our development set, newstest2014 as our "Test 2014" and newstest2015 as our "Test
2015" set.

(

†
)

denotes the results of the baseline that we trained using the hyperparameters reported in
Chung et al. (2016) and the code provided with that paper. For our baseline, we only report the median
result, and do not have multiple runs of our models. On WMT’14 and WMT’15 for EnrightarrowDe
character-level NMT, Kalchbrenner et al. (2016) have reported better results with deeper auto-regressive
convolutional models (Bytenets), 23.75 and 26.26 respectively.

50 100 150 200 250 300 350 400

100x Updates

102

6×101

2×102

3×102

N
LL

PAG
PAG + LayerNorm
rPAG
rPAG + LayerNorm
Baseline

Figure 4: Learning curves for different models on WMT’15 for En→De. Models with the planning
mechanism converge faster than our baseline (which has larger capacity).

5 Conclusion

In this work we addressed a fundamental issue in neural generation of long sequences by integrating
planning into the alignment mechanism of sequence-to-sequence architectures. We proposed two different
planning mechanisms: PAG, which constructs explicit plans in the form of stored matrices, and rPAG,
which plans implicitly and is computationally cheaper. The (r)PAG approach empirically improves
alignments over long input sequences. We demonstrated our models’ capabilities through results on

8

character-level machine translation, an algorithmic task, and question generation. In machine translation,
models with planning outperform a state-of-the-art baseline on almost all language pairs using fewer
parameters. We also showed that our model outperforms baselines with the same architecture (minus
planning) on question-generation and algorithmic tasks. The introduction of planning improves training
convergence and potentially the speed by using the alignment repeats.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450
.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2016. An actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to
align and translate. International Conference on Learning Representations (ICLR) .

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432 .

William Chan, Navdeep Jaitly, Quoc V Le, and Oriol Vinyals. 2015. Listen, attend and spell. arXiv preprint
arXiv:1508.01211 .

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014a. On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 .

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014b. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078 .

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio. 2016. A character-level decoder without explicit segmentation
for neural machine translation. arXiv preprint arXiv:1603.06147 .

Thomas G Dietterich. 2000. Hierarchical reinforcement learning.
Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. 2016. Pointing the unknown

words. arXiv preprint arXiv:1603.08148 .
Caglar Gulcehre, Sarath Chandar, and Yoshua Bengio. 2017. Memory augmented neural networks with wormhole

connections. arXiv preprint arXiv:1701.08718 .
Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization with gumbel-softmax. arXiv preprint

arXiv:1611.01144 .
Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray Kavukcuoglu.

2016. Neural machine translation in linear time. arXiv preprint arXiv:1610.10099 .
Jason Lee, Kyunghyun Cho, and Thomas Hofmann. 2016. Fully character-level neural machine translation without

explicit segmentation. arXiv preprint arXiv:1610.03017 .
Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated graph sequence neural networks. arXiv

preprint arXiv:1511.05493 .
Yuping Luo, Chung-Cheng Chiu, Navdeep Jaitly, and Ilya Sutskever. 2016. Learning online alignments with

continuous rewards policy gradient. arXiv preprint arXiv:1608.01281 .
Minh-Thang Luong and Christopher D Manning. 2016. Achieving open vocabulary neural machine translation with

hybrid word-character models. arXiv preprint arXiv:1604.00788 .
Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2016. The concrete distribution: A continuous relaxation of

discrete random variables. arXiv preprint arXiv:1611.00712 .
Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2013a. How to construct deep recurrent

neural networks. arXiv preprint arXiv:1312.6026 .
Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013b. On the difficulty of training recurrent neural networks.

ICML (3) 28:1310–1318.
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine

comprehension of text. arXiv preprint arXiv:1606.05250 .
Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural machine translation of rare words with subword

units. arXiv preprint arXiv:1508.07909 .
David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian

Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game of go
with deep neural networks and tree search. Nature 529(7587):484–489.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Advances
in neural information processing systems. pages 3104–3112.

Alexander Vezhnevets, Volodymyr Mnih, John Agapiou, Simon Osindero, Alex Graves, Oriol Vinyals, and Koray
Kavukcuoglu. 2016. Strategic attentive writer for learning macro-actions. In Advances in Neural Information
Processing Systems. pages 3486–3494.

Ronald J Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning 8(3-4):229–256.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua
Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. In International

9

Conference on Machine Learning. pages 2048–2057.
Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical attention

networks for document classification. In Proceedings of NAACL-HLT. pages 1480–1489.
Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessandro Sordoni, Philip Bachman, Sandeep Subramanian, Saizheng

Zhang, and Adam Trischler. 2017. Machine comprehension by text-to-text neural question generation. arXiv
preprint arXiv:1705.02012 .

10

