
Journal of Artificial Intelligence Research 44 (2012) 335-382 Submitted 03/12; published 06/12

Plan-based Policies for Efficient Multiple Battery Load Management

Maria Fox MARIA.FOX@KCL.AC.UK

Derek Long DEREK.LONG@KCL.AC.UK

Daniele Magazzeni DANIELE.MAGAZZENI@KCL.AC.UK

Department of Informatics

King’s College London

Strand, London WC2R 2LS, UK

Abstract

Efficient use of multiple batteries is a practical problem with wide and growing application.

The problem can be cast as a planning problem under uncertainty. We describe the approach we

have adopted to modelling and solving this problem, seen as a Markov Decision Problem, building

effective policies for battery switching in the face of stochastic load profiles.

Our solution exploits and adapts several existing techniques: planning for deterministic mixed

discrete-continuous problems and Monte Carlo sampling for policy learning. The paper describes

the development of planning techniques to allow solution of the non-linear continuous dynamic

models capturing the battery behaviours. This approach depends on carefully handled discretisa-

tion of the temporal dimension. The construction of policies is performed using a classification

approach and this idea offers opportunities for wider exploitation in other problems. The approach

and its generality are described in the paper.

Application of the approach leads to construction of policies that, in simulation, significantly

outperform those that are currently in use and the best published solutions to the battery manage-

ment problem. We achieve solutions that achieve more than 99% efficiency in simulation compared

with the theoretical limit and do so with far fewer battery switches than existing policies. Behaviour

of physical batteries does not exactly match the simulated models for many reasons, so to confirm

that our theoretical results can lead to real measured improvements in performance we also conduct

and report experiments using a physical test system. These results demonstrate that we can obtain

5%-15% improvement in lifetimes in the case of a two battery system.

1. Introduction

In this paper we describe an application of planning to the important problem of multiple battery

management. The paper is an extended and developed version of work originally presented at the

International Conference on Automated Planning and Scheduling (Fox, Long, & Magazzeni, 2011)

and, in particular, adds physical results to the work described in that paper.

An increasing number of systems depend on batteries for power supply, ranging from small mo-

bile devices to very large high-powered devices such as batteries used for local storage in electrical

substations. In many of these systems there are significant user-benefits, or engineering reasons, to

base the supply on multiple batteries, with load being switched between batteries by a control sys-

tem. In order to power such systems for the longest time possible, it is necessary to devise switching

strategies that extract the maximum possible lifetime out of the batteries. We show how planning is

used as the basis of a highly efficient switching strategy.

Due to the physical and chemical properties of batteries, it is possible to extract a greater pro-

portion of the energy stored in a single battery of capacity C than of that stored in n batteries each

c©2012 AI Access Foundation. All rights reserved.

FOX, LONG & MAGAZZENI

of capacity C/n, for n > 1. Throughout this paper, when we refer to the efficiency of a switching

strategy in the use of multiple batteries, we are talking about the proportion of the charge we extract

from the batteries to service a load, compared with servicing the same load from a single battery

with capacity equal to the combined collection of batteries and equivalent physical properties. If

this proportion is very high, for example: over 90%, then the switching strategy can be considered

highly efficient.

The key to efficient use of multiple batteries lies in the design of effective policies for the

management of the switching of load between them. We are concerned with the situation in which

the load can be serviced entirely by one of a suite of batteries at a time, so that the charge of that

battery drains while the other batteries’ charge levels remain static. This problem is distinct from

the problem of managing cells within a single battery, where the objective is usually to keep the

charge in the cells level. Batteries exhibit the phenomenon of recovery, which is a consequence of

the chemical properties of a battery: as charge is drawn from a battery, the stored charge is released

by a chemical reaction, which takes time to replenish the charge. In general, charge will be drawn

from a battery faster than the reaction can replenish it and this can lead to a battery appearing to

become dead when, in fact, it still contains stored charge. Therefore, more efficient use of multiple

batteries can be achieved by exploiting recovery. By allowing the battery to rest, the reaction can

replenish the charge and the battery become functional once again. Thus, efficient use of multiple

batteries involves carefully timing the use and rest periods. Determining this timing can be seen as

a planning problem.

The paper is organised as follows. We begin by presenting the multiple battery usage problem

in detail, and describing the battery model we use.

In Section 4 we describe the approach we have adopted for solving the deterministic version of

the problem, where we assume that we know the load profile to service. We provide a PDDL+

encoding of the problem and we describe a planning technique for dealing with the continuity

involved in the domain. We complete this section by comparing the performance of plan-based

solutions with the best policies currently considered for multiple battery management.

In Section 5 we show how the high quality plans obtained for the deterministic problems can

be used to learn an efficient policy for the general case where the load profiles are not known in

advance. We describe the classification process we have used and we evaluate the performance of

the policy when servicing stochastic load profiles. Related work is then discussed in Section 6.

In Section 7 we present the details of a physical experiment, using 6 Volt lead acid batteries,

which we conducted in order to confirm our simulation results. We describe the experimental setup

and, in the interests of reproducibility, the parameter estimation process we have followed. We then

report our experimental results and discuss their significance.

Section 8 outlines our plans for future work and Section 9 concludes the paper.

2. Motivations

Many electrically powered systems rely on large, heavy batteries to supply adequate levels of power

and current. If the power requirements of these devices can be supplied by multiple lightweight

batteries, coordinated to supply the same load as would typically be supplied by a much larger

battery, this could significantly change the way these devices are used and the range of applications

to which they might be suited.

336

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

Examples of powered systems that could benefit from distribution of the battery power include

externally powered electric prosthetics. Prostheses powered by electric motors can be more func-

tional and more attractive than body-powered prosthetics, but they can be heavy and expensive. The

power requirements of a capable prosthetic arm, combining an elbow with a dexterous hand, neces-

sitate a large, and hence heavy, battery. The high torque motors required to drive a prosthetic elbow

require high voltages and current, while modern dexterous hands require significantly more current

than did the traditional single-motor electric hands.

While a primitive prosthetic arm could run both the elbow and the hand on a 1 Amp Hour battery,

dexterous hands require batteries with as much as 2 Amp Hour capacities, and if the hand and the

elbow are to be run off the same battery, then even more current and larger capacities are needed

with a consequent increase in weight and heat. The high power demand requires that either multiple

batteries are carried or batteries are frequently recharged or replaced. The weight of externally

powered prostheses is a common source of dissatisfaction amongst users and the placement of

batteries to minimise the weight effects is an important part of the prosthetic design. If the battery

power can be distributed around the body, with the power requirements being met by carefully

coordinated multiple independent batteries of the same power but much smaller capacity, then the

weight issue can be made less significant to the user, and the heat generated by the batteries can also

be reduced making them more comfortable to wear.

The same benefits can potentially be obtained in any situation where batteries have to be car-

ried in order to power portable electrical devices. Military personnel currently carry about 20kg of

batteries into the field to power their communication equipment, vision and sensing systems and

other electronic devices. Robotic devices are often battery powered and rely on carrying large num-

bers of batteries to maximise operational lifetime. Electric cars typically carry multiple batteries,

although they must sometimes be used in series to maximise power availability. This creates differ-

ent constraints on the way they can be used from those we consider in this paper. However, as the

technology develops, opportunities will arise for exploiting partitioned batteries in electric vehicles.

