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Abstract
This paper describes an application of APE (the
Atlas Planning Engine), an integrated planning and
execution system at the heart of the Atlas dialogue
management system. APE controls a mixed-
initiative dialogue between a human user and a
host system, where turns in the ‘conversation’ may
include graphical actions and/or written text. APE
has full unification and can handle arbitrarily
nested discourse constructs, making it more
powerful than dialogue managers based on finite-
state machines. We illustrate this work by
describing Atlas-Andes, an intelligent tutoring
system built using APE with the Andes physics
tutor as the host.

1 Introduction

The purpose of the Atlas project is to enlarge the
scope of student interaction in an intelligent
tutoring system (ITS) to include coherent
conversational sequences, including both written
text and GUI actions. A key component of Atlas
is APE, the Atlas Planning Engine, a “just-in-
time” planner specialized for easy construction
and quick generation of hierarchically organized
dialogues. APE is a domain- and task-independent
system. Although to date we have used APE as a
dialogue manager for intelligent tutoring systems,
APE could also be used to manage other types of
human-computer conversation, such as an advice-
giving system or an interactive help system.

Planning is an essential component of a
dialogue-based ITS. Although there are many
reasons for using natural language in an ITS, as
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soon as the student gives an unexpected response
to a tutor question, the tutor needs to be able to
plan in order to achieve its goals as well as
respond appropriately to the student’s statement.
Yet classical planning is inappropriate for
dialogue generation precisely because it assumes
an unchanging world. A more appropriate
approach is the “practical reason” approach
pioneered by Bratman (1987, 1990). According to
Bratman, human beings maintain plans and prefer
to follow them, but they are also capable of
changing the plans on the fly when needed.
Bratman’s approach has been introduced into
computer science under the name of reactive
planning (Georgeff and Ingrand 1989, Wilkins et
al. 1995).

In this paper we discuss the rationale for the use
of reactive planning as well as the use of the
hierarchical task network (HTN) style of plan
operators. Then we describe APE (the Atlas
Planning Engine), a dialogue planner we have
implemented to embody the above concepts. We
demonstrate the use of APE by showing how we
have used it to add a dialogue capability to an
existing ITS, the Andes physics tutor. By showing
dialogues that Atlas-Andes can generate, we
demonstrate the advantages of this architecture
over the finite-state machine approach to dialogue
management.

2 Integrated planning and execution for
dialogue generation

2.1 ‘Practical reason’ and the BDI model

For an ITS, planning is required in order to ensure
a coherent conversation as well as to accomplish
tutorial goals. But it is impossible to plan a whole
conversation in advance when the student can
respond freely at every turn, just as human beings
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cannot plan their daily lives in advance because of
possible changes in conditions. Classical planning
algorithms are inappropriate because the tutor
must be able to change plans based on the
student’s responses.

For this reason we have adopted the ideas of the
philosopher Michael Bratman (1987, 1990).
Bratman uses the term “practical reason” to
describe his analysis since he is concerned with
how to reason about practical matters. For human
beings, planning is required in order to
accomplish one’s goals. Bratman’s key insight is
that human beings tend to follow a plan once they
have one, although they are capable of dropping
an intention or changing a partial plan when
necessary. In other words, human beings do not
decide what to do from scratch at each turn.

Bratman and others who have adopted his
approach use a tripartite mental model that
includes beliefs, desires and intentions (Bratman,
Israel and Pollack 1988, Pollack 1992, Georgeff
et al. 1998), hence the name “BDI model.”
Beliefs, which are uninstantiated plans in the
speaker’s head, are reified by the plan library.
Desires are expressed as the agent’s goals.
Intentions, or plan steps that the agent has
committed to but not yet acted on, are stored in an
agenda. Thus the agent’s partial plan for
achieving a goal is a network of intentions. A plan
can be left in a partially expanded state until it is
necessary to refine it further.

2.2 Implementation via reactive planning

Bratman’s approach has been elaborated in a
computer science context by subsequent
researchers (Bratman, Israel and Pollack 1988,
Pollack 1992, Georgeff et al. 1998). Reactive
planning (Georgeff and Ingrand 1989, Wilkins et
al. 1995), originally known as “integrated
planning and execution,” is one way of
implementing Bratman’s model. Originally
developed for real-time control of the space
shuttle, reactive planning has since been used in a
variety of other domains. For the Atlas project we
have developed a reactive planner called APE
(Atlas Planning Engine) which uses these ideas to
conduct a conversation. After each student
response, the planner can choose to continue with
its previous intention or change something in the
plan to respond better to the student’s utterance.