One of the advantages of being able to distribute battery power across multiple independent

batteries is the ability to swap batteries out as they die, requiring a few small battery spares to be

carried instead of one large one. This “hot-swapping” capability could have an important role to

play in mobile computing devices where, instead of having to recharge the battery every 6 hours or

so, continuous power over a longer period could be achieved by selectively replacing spent cells.

The major motivation for the work we have done is therefore to obtain close-to-optimal battery

performance for high-powered devices, while benefitting from the ability to distribute the weight

and heat production.

3. The Multiple Battery Usage Problem

The multiple battery usage planning problem has been explored by several authors, from an electri-

cal engineering perspective, for example in the work of Benini et al. (2003) and Rao et al. (2003),

and also from a scheduling perspective (Jongerden, Haverkort, Bohnenkamp, & Katoen, 2009) and

an optimisation perspective (Wang & Cassandras, 2011) (in the latter, the simplifying assumption

that load can be shared arbitrarily between batteries is made). Benini et al. construct a very accurate

battery model, parameterising it to capture lithium-ion, cadmium-nickel and lead-acid battery types,

and show how hand constructed policies can achieve efficiency, relative to a single battery, between

70% and 97.5%. To achieve this, the policy is constructed to select a new battery whenever the

337

FOX, LONG & MAGAZZENI

voltage of the battery currently servicing a load drops below a certain threshold. The next battery is

selected according to one of four alternative policies (Benini et al., 2003):

• Vmax: select the battery pack with highest state of charge.

• Vmin: select the battery pack with lowest state of charge.

• Tmax: select the battery pack that has been unused for the longest time.

• Tmin: select the battery that has been unused for the shortest time.

The authors show that Vmax is the best of these policies, tested on up to four batteries. In the general

case of n batteries, the Vmax is referred to as best-of-n.

Jongerden et al. (2009) uses a model checking strategy, based on UPPAAL, to schedule battery

use given a known load profile. The approach is based on the use of a different battery model,

the Kinetic Battery Model, discussed in more detail below. This is a non-linear continuous model

and the authors treat it by discretisation and scheduling to a horizon. This approach allows them

to find highly effective schedules, but it does not scale well because of the need to use a fine-

grained discretisation of the temporal dimension. It is worth emphasising, since it contrasts with

our approach, that Jongerden et al. work with a fixed size discretisation of time, allowing them to

focus on scheduling the resources (batteries) into the load periods.

In deployed systems, the standard policies are typically static, based on rapid switching be-

tween available batteries. In fact, an optimal use of multiple batteries can be achieved theoretically

by switching between them at extremely high frequency, when the behaviour converges on that of a

single battery (Rao et al., 2003). Unfortunately, this theoretical solution is not achievable in practice

because of the losses in the physical process of switching between batteries, as the frequency in-

creases. In fact, switching losses in MOSFETs are approximately linearly dependent on switching

frequency and also on the current being switched (Eberle, 2008). Tmax and Vmax policies applied

at fixed frequencies are the most commonly fielded solutions, but these often achieve less than 80%

efficiency (Benini et al., 2003).

3.1 Objectives

In this paper our objective is to construct policies for multiple battery problems, where load is

modelled probabilistically using known distributions for load size, load duration and load frequency

(or equivalently, the gaps between successive loads). Our primary purpose, in constructing these

policies, is to achieve the longest possible battery lifetime. The best deployed solutions typically

deliver less than 80% efficiency, while the best published solutions deliver less than about 95%

efficiency (our reading suggests that these high values are in simulation rather than in physical

experiments). We show that our approach, based on construction of optimising solutions to Monte

Carlo sampled problem instances and their use in the construction of appropriate policies, produces

robust solutions that deliver better than 99% efficiency in simulation. Furthermore, as a side-effect

of the way in which these solutions are constructed, we achieve this efficiency in lifetime while using

smaller numbers of battery switches than published policies. This beneficial side-effect reduces the

potential switching losses in implementing the policy. We use the Kinetic Battery Model (Manwell

& McGowan, 1993) (KiBaM) as the basis of our construction of optimising solutions and this raises

challenges in the treatment of the non-linear mixed discrete-continuous optimisation problem, as

we discuss below.

338

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

3.2 The Kinetic Battery Model

In the Kinetic Battery Model (Manwell & McGowan, 1993; Jongerden et al., 2009) the battery

charge is distributed over two wells: the available-charge well and the bound-charge well (see Fig-

ure 1).

δ

γTotal charge

Bound

charge

charge

Charge flow Load draws

charge

Available

Figure 1: Kinetic Battery Model

A fraction c of the total charge is stored in the available-charge well, and a fraction 1− c in the

bound-charge well. The available-charge well supplies electrons directly to the load (i(t)), where

t denotes the time, whereas the bound-charge well supplies electrons only to the available-charge

well. The charge flows from the bound-charge well to the available-charge well through a “valve”

with fixed conductance, k. Moreover, the rate at which charge flows between the wells depends on

the height difference between the two wells. The heights of the two wells are given by:

h1 =
y1
c

h2 =
y2
1−c

where y1 is the the available charge and y2 is the bound charge. When a load is applied to the

battery, the available charge reduces, and the height difference between the two wells grows. When

the load is removed, charge flows from the bound-charge well to the available-charge well until the

heights are equal again. The change in the charge in both wells is given by the following system of

differential equations:

{

dy1
dt

= −i(t) + k(h2 − h1)
dy2
dt

= −k(h2 − h1)

with initial conditions y1(0) = c · C and y2(0) = (1− c) · C, where C is the total battery capacity.

To describe the discharge process of the battery, as in Jongerden et al. (2009), we adopt coordi-

nates representing the height difference between the two wells, δ = h2− h1, and the total charge in

the battery, γ = y1 + y2. In this new setting y1 = c(γ − (1− c)δ).
The change in both wells is then given by the system of differential equations

{

dδ
dt

= i(t)
c
− k′δ

dγ
dt

= −i(t)

with solutions

339

FOX, LONG & MAGAZZENI

{

δ(t) = i
c
· 1−e−k

′
t

k′

γ(t) = C − it

where k′ = k/(1 − c)c, δ(0) = 0 and γ(0) = C. The condition for a battery to be empty is

γ(t) = (1− c)δ(t).

This model is less sophisticated than that used by Benini et al. (2001), but a comparison of bat-

tery models by Jongerden and Haverkort (2009) concludes that the Kinetic Battery Model (KiBaM)

is the best for performance modelling.

3.3 Battery Usage Planning

Although the battery load management can be seen as a scheduling problem, the setting we consider

makes it a planning problem. For a given a load profile to service, if we knew the number of

switching actions between batteries that would be required, but not the times at which these actions

should be performed, then the problem could be managed as a scheduling problem. In our case,

however, the number of switching actions cannot be identified in advance, as each period of load

can be shared arbitrarily between different batteries. Thus, the battery load management becomes

a planning problem. By discretising time to the shortest time over which a battery must be in

use, it is possible to construct a scheduling problem in which the maximum possible number of

battery switches is considered, where some of the switches might not be used. The difficulty in this

approach is that the shortest period of use can be very short compared with the battery lifetime:

in our physical experiments (Section 7), for example, the maximum number of switches would be

over 700, while for larger capacity batteries or smaller loads the number of switches could easily be

several thousand. The scheduling approach used by Jongergen et al. (2009) cannot scale to manage

more than a few tens of intervals.