Like most reactive planners, APE is a
hierarchical task network (HTN) style planner
(Yang 1990, Erol, Hendler and Nau 1994).
Hierarchical decomposition asserts that each goal
can be achieved via a series of subgoals instead of
relying on means-end reasoning. Hierarchical
decomposition is more appropriate to dialogue
generation for a number of reasons. First,
decomposition is better suited to the type of large-
scale dialogue planning required in a real-world
tutoring system, as it is easier to establish what a
human speaker will say in a given situation than
to be able to understand why in sufficient detail
and generality to do means-end planning. Second,
Hierarchical decomposition minimizes search
time. Third, our dialogues are task-oriented and
have a hierarchical structure (Grosz and Sidner
1986). In such a case, matching the structure of
the domain simplifies operator development
because they can often be derived from transcripts
of human tutoring sessions. The hierarchy
information is also useful in determining
appropriate referring expressions. Fourth, inter-
leaved planning and execution is important for
dialogue generation because we cannot predict the
human user’s future utterances. In an HTN-based
system, it is straightforward to implement
interleaved planning and execution because one
only needs to expand the portion of the plan that
is about to be executed. Finally, the conversation
is in a certain sense the trace of the plan. In other
words, we care much more about the actions
generated by the planner than the states involved,
whether implicitly or explicitly specified.
Hierarchical decomposition provides this trace
naturally.

3 Background: the Andes physics tutor

Andes (Gertner, Conati and VanLehn 1998) is an
intelligent tutoring system in the domain of first-
year college physics. Andes teaches via coached
problem solving (VanLehn 1996). In coached
problem solving, the tutoring system tracks the
student as the latter attempts to solve a problem.
If the student gets stuck or deviates too far from a
correct solution path, the tutoring system provides
hints and other assistance.

A sample Andes problem is shown in mid-
solution in Figure 1. A physics problem is given
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in the upper-left corner with a picture below it.
Next to the picture the student has begun to
sketch the vectors involved using the GUI buttons
along the left-hand edge of the screen. As the
student draws vectors, Andes and the student
cooperatively fill in the variable definitions in the
upper-right corner. Later the student will use the
space below to write equations connecting the
variables.

In this example, the elevator is decelerating, so
the acceleration vector should face the opposite
direction from the velocity vector. (If the
acceleration vector went the same direction as the
velocity vector, the speed of the elevator would
increase and it would crash into the ground.) This
is an important issue in beginning physics; it
occurs in five Andes problems.

When such errors occur, Andes turns the
incorrect item red and provides hints to students
in the lower-left corner of the screen. A sample of
these hints, shown in the order a student would
encounter them, is shown in Fig. 2. But hints are
an output-only form of natural language; the

student can’t take the initiative or ask a question.
In addition, there is no way for the system to ask
the student a question or lead the student through
a multi-step directed line of reasoning. Thus there
is no way to use some of the effective rhetorical
methods used by skilled human tutors, such as
analogy and reductio ad absurdum. Current
psychological research suggests that active
methods, where students have to answer
questions, will improve the performance of
tutoring systems.

4 Structure of the Atlas Planning Engine

Figure 3 shows a sample plan operator. For
legibility, the key elements have been rendered in
English instead of in Lisp. The hiercx slot
provides a way for the planner to be aware of the
context in which a decomposition is proposed.
Items in the hiercx slot are instantiated and added
to the transient database only so long as the
operator which spawned them is in the agenda.

To initiate a planning session, the user invokes

Figure 1: Screen shot of the Andes physics tutor
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the planner with an initial goal. The system
searches the operator library to find all operators
whose goal field matches the next goal on the
agenda and whose filter conditions and precon-
ditions are satisfied. Goals are represented in
first-order logic without quantifiers and matched
via unification. Since APE is intended especially
for generation of hierarchically organized task-
oriented discourse, each operator has a multi-step
recipe in the style of Wilkins (1988). When a
match is found, the matching goal is removed
from the agenda and is replaced by the steps in
the recipe. APE has two kinds of primitive
actions; one ends a turn and the other doesn’t.

From the point of view of discourse generation,
the most important APE recipe items are those
allowing the planner to change the agenda when
necessary. These three types of recipe items make
APE more powerful than a classical planner.

• Fact: Evaluate a condition. If false, skip the
rest of the recipe. Fact is used to allow run-time

decision making by bypassing the rest of an
operator when circumstances change during its
execution. Fact can be used with retry-at to
implement a loop just as in Prolog.

• Retry-at: The purpose of retry-at is to allow
the planner to back up to a choice point and make
a new decision. It removes goals sequentially
from the top of the agenda, a full operator at a
time, until the supplied argument is false. Then it
restores the parent goal of the last operator
removed, so that further planning can choose a
new way to achieve it. Retry-at implements a
Prolog-like choice of alternatives, but it differs
from backtracking in that the new operator is
chosen based on conditions that apply when the
retry operation is executed, rather than on a list of
possible operators formed when the original
operator was chosen. For retry-at to be useful, the
author must provide multiple operators for the
same goal. Each operator must have a set of
preconditions enabling it to be chosen at the

(def-operator handle-same-direction
  :goal (...)
  :filter  ()
  :precond (...)
     ; We have asked a question about acceleration
     ; ... and the student has given an answer
     ; ... from which we can deduce that s/he thinks accel. and velocity go in
     ;     the same direction
     ; and we have not given the explanation below yet
  :recipe (...)
     ; Tell the student: "But if the acceleration went the same
         direction as the velocity, then the elevator would be speeding up."
     ; Mark that we are giving this explanation
     ; Tell the student that tutor is requesting another answer ("Try again.")
     ; Edit the agenda (using prune-replace) so that responding to another
         answer is at the top of the agenda
  :hiercx  ())

Figure 3: Sample plan operator

S: 〈draws acceleration vector in same direction as velocity〉
T: Wrong.
S: What’s wrong with that?
T: Think about the direction of the acceleration vector.
S: Please explain further.
T: Remember that the direction of acceleration is the direction of the change in velocity.
S: Please explain further.
T: The direction of the acceleration vector is straight up.
S: 〈draws acceleration vector correctly〉

Figure 2: Andes hint sequence formatted as dialogue
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appropriate time.

• Prune-replace: The intent of prune-replace is
to allow the planner to remove goals from the
agenda based on a change in circumstances. It
removes goals sequentially from the top of the
agenda, one at a time, until the supplied argument
becomes false. Then it replaces the removed goals
with an optional list of new goals. Prune-replace
allows a type of decision-making frequently used
in dialogue generation. When a conversation
partner does not give the expected response, one
would often like to remove the next goal from the
agenda and replace it with one or more
replacement goals. Prune-replace implements a
generalized version of this concept.

APE is domain-independent and communicates
with a host system via an API. As a partner in a
dialogue, it needs to obtain information from the
world as well as produce output turns.
Preconditions on plan operators can be used to
access information from external knowledge
sources. APE contains a recipe item type that can
be used to execute an external program such as a
call to a GUI interface. APE also has recipe items
allowing the user to assert and retract facts in a
knowledge base. Further details about the APE
planner can be found in (Freedman, 2000).

5 Implementation of Atlas-Andes

5.1 Architecture of Atlas-Andes

The first system we have implemented with APE
is a prototype Atlas-Andes system that replaces
the hints usually given for an incorrect
acceleration vector by a choice of generated
subdialogues. Figure 4 shows the architecture of
Atlas-Andes; any other system built with APE
would look similar. Robust natural language
understanding in Atlas-Andes is provided by
Rosé’s CARMEL system (Rosé 2000); it uses the
spelling correction algorithm devised by Elmi and
Evens (1998).

5.2 Structure of human tutorial dialogues

In an earlier analysis (Kim, Freedman and Evens
1998) we showed that a significant portion of
human-human tutorial dialogues can be modeled
with the hierarchical structure of task-oriented
dialogues (Grosz and Sidner 1986). Furthermore,
a main building block of the discourse hierarchy,
corresponding to the transaction level in
Conversation Analysis (Sinclair and Coulthard
1975), matches the tutoring episode defined by
VanLehn et  al. (1998). A tutoring episode
consists of the turns necessary to help the student
make one correct entry on the interface.

User
Interface

APE
Host

(Andes)

Plan
Library

Transient
Knowledge

Base

NLU
(CARMEL)

GUI
Interpreter

(Andes)

Figure 4: Interface between Atlas and host system
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To obtain empirical data for the Atlas-Andes
plan operators, we analyzed portions of a corpus
of human tutors helping students solve similar
physics problems. Two experienced tutors were
used. Tutor A was a graduate student in computer
science who had majored in physics; tutor B was
a professional physics tutor.

The complete corpus contained solutions to five
physics problems by 41 students each. We
analyzed every tutoring episode dealing with the
acceleration vector during deceleration, totaling
29 examples divided among 20 students and both
tutors. The tutors had very different styles.
Tutor A tended to provide encouragement rather
than content, making those transcripts less useful
for deriving an information-based approach.
Tutor B used an information-based approach, but
after one wrong answer tended to complete the
solution as a monologue. Largely following
tutor B’s approach to sequence and content, we
isolated six ways of teaching the student about
direction of acceleration.

5.3 Sample output and evaluation

Figure 5 shows an example of text that can be
generated by the Atlas-Andes system, showing an
analogy-based approach to teaching this content.
The operator library used to generate this text
could generate a combinatorially large number of
versions of this dialogue as well as selected
examples of other ways of teaching about
direction of acceleration.