Furthermore, the KiBaM, which is a deterministic non-linear continuous model of battery per-

formance, lends itself, in principle, to use in an optimisation problem solver that can find the best

battery usage plan, given a load profile. The multiple battery usage problem, in its deterministic

form, is clearly an optimisation problem and Wang and Cassandras (2011) have shown that, under

certain assumptions, it can be tackled analytically (despite being non-linear), using the KiBaM. In

order to do so they assume that load can be split arbitrarily between batteries (which is not easily

achievable in practice). They also assume that the load can be serviced in an arbitrary schedule

within a given timespan, provided that the total charge drawn from the batteries meets a required

workload. This second assumption is not consistent with our own situation, in which load must be

serviced according to demands placed by a user at specific times, without flexibility. Unfortunately,

their analysis cannot be modified to deal with the situation we consider.

It is of interest to speculate on whether a standard Operations Research approach, using some

form of Mixed-Integer Linear Program (MILP) model, might be used to solve the deterministic

multiple battery usage problem. At first glance the answer is trivial: since the model is non-linear, it

is clear that a MILP cannot be used. A more sophisticated approach might be considered, using an

approximation of the exponential recovery curves using piece-wise linear components. However,

because the precise shape of these recovery curves depends on the state of charge of the battery

at the start of the period of recovery (both its available and bound parts), the approximations must

either be built dynamically, or else the model must anticipate all possible states of charge at all

times points, effectively building the entire search space of the states of charge of the battery into

340

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

the model. The former approach cannot be achieved in a standard MILP and we are not aware of any

solving technology that could manage this approach; the latter approach is obviously impractical for

anything but the most trivial of situations.

In most real battery usage problems the load profile is generated by external processes, typically

controlled directly or indirectly by user demands. These demands can often be modelled probabilis-

tically, reflecting typical patterns of use. In our work we assume that the profiles are drawn from

a known distribution. The consequence is that the planning problem ceases to be a deterministic

optimisation problem, but a probabilistic problem in which the plan must be a policy, as discussed

in Section 5.

3.4 Our Approach

We adopt an approach based on a combination of two ideas. Firstly, we sample from the distribution

of loads to arrive at a deterministic problem, which we then solve using the continuous KiBaM as

our battery model. This leads to an interesting continuous non-linear optimisation problem, which

we solve using a discretise-and-validate approach. Currently we are using UPMurphi (Della Penna,

Intrigila, Magazzeni, & Mercorio, 2009) to solve the deterministic instances but, after discretisation,

any metric temporal planner could be used in principle. Secondly, we use a decision tree classifier to

combine the solutions to the sample problem instances and learn a policy for the MDP from which

the problems are drawn. The classification process maps states into actions and produces a policy

in the form of a decision tree.

Our approach is domain-specific in some respects:

• Our discretisation scheme, while based on general principles, is selected for the problem

domain and load distribution.

• We use a search heuristic that, while not restricted to the battery problem alone, is not suited

to all problems.

• The aggregation of solutions into a policy makes use of an entirely general approach, but the

extent to which the approach yields good policies will depend on the nature of the problem

space in which it is applied.

We make use of existing tools as far as is possible, to simplify the construction of our solution.

4. Solving Deterministic Multiple Battery Problems

In this section we consider the multiple battery management problem as an optimisation problem,

when faced with a known and deterministic load profile.

4.1 A PDDL+ Battery Model

PDDL+ (Fox & Long, 2006) is an extension of the standard planning domain modelling language,

PDDL, to capture continuous processes and events. The dynamics of KiBaM can be captured very

easily in PDDL+. In Figure 2 we show the two processes, consume and recover, that govern

the behaviour of batteries and the event triggered by attempting to load a battery once its available

charge is exhausted. In addition, there is a durative action of variable duration that allows the

planner to use a battery over an interval (see Figure 3). The two processes are active whenever their

341

FOX, LONG & MAGAZZENI

preconditions are satisfied, meaning that they usually execute concurrently. Together, they model

both the draining of charge and the recovery that are described in the differential equation dδ/dt.
An event is triggered if there is ever a positive load and no active service.

(:process consume

:parameters (?b - battery)

:precondition (switchedOn ?b)

:effect (and (decrease (gamma ?b) (* #t (load)))

(increase (delta ?b) (* #t (/ (load) (cParam ?b)))))

)

(:process recover

:parameters (?b - battery)

:precondition (>= (delta ?b) 0)

:effect (and (decrease (delta ?b) (* #t (* (kprime ?b) (delta ?b)))))

)

(:event batteryDead

:parameters (?b - battery)

:precondition (and (switchedOn ?b)

(<= (gamma ?b) (* (-1 (cParam ?b)) (delta ?b))))

:effect (and (not (switchedOn ?b)) (dead ?b))

)

Figure 2: Part of PDDL+ encoding of KiBaM dynamics

(:durative-action use

:parameters (?b - battery)

:duration (>= ?duration 0)

:condition (and (at start (switchedOff ?b))

(over all (switchedOn ?b)))

:effect (and (at start (and (switchedOn ?b) (not (switchedOff ?b))

(increase (services) 1)))

(at end (and (switchedOff ?b) (not (switchedOn ?b))

(decrease (services) 1))))

)

Figure 3: PDDL+ durative action for battery use

The load profile to be serviced is encoded in the PDDL+ problem through the use of timed initial

literals, which allow expression of exogenous events corresponding, in our case, to changes in the

load value. A fragment of the problem (which also contains the battery specification) is shown in

Figure 4.

The use of PDDL+ as our modelling language grants several benefits. Firstly, it allows us to use

VAL (Howey, Long, & Fox, 2004) to validate solutions analytically against the continuous model,

allowing us to confirm that the discretisation we use during construction of solutions does not com-

promise the correctness of the plan. Secondly, it provides us with a semantics for our model in terms

342

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

(define (problem 2B) (:domain kibam)

(:objects b1 b2 - battery)

(:init

(= (cParam b1) 0.166)

(= (kprime b1) 0.122)

(= (gamma b1) 5.5)

(= (delta b1) 0)

...

(at 0 (= (load) 0.25))

(at 1.00 (= (load) 0.50))

(at 2.00 (= (load) 0.25))

(at 3.00 (= (load) 0.50))

(at 4.00 (= (load) 0.25))

...

Figure 4: Fragment of the PDDL+ problem

of a timed hybrid automaton as described by Fox and Long (2006). Finally, we can make use of ex-

isting tools that construct and search in spaces defined by PDDL+ models, such as UPMurphi (Della

Penna et al., 2009).

In their paper on PDDL+, Fox and Long (2006) propose a semantics based on a mapping to

timed hybrid automata (Alur & Dill, 1994). The semantics of the domain instantiated for two

batteries is given by the three hybrid automata shown in Figure 5, where variables d, g, L and s

refer to PDDL+ functions delta, gamma, load and services, respectively. This semantics

is one route by which model-checking systems designed to manage timed hybrid automata can be

adapted to operate directly on the battery problem. The batteries reveal their non-linear behaviour

in the definitions of the expressions governing the rates of change of both d1 and d2 in the pair

of states switchedOnB1 and switchedOffB1 and the equivalent pair for B2. Unfortunately, these

equations are beyond the reach of most current model-checking systems, but by discretising the

ranges of these variables the functions can be managed by UPMurphi.