This operator library used to generate this text
contained 111 plan operators, divided as follows:

Tutoring schemata     4     4%
Switching between schemata    5     4%
API and GUI handling   33   30%
Answer handling   35   31%
Domain-dep. lex. insertion   24   22%
Domain-indep. lex. insertion   10     9%
TOTAL 111 100%

We are currently working on components that will
allow us to increase the number of physics
concepts covered without a corresponding
increase in the number of operators. The schema
switching operators prevent the tutor from
repeating itself during a physics problem. They
could be reduced or eliminated by a general
discourse history component that tutoring schema
operators could refer to. Domain-dependent
lexical insertion refers to the choice of lexical
items such as car and east in the sample dialogue,
while domain-independent lexical insertion refers
to items such as OK and exactly. Both categories
could be eliminated, or at least severely reduced,
through the use of a text realization package.
Together that would provide a one-third reduction
in the number of operators needed. As the set of
API and GUI handling operators is fixed, that
would reduce by half the number of application
operators needed.

The largest remaining category of operators is
the answer handlers. These operators handle a
variety of answers for each of the five questions
that the system can ask. The answers we
recognize include categories such as “don’t
know” as well as specific answers (e.g. a direction
perpendicular to the correct answer) which we
recognize because the tutor has specific replies
for them. In order to reduce the number of

S: 〈draws acceleration vector in same direction as velocity〉
T: What is the definition of acceleration?
S: Don’t know.
T: OK, let’s try this. If a car was driving along east, which way would you have to push on it

to make it stop?
S: West.
T: Exactly. The opposite direction. So the net force goes the opposite direction, and so does

the acceleration. Try to draw the acceleration vector again now.
S: 〈draws acceleration vector correctly〉

Figure 5: Example of generated dialogue
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operators further, we must investigate more
general methods of handling student errors. In
particular, we plan to investigate error-classifying
predicates that apply to more than one question as
well as the use of intention-based predicates.
Since the system only covers one rule of physics,
albeit in a variety of ways, we plan to make some
of these efficiency improvements before adding
new rules of physics and testing it with users.

Preconditions for the operators in the plan
library utilize discourse or interaction history, the
current goal hierarchy, recent information such as
the tutor’s current goal and the student’s latest
response, shared information such as a model of
objects on the screen, and domain knowledge. As
an example of the latter, if the student draws an
acceleration vector which is incorrect but not
opposite to the velocity vector, a different
response will be generated.

5.4 Discussion

Many previous dialogue-based ITSs have been
implemented with finite-state machines, either
simple or augmented. In the most common finite
state model, each time the human user issues an
utterance, the processor reduces it to one of a
small number of categories. These categories
represent the possible transitions between states.
Thus history can be stored, and context
considered, only by expanding the number of
states. This approach puts an arbitrary restriction
on the amount of context or depth of
conversational nesting that can be considered.
More importantly, it misses the significant
generalization that these types of dialogues are
hierarchical: larger units contain repeated
instances of the same smaller units in different
sequences and instantiated with different values.
Furthermore, the finite-state machine approach
does not allow the author to drop one line of
attack and replace it by another without hard-
coding every possible transition.

It is also clear that the dialogue-based approach
has many benefits over the hint-sequence
approach. In addition to providing multi-step
teaching methods with new content, it can
respond flexibly to a variety of student answers at
each step and take context into account when
generating a reply.

6 Related work

Wenger (1987), still the chief textbook on ITSs,
states that using a global planner to control an ITS
is too inefficient to try. This is no longer true, if
indeed it ever was. Vassileva (1995) proposes a
system based on AND-OR graphs with a separate
set of rules for reacting to unexpected events.
Lehuen, Nicolle and Luzzati (1996) present a
method of dialogue analysis that produces
schemata very similar to ours. Earlier dialogue-
based ITSs that use augmented finite-state
machines or equivalent include CIRCSIM-Tutor
(Woo et al. 1991, Zhou et al. 1999) and the
system described by Woolf (1984). Cook (1998)
uses levels of finite-state machines. None of these
systems provides for predicates with variables or
unification.

7 Conclusions

In this paper we described APE, an integrated
planner and execution system that we have
implemented as part of the Atlas dialogue
manager. APE uses HTN-style operators and is
based on reactive planning concepts. Although
APE is intended largely for use in domains with
hierarchical, multi-turn plans, it can be used to
implement any conversation-based system, where
turns in the ‘conversation’ may include graphical
actions and/or text. We illustrated the use of APE
with an example from the Atlas-Andes physics
tutor. We showed that previous models based on
finite-state machines are insufficient to handle the
nested subdialogues and abandoned partial
subdialogues that occur in practical applications.
We showed how APE generated a sample
dialogue that earlier systems could not handle.
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