The variable T is the time-slip variable introduced by Fox and Long (2006) which allows the

correct modelling of PDDL+ domains with events in standard hybrid automata. In particular, the

time-slip variable increases at rate 1 whenever the preconditions of the events disaster (positive

load and no battery being used) or notOptimal (a battery being used without any load to service)

are satisfied. Each state in the three hybrid automata has an invariant condition stating that the

time-slip variable must be 0, and this guarantees that the events will be applied as soon as their

preconditions become true, without any action transitions occurring between.

4.2 The Discretise-and-Validate Approach

Our technique is based on a discretise-and-validate approach (see Figure 6), in which the continuous

dynamics of the problem are relaxed into a discretised model, where discrete time steps and corre-

sponding step functions for resource values are used in place of the original continuous dynamics.

This relaxed problem is solved using a forward reachability analysis and then solutions are validated

against the continuous model using the validator, VAL (Howey et al., 2004), which provides analytic

solutions to differential equations involved in the models.

343

FOX, LONG & MAGAZZENI

Inv: T=0

Flow:

T = 0 � T = 1

Inv: T=0

Flow:

������ ���	
������

Inv: T=0

Flow:

���	
��������

Jump:

��		���������

Jump:

������	��

Jump:

������	��	

Inv: T=0

Flow:

Inv: T=0

Flow:

T = 0 � T = 1

������ ���	
������

Inv: T=0

Flow:

���	
��������

Jump:

��		���������

Jump:

������	��

Jump:

������	��	

Flow:

Inv: T=0

Flow:

Inv: T=0

Jump: L > 0

s = 0

Jump: L = 0

s > 0

�����	�� �	��	����

�	��	����
	���

�����
�

�����������

d1 = 0 g1 = 0

g1 ≤ (1�c)d1

d1� = d1

g1� = g1

s� = s � 1

d1 = L/c � k�d1

g1 = �L

d1� = d1

g1� = g1

s� = s � 1

d1� = d1

g1� = g1

s� = s + 1

d1 = �k�d1

d2� = d2

g2� = g2

s� = s � 1 d2 = �k�d2
d2 = L/c � k�d2

g2 = �L

g2 ≤ (1�c)d2

d2� = d2

g2� = g2

s� = s � 1
d2 = 0 g2 = 0

L > 0 /\ s = 0 T=1

L = 0 /\ s > 0 T=1

T = 0 � T = 1 T = 0 � T = 1

T = 0 � T = 1

T = 0 � T = 1

T = 0 � T = 1T = 0 � T = 1

Figure 5: Hybrid automata modelling two kinetic batteries scheduling

Discretise Solve Validate

Continuous Model

Figure 6: The Discretise and Validate Approach

The validation process is used to identify whether a finer discretisation is required and guide

remodelling of the relaxed problem. As an example, in our simulation, we first considered a time

discretisation δt = 0.1, and obtained the plan shown in Figure 7 (left). However, when we validated

the discrete solution generated by the planner against the continuous model, we found out that the

solution was indeed not valid, as highlighted in the following fragment of the VAL report:

Checking next happening (time 5.08986)

Updating (gamma b1) (0.502404) by 0.337447 assignment

Updating (delta b1) (0.328362) by 0.550475 assignment

Updating (delta b2) (0.405504) by 0.257052 assignment

EVENT triggered at (time 5.08986)

Triggered event (batterydead b1)

Deleting (switchedon b1)

Adding (dead b1)

Invariant for (use b1) has its condition unsatisfied

between time 5.08986 to 5.1.

344

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

0.0: (use b1) [3.40]

3.40: (use b2) [0.50]

3.90: (use b1) [0.10]

4.00: (use b2) [0.50]

4.50: (use b1) [0.60]

5.10: (use b2) [0.20]

5.30: (use b1) [0.30]

5.60: (use b2) [0.20]

5.80: (use b1) [0.30]

6.10: (use b2) [0.70]

6.80: (use b1) [0.20]

7.00: (use b2) [1.30]

8.30: (use b1) [0.20]

8.50: (use b2) [0.20]

8.70: (satisfied)

0.0: (use b1) [3.40]

3.40: (use b2) [0.50]

3.90: (use b1) [0.10]

4.00: (use b2) [0.50]

4.50: (use b1) [0.58]

5.08: (use b2) [0.27]

5.35: (use b1) [0.08]

5.43: (use b2) [0.57]

6.10: (use b1) [0.05]

6.15: (use b2) [0.40]

6.55: (use b1) [0.05]

6.60: (use b2) [0.50]

7.10: (use b1) [0.05]

7.15: (use b2) [1.00]

8.15: (use b1) [0.30]

8.45: (use b2) [0.20]

8.65: (use b1) [0.05]

8.70: (satisfied)

Figure 7: Plans generated using different time discretisations: δt = 0.1 (left) and δt = 0.01 (right)

The very precise analysis provided by VAL allows us to know the exact value of the charge in

the (simulated) batteries during the execution of the plan. In this example, the charge in battery 1

terminates 0.01014 time units before the time expected with the discretised model. This suggests a

refinement of the discretisation, setting δt = 0.01, which eventually produced a valid plan, shown in

Figure 7 (right). As can be seen, the finer discretisation handles very sensitive interactions and the

system switches to battery 2 when charge in battery 1 is almost fully drained (at time point 5.08).

Although Jongerden et al. (2009) also use a discretisation approach, they fix the granularity of

the time-step in advance. In contrast, we use a variable sized discretisation, by allowing a range of

alternative step sizes to be considered during search.

We now introduce the formal statement of the deterministic version of the problem we are

interested in. A hybrid system is a system whose state description involves continuous as well as

discrete variables. We approximate the system by discretising the continuous components of the

state (which we assume to be bounded) and their dynamic behaviours so obtaining a finite number

of states.

Definition 1 (Finite State Temporal System) A Finite State Temporal System (FSTS) S is a 5-

tuple (S,s0,A,D,F), where: S is a finite set of states, s0 ∈ S is the initial state, A is a finite set

of actions, D is a finite set of durations and F : S × A × D → S is the transition function, i.e.

F (s, a, d) = s′ iff the system can reach state s′ from state s via action a having a duration d. For

each state s ∈ S, we also define the set EnAct(s)= {a ∈ A|∃d ∈ D : F (s, a, d) ∈ S}, as the set of

all the actions enabled at state s.

In an FSTS, each state s ∈ S is assumed to contain a special temporal variable t denoting the time

elapsed in the current path from the initial state to s. In the following we use the notation t(s) for

the value of variable t in state s. For all si, sj ∈ S such that F (si, a, d) = sj , t(sj) = t(si) + d.

345

FOX, LONG & MAGAZZENI

Definition 2 (Trajectory) A trajectory in the FSTS S = (S, s0,A,D, F) is a sequence π =
s0a0d0s1a1d1s2a2d2 . . . sn where, ∀i ≥ 0, si ∈ S is a state, ai ∈ A is an action, di ∈ D is a

duration and F (si, ai, di) = si+1. If π is a trajectory, we write πs(i), πa(i) and πd(i) to denote the

state si, the action ai and the duration di, respectively. Finally, we denote with |π| the length of π,

given by the number of actions in the trajectory, and with π̃ the duration of π, i.e. π̃ =
∑|π|−1

i=0 πd(i).

In order to define the planning problem for such a system, we assume that a set of goal states

G ⊆ S has been specified. Moreover, to have a finite state system, we fix a finite temporal horizon,

T, and we require a plan to reach the goal within time T . In the case of the battery usage planning

problem, this horizon is very important because it represents the target duration for the service

provided by the battery. In fact, a good upper bound can be found for the battery problem, which is

discussed further in section 4.3.

Definition 3 (Planning Problem on FSTS) Let S = (S, s0,A,D, F) be an FSTS. Then, a planning

problem (PP) is a triple P = (S, G, T) where G ⊆ S is the set of the goal states and T is the finite

temporal horizon. A solution for P is a trajectory π∗ in S s.t.: |π∗| = n, π̃∗ ≤ T , π∗
s(0) = s0 and

π∗
s(n) ∈ G.

The constraints we add to the temporal planning problem are parameterised and can be itera-

tively relaxed in order to explore successively larger spaces for plans. We use a finite collection

of possible durations for segments of processes (Definition 2). This set can be refined by the addi-

tion of smaller durations if successive searches fail to find a solution. Allowing different durations

within the same search enables the planner to construct states that interact with executing processes

at different time points, while stepping quickly along the timeline where there are no interesting

features.

4.3 The Monotonicity Property and Planning

The battery domain has an important property that supports a simple heuristic evaluation function

for states: the charge in the battery monotonically decreases over time and the optimal solution is

the one that gives the longest possible plan. An upper bound on the duration of the solution can

be found using the observation that the optimal duration cannot exceed that of a single battery with

combined capacity equal to the sum of the capacities of the multiple batteries (assuming the same

discharging and flow behaviours). Once we have a horizon, we construct and search our discretised

search space. To make this approach practical, it is essential that we have an informed heuristic

to search the space. For this domain, duration of the plan to the current state plus total remaining

charge is admissible, but completely uninformative, while duration plus total available charge is

highly informative. This is also equivalent to minimising the total bound charge.

This heuristic is suitable for a class of domains: in any domain where there is a monotonically

decreasing resource, and the longest plan is required (such as the satellite domain against a finite

amount of resources), a heuristic that sums plan duration and available resource will be informative.

We then use a variant of the best-first search (Algorithm 1) to efficiently explore the reachable

space. To use variable discretisation efficiently, we break the symmetry in the structure of the search

space that arises from the possible orderings of different length action instances. Redundancy is

eliminated by disallowing the use of long duration actions immediately following shorter duration

versions of the same actions. Long duration actions can only be used if an event or other action has

346

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

intervened since the last short action in the family. We also disallow the repeated consecutive use

of short duration actions beyond the accumulated duration of the next longer duration action. The

longest duration action can be repeated arbitrarily often.

Algorithm 1 Dynamic State Space Search (P)

Input: a planning problem P = ((S, s0,A,D, F), G, T)
Output: a valid plan π∗

1: Q← (s0,null, 0);
2: H ← s0;

3: if s0 ∈ G then return π∗;

4: while Q 6= ∅ do

5: (sh, ai, dk)← argmax(s,a,d)∈Qh(s);
6: for all aj ∈ EnAct(sh) do

7: if aj 6= ai then ∆← {dl ∈ D|t(sh) + dl ≤ T};
8: else ∆← {dl ∈ D|dl ≤ dk ∧ t(sh) + dl ≤ T};
9: for all dl ∈ ∆ do

10: s′ ← F (sh, aj , dl);
11: if s′ ∈ G then return π∗;

12: if s′ /∈ H then

13: Q← Q ∪ (s′, aj , dl);
14: H ← H ∪ s′;

4.4 Plan Search with Variable Discretisation

We now illustrate the way in which the range of differently sized duration intervals can lead to

significant benefits in the size of the set of visited nodes in the search space, compared with using a

fixed duration increment.

Consider the load profile shown at the top of Figure 8. The planning problem for two batteries

is defined according to definitions 1 and 3, with G = {s ∈ S|t(s) = 2.42}, i.e. the goal is to service

the whole load profile. The temporal horizon T is set to the duration of the profile as well. The

definition of the FSTS is straightforward: the set of actions isA = {useB1,useB2,wait} where

the former actions refer to the battery being used while the latter one is applicable when there is no

active service. The set of durations we use for this example is D = {0.01, 0.4, 0.5, 1.0} (measured

in minutes). In practice, to define the set of durations we start with a minimum value and then

we add exponentially increasing values up to a maximum duration given by the longest interval

between different events (i.e., load variations). In particular, the smallest duration is included in

order to handle very sensitive interactions.

In the initial state s0 there is no load and no active service and both batteries have a limited

initial capacity. In this setting, the plan search with variable discretisation proceeds as follows:

1. No battery is used for a period of 1 minute (when the load is idle). The corresponding transi-

tion is shown in Figure 8.

2. After one minute a load is applied and battery 1 is used. This corresponds to transition

< s1,useB1, 1.0, s2 >. However, for sake of simplicity, let us assume that, due to their

347

FOX, LONG & MAGAZZENI

Figure 8: Example of search using variable discretisation

limited capacity, batteries cannot be used continuously for 1 minute. The transition is thus

not valid and a shorter duration has to be considered.

3. Battery 1 is used for 0.5 minute. Then, since a load is still applied, the second battery is used.

As before, the transition < s2,useB2, 1.0, s3 > can be considered, but in this case there

would be an active service and no load.

4. Battery 2 is used for 0.5 minute. In the next period no load is applied, then no battery is used.

The transition < s3,wait, 0.5, s4 > is considered, but it would lead to a positive load and

no active service, so the duration of action wait has to be reduced to 0.4.

5. To service the last load period of 0.02 minute, battery 1 could be used. However, in this

sample instance let us assume that the remaining charge in battery 1 allows it to service only

0.01 minute. So, finally, battery 2 is used until the end of the load profile.

The validity of a transition is dynamically checked during the search since invalid transitions

trigger specific events (e.g. event batteryDead is triggered at step 2 and event disaster is

triggered at step 4) which, in turn, violates the invariant conditions of corresponding actions (a

battery must not die during use). Moreover, with variable discretisation only 6 states have to be

visited in order to reach the goal, while using a uniform discretisation it is necessary to explore at

least 242 states since the finest discretisation of 0.01 must be used in order to correctly handle the

interactions in steps 5 and 6.

A further benefit of the use of differently sized durations in the discretisation is that favouring

longer durations reduces the number of switches in the solutions we generate, leading to solutions

that are better in practical terms than those based on a high frequency switching between batteries,

as is shown in subsequent results.

348

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

4.5 Performance on Deterministic Load Problems

We now present a first set of experimental results to show, in simulation, the performance of our

solver on the deterministic battery usage optimisation problem. We use the same case study pro-

posed by Jongerden et al. (2009), where two types of jobs are considered, a low current job (250

mA) and a high current job (500 mA), according to the following load profiles:

• continuous loads: one load with only low current jobs (CL 250), one with only high current

jobs (CL 500) and one alternating between a low current job and a high current job (CL alt);

• intermittent loads with short idle periods of one minute between the jobs: one with only

low current jobs (ILs 250), one with only high current jobs (ILs 500), and one alternating

between a low current job and a high current job (ILs alt);

• intermittent loads with long idle periods of two minutes between the jobs: one with only low

current jobs (ILl 250) and one with only high current jobs (ILl 500).

As a first step, we used these load profiles to validate our variable-range discretisation KiBaM

model (planning-KiBaM), and to find an appropriate discretisation for the continuous variables

involved in the system dynamics (i.e. variables γ and δ and process durations). To do this we used

VAL to validate solutions for the discretised model against the continuous model. As in the work by

Jongerden et al. (2009), we considered two battery types, one with capacity 5.5 Amin (B1) and one

with capacity 11 Amin (B2). These are small batteries, typical of the capacities of those in small

portable devices such as PDAs or mobile phones. Both battery types have the same parameters:

c = 0.166 and k′ = 0.122min−1. We discretised γ and δ, rounding them to 0.00001, and, for all

the load profiles above and for both battery types, we obtained the same lifetimes computed with

the original KiBaM and validated by Jongerden and Haverkort (2008).

To generate the scheduling plans for multiple batteries, we used the approach described in sec-

tions 4.2 and 4.3 and the set of durations D = {0.01, 0.02, 0.05, 0.1, 0.25, 0.5, 1.0}.
An example of PDDL+ plan is shown in Figure 9, where each row < ti, ai, di > contains the

time point ti in which action ai (whose duration is di) is applied.

0.0: (use b1) [1.00]

1.20: (use b1) [0.10]

1.30: (use b2) [0.10]

1.80: (use b1) [0.20]

2.40: (use b1) [0.10]

2.50: (use b2) [0.10]

3.10: (use b1) [1.00]

4.60: (use b1) [0.10]

4.70: (use b2) [0.10]

6.20: (use b1) [0.30]

Figure 9: Fragment of the PDDL+ plan

Figure 10 shows a fragment of the corresponding VAL report. Note that VAL provides analytic

solutions to the differential equations involved in the KiBaM dynamics.

To evaluate the efficiency of our approach, we compared our solutions to those obtained using

the UPPAAL-based approach. The resulting lifetimes are shown in Table 1 where the ‘upper bound’

349

FOX, LONG & MAGAZZENI

Figure 10: Fragment of VAL report

column shows the theoretical upper bound given by a best-of-two policy with an extremely high-

frequency switching. It can be seen, in the first two rows of this table, that the power that can be

extracted from a battery with a nominal capacity of 5.5 Amin is only 12.16 min × 250 mA, which

is 3.04 Amin, when loading continuously at 250 mA, or 4.59 × 500 mA which is 2.3 Amin when

drawing a continuous load of 500 mA. This gives an indication of the extent to which the limit on

the conversion of bound charge to available charge affects the performance of batteries.

load Upper bound UPPAAL-KiBaM Planning-KiBaM

profile lifetime lifetime lifetime (visited states)

B1 B2 B1 B2 B1 B2

CL 250 12.16 46.92 12.04 N/A 12.14 (194) 46.91 (691)

CL 500 4.59 12.16 4.58 N/A 4.59 (116) 12.14 (194)

CL alt 7.03 21.26 6.48 N/A 7.03 (136) 21.2 (350)

ILs 250 44.79 132.8 40.80 N/A 44.76 (552) 132.7 (1068)

ILs 500 10.82 44.79 10.48 N/A 10.8 (131) 44.76 (552)

ILs alt 16.95 72.75 16.91 N/A 16.92 (159) 72.55 (599)

ILl 250 84.91 216.9 78.96 N/A 84.88 (488) 216.8 (1123)

ILl 500 21.86 84.91 18.68 N/A 21.85 (173) 84.88 (488)

Table 1: System lifetime (in minutes) for all load profiles according to different battery usages

350

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

In all load profiles considered we observe that our approach outperforms the UPPAAL-based

one significantly, providing solutions that achieve more than 99% efficiency compared with the

theoretical limit. The key points described in the preceding parts of this section allow the resulting

search to efficiently prune the state space and quickly find the solutions. In particular, by using

variable discretisation it is possible to consider a much finer discretisation for variables γ and δ
than is used in the work by Jongerden et al. (2009) and to handle very sensitive interactions. This

is crucial, particularly when the available charge in the batteries is almost exhausted. Jongerden et

al. (2009) describe their plans as optimal, but it is important to note that this is only with respect

to the discretisation that they use; a finer-grained discretisation offers the opportunity for a higher

quality solution to be found at the cost of a much larger state space. Despite the very large state

space our model creates, the solver visits a very small collection of states (as shown in the table).

These problems are all solved in less than a second.

When dealing with larger batteries of type B2, the state space becomes so large that any exhaus-

tive approach is infeasible. Indeed, in the works by Jongerden et al. (2009, 2008), the authors were

not able to handle this second case. We also found high quality solutions for batteries of type B2:

an example is shown in Figure 11 compared with the standard best-of-two solution, showing the

huge improvement we can obtain over this policy. Note that the slicing of the load periods occurs

towards the end of the plan, and this is a phenomenon we have observed in all our plans.

We also considered an 8 battery system (an example of its behaviour is shown in Figure 14).

Benini et al. (2003) indicate that the designers of the SMBus (SBS Implementers Forum, 2000)

architecture, which is a communication and control architecture and protocol that has been used

in the development of Smart Batteries, suggest that there might be good reasons not to partition

charge among more than four batteries. In fact, there are examples of systems using more than

four batteries, such as HP 6-cell lithium-ion Smart Battery packs. In practice, partitioning charge

between batteries offers multiple benefits, including the opportunities to use industry standard cells

and to exploit different distributions of weight and possible cooling requirements. The tradeoffs

between these benefits and the potential loss of efficiency arising from the partitioning is complex.

The more batteries that are to be used, the larger is the state space for both planning and policy

learning; constructing a solution to an 8 battery problem is significantly harder than for a 4 battery

problem, so we present these results as evidence that we can scale to larger systems, subsuming the

smaller cases.

The results are reported in Table 2, and show that we can scale effectively to much larger prob-

lems. Notice that the number of switches we use to produce the results is very significantly smaller

than the best-of-8 policy giving the theoretical upper bound, however the resulting solutions achieve

more than 99% efficiency. The final column, labelled Plan-based Policy, shows the performance of

the policies we discuss in the next section, applied to these load profiles. These generate slightly

worse performance in switches, but maintain the lifetime performance.

One final observation worth noting is that the structure of the usage profile across the batteries

leads, in the two-battery case, to one battery being discharged sooner than the other. In the 8-battery

case this effect is more pronounced, with several batteries being discharged while others still have

significant charge remaining. This has an interesting consequence: using this policy it becomes

possible to “hot-swap” batteries, replacing used batteries with new ones, while the system is active.

The fact that one or more batteries still hold charge allows loads to be serviced while the used

batteries are exchanged with charged ones and the policy can adapt to the new states of charge of

351

FOX, LONG & MAGAZZENI

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000

c
h
a
rg

e
 (

A
h
r)

time (0.01 min)

total charge battery 1
 total charge battery 2

available charge battery 1
available charge battery 2

battery schedule

(a) Vmax (based on the feasible frequency switching used in (Jongerden et

al. 2009))

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000

c
h
a
rg

e
 (

A
h
r)

time (0.01 min)

total charge battery 1
total charge battery 2

available charge battery 1
available charge battery 2

battery schedule

(b) Plan

Figure 11: ILs alt load test with two batteries of type B2

the batteries once the used ones have been replaced. This is in marked contrast to the high-frequency

switching policies, where the batteries all discharge at approximately the same time.

5. From Plans to Policies

Having shown how to generate high quality plans for deterministic multiple battery management

problems, we now turn our attention to the stochastic problem we are really interested in solving.

In general, we cannot know in advance what will be the load profile applied to the batteries, but we

352

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

load 8 batteries B2

profile lifetime (number of switches)

Upper bound Plan Plan-based Policy

CL 250 310.6 (31072) 307.6 (485) 307.6 (992)

CL 500 134.7 (13472) 133.4 (266) 133.4 (571)

CL alt 192.8 (19280) 190.8 (355) 190.8 (806)

ILs 250 660.7 (33076) 654.1 (495) 654.1 (904)

ILs 500 308.7 (15476) 305.7 (293) 305.7 (513)

ILs alt 424.8 (21280) 420.6 (357) 420.6 (614)

ILl 250 1008.9 (33692) 998.8 (471) 998.8 (822)

ILl 500 480.9 (16090) 476.1 (295) 476.1 (597)

Table 2: System lifetime (in minutes) for all load profiles serviced with 8 batteries

assume that a probability distribution characterising typical use of the batteries is available. Such a

probabilistic problem can be cast as a hybrid temporal Markov Decision Process (MDP).

Formally, a MDP is defined as follows:

Definition 4 A Markov Decision Process is a 4-tuple, (S,A, P,R), where S is a set of states, A is

a finite set of actions, P is a probability function where Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a)

is the probability that action a ∈ A will cause a transition from state s ∈ S to s′ ∈ S when applied

at time t, and R is a reward function, where Ra(s, s
′) is the reward earned for making the transition

from state s to s′ by action a.

The Markov property is that the probability distribution for a transition out of a state is not

affected by the path by which the state was reached. In general, MDPs are defined with finite

state spaces, but a continuous MDP can also be considered, in which the states are embedded in

multidimensional real space. The battery usage problem can be seen as a continuous MDP, where

the states are tuples that define the (continuous) state parameters for each of the batteries and also the

current state of the load and which battery is servicing the load (if the load is non-zero). Actions in

this problem indicate which battery should now service the load, but can also correspond to events

that change the current load. In the battery problem the actions switching between batteries are

deterministic, but the events that cause load changes are probabilistic, representing the uncertainty

about the demands of the user on the powered system. The time between events is also governed by

a stochastic process, but the timing of switching actions is controllable.

More formally, for a problem with n batteries, a state is characterised by the tuple

(sb1, sa1, sb2, sa2, ..., sbn, san, B, t, L), where sbi is the bound charge in battery i, sai is the avail-

able charge in battery i, B is the number of the battery currently servicing load (1 ≤ B ≤ n), t is

the time of the state and L is the current load. Out of each state there is a deterministic action, Use

B′, which causes a transition to the state (sb1, sa1, sb2, sa2, ..., sbn, san, B
′, t, L), in which battery

B′ is the battery servicing load. There is also a non-deterministic action, wait(T), where T is a time

interval, which causes a transition to a state in which time has advanced to time t′ ≤ t+T , the state

of charge of battery B is updated according to the battery model and the load might be different

(according to the probability distribution governing loads). The interpretation of the action is that

353

FOX, LONG & MAGAZZENI

it advances time to the next event, which will be when a battery is depleted of available charge, or

when the load changes, or when T time has passed, whichever is first.

The reward function for the battery problem gives positive reward for each transition, propor-

tional to the advance of variable t. Once the system enters a state in which the currently active

battery has no available charge, it terminates (or, equivalently, enters a special final state on which

all further transitions loop without incrementing t). This reward system means that the optimal

solution will be the one with greatest duration.

A solution to an MDP is a policy:

Definition 5 A policy, π, for MDP (S,A, P,R), is a mapping π : S → A, specifying which action

to execute in each state.

For the battery problem, the policy will be a function that determines which battery to use when

load must be serviced, using the current states of charge of the available batteries as the basis for

making the decision.

Considerable research effort has been invested in the problem of finding policies for MDPs, as

discussed in Section 6.

The way we approach this problem is to see the mapping as a classification, where the state of

the batteries is mapped to a class corresponding to the correct choice of battery. We can use the

solutions to the determinised problems as the basis of a classifier construction problem and use an

existing machine learning approach to build a good classifier. The overall approach is sketched in

Figure 12.

Several important observations can be made. Firstly, the successful construction of a classifier

depends on there being exploitable structure in the space defined by the solutions to the determinised

problems. Secondly, the states are described by continuous variables: we discretise these for the

purpose of building the classifier. Thirdly, our solution set will generally not cover the whole space

of reachable states, so it is important that we complete the policy with a sensible default action to

deal with states that the policy fails to handle. In our case, the default action is a best-of-n rule,

which is the best of the published hand-constructed policies for this problem. If the policy suggests

to switch to a battery whose available charge is below a critical threshold, then the policy action is

ignored, and the default action is used. We discuss the impact of this in physical experiments in

Section 7.

Finally, we note that deployment of the constructed policies will require that they can be ef-

ficiently implemented in cheap hardware. Simple classifier rule systems can be very effectively

implemented in look-up tables, which are ideal for implementation on Field Programmable Gate

Arrays (FPGAs) or as purpose-built hardware.

5.1 Policy Learning through Classification

To learn a policy through classification, it is first necessary to generate an appropriate training data

set. For our problem, this data set must associate the states of the batteries and the current load

with an appropriate decision (which battery to use to service the load). We construct the training

set by building a sample of profiles from the stochastic description of the expected loads. The

distributions we used to describe amplitude, duration and frequency of loads are shown in Figure 13.

The deterministic solutions to these problems are constructed as described in Section 4. Training

data is then generated from these plans by simulating their execution and recording the battery

354

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

Figure 12: Plan-based policy learning: this figure illustrates our approach to policy learning

schematically. The off-line training phase involves construction of a set of planning

problem instances by sampling from the initial state distribution, followed by construc-

tion of plans for each instance. These plans are then classified to obtain a state-to-action

mapping in the form of a decision tree which can be used as a policy.

states, load and battery choice at a fixed time increment throughout the plan. For example, if the

increment is 0.01 minutes then the training data generated from a plan will record the battery states

of charge (available and bound), load and currently selected battery (which might or might not have

changed from the previous time increment) at every 0.01 minute interval throughout the plan. In

our experiments we selected the time increment to be the same as the smallest increment used in the

variable discretisation described in Section 4.4, but this is not a requirement of the approach. The

choice of time increment determines the frequency of the decision-cycle for the learned policy. The

time increment also determines how much training data is generated from a single plan, according

to the makespan of the plan. In order to reduce the volume of training data for fine-grained time

increments used with long makespan batteries, it is possible to randomly sample from the set of

state-battery-selection pairs across multiple plans. In our experiments we did not need to do this.

Once the training data is generated, a classifier can be learned using a standard machine learning

approach. WEKA (Hall, Frank, Holmes, Pfahringer, Reutemann, & Witten, 2009) is a machine

learning framework, developed at the University of Waikato, that provides a set of classification and

clustering algorithms for data-mining tasks. WEKA takes as input a training set, comprising a list

of instances sharing a set of attributes. In order to perform the classification on the battery usage

problem data, we consider instances of the following form:

τ = (σ1, γ1, . . . , σN , γN , B, L)

355

FOX, LONG & MAGAZZENI

where σi and γi denote the available charge and total charge of the ith battery, respectively, B is

the currently active battery and L is the current load (this is essentially the state of the MDP but

without the time label, since we want our policy to operate independently of time). In this setting,

the attribute used as the class is the battery B.

The stochastic load profiles have been defined with a distribution of:

• the load amplitude l ∈ [100 . . . 750] mA;

• the load/idle period duration d ∈ [0.1 . . . 5] min;

• the load frequency f ∈ [0.3 . . . 0.7].

The probability distributions are shown in Figure 13.

load amplitude l (mA)

750100

250 500

0.15

P(l)

0.35

0.5

1.0

5.0

2.5
0.25

0.2

0.1

load/idle period duration d (min)

P(d)

0.15

0.40

0.10

0.05
0.4

0.5

0.3 0.7

load frequency f

0.10

0.20

0.40

P(f)

0.6

Figure 13: Probability distributions for the stochastic load profiles

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000 25000

lo
ad

 a
m

pl
itu

de
 /

ba
tte

ry
 in

 u
se

time (0.01 min)

battery schedule
load

Figure 14: Plan-based policy for 8 batteries with a stochastic load

This leads to load profiles that are very irregular (see the bottom of Figure 14) and therefore

harder to handle than the very regular profiles considered by Jongerden et al. We generated a

set of stochastic load profiles and for each of them we produced a near-optimal plan using the

deterministic solving described in Section 4. This set of plans has been used as the training set for

the classification process.

356

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

Algorithm cross-validation success model size

DMNBtext 18% –

NaiveBayes 37% –

NaiveBayesSimple 36% –

NaiveBayesUpdateable 36% –

Logistic 44% –

MultilayerPerceptron 51% –

RBFNetwork 43% –

SimpleLogistic 44% –

SMO 44% –

IB1 99% 26 Mb

IBk 99% 26 Mb

AdaBoostM1 27% –

AttributeSelectedClassifier 98% 29 Mb

Bagging 98% 18 Mb

Clustering 26% –

Regression 98% 9 Mb

CVParameterSelection 19% –

Dagging 44% –

Decorate 99% 31 Mb

END 99% 15 Mb

EnsembleSelection 99% 70 Mb

Grading 19% –

LogitBooost 47% –

RandomCommittee 99% 12 Mb

RandomSubSpace 99% 21 Mb

RotationForest 99% 22 Mb

Stacking 19% –

Vote 19% –

VFI 23% –

DecisionTable 90% 6 Mb

DTNB 90% 6 Mb

DecisionStump 27% –

J48 99% 2 Mb

J48graft 99% 13 Mb

OneR 56% –

LADTree 45% –

NBTree 99% 114 Mb

SimpleCart 99% 86 Mb

Table 3: Performance of classification algorithms tested on 10,000 training examples

357

FOX, LONG & MAGAZZENI

In order to select the most suitable classification algorithm, we applied all the classifiers pro-

vided by WEKA to a data set of 10,000 training examples. We first evaluated their performance as

the number of correctly classified instances during the cross-validation. We discarded classifiers

providing less than 70% correctness. We then considered the memory and the time required to use

the classifier. The output of the classification process is a model encoding the resulting decision

tree. In some cases, the generated model requires significant memory to store (more than 500Mb of

RAM memory), or it is too slow to be used. These parameters have also been used to determine the

number of training examples to classify, as the bigger the training set, the better the performance

and the higher the memory and time requirements. Some of the classifiers with their performance

are reported in Table 3.

...

if(b2gamma<=0.297404){

if(b2gamma<=0.296404){

if(b2gamma<=0.288404){

if(b2gamma<=0.286404){

if(b2gamma<=0.277404){

return 1;

}

if(b2gamma>0.277404){

return 2;

}

}

if(b2gamma>0.286404){

return 1;

}

}

if(b2gamma>0.288404){

return 2;

}

}

if(b2gamma>0.296404){

if(b2y1<=-0.043615){

return 1;

}

if(b2y1>-0.043615){

if(b1gamma<=0.164404){

return 1;

}

if(b1gamma>0.164404){

return 2;

}

}

...

Figure 15: Fragment of decision tree

According to these criteria, we selected the J48 classifier, which implements the machine learn-

ing algorithm C4.5 (Quinlan, 1993). The output is a decision tree whose leaves represent, in our case

358

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

load Upper bound Plan-based Policy

profile time(σ) sw(σ) time(σ) sw(σ)

R100 792.6(15.5) 71383(1379) 786.2(15.4) 1667(161)

R250 369.8(1.91) 28952(853) 366.7(2.02) 1518(143)

R500 226.7(2.13) 14671(512) 224.6(2.27) 987(122)

R750 188.3(0.8) 11519(463) 186.4(0.7) 302(33)

Table 4: Average system lifetime and number of switches for stochastic load profiles for 8 battery

systems

study, the battery to be used (a fragment of the tree is shown in Figure 15). For the cardinality of the

training set, an empirical evaluation showed that the best result is obtained using 250,000 training

examples (note that this involves considering about 4 · 106 real values characterising the states and

battery selections in these training examples) since further extending the training set does not make

any significant improvement in the performance but increases memory and time requirements.

5.2 Results from Policies

In order to use the decision tree we embedded the WEKA classes for loading the classification model

into our battery simulation framework. The model for the 8 battery case is represented by a tree with

61 levels and consists of 7645 nodes, each one containing a comparison between one of the state

variables and a threshold. Applying this decision tree to determine which battery to load at each

decision point takes negligible time.

To evaluate the performance of the policy we considered four probability distributions with

different average value for the load amplitude, namely 100, 250, 500, 750 mA. For each distribution

we generated 100 stochastic load profiles and we used the policy to service them. Note that the load

profiles used for evaluating the policy are independent from the ones used for training, although

they are drawn from the same probability distributions.

Table 4 shows the average value and standard deviation for the system lifetime and the number

of switches obtained using the best-of-8 policy at high frequency switching and our policy.

Also in this case, we observe that our policy achieves more than 99% efficiency compared with

the theoretical upper bound given by the best-of-8 policy executed at very high frequency (recall

that this is infeasible in practice). Moreover, the number of switches used by the policy is slightly

greater than in the corresponding deterministic solving, but is one order of magnitude lower than

the corresponding value for the best-of-n policy.

6. Related Work

A variety of approaches have been proposed for solving continuous Markov Decision Pro-

cesses (Sanner & Boutilier, 2009). Meuleau et al. (2009) propose hybrid AO* search, using a dy-

namic programming approach to guide heuristic search for problems involving continuous resources

used by stochastic actions. This approach does not handle time-dependent resource consumption,

but it appears that the above MDP could be modelled for solution by this approach. The authors give

empirical data for solution of problems with up to 25,000 states. Our model, with an appropriate

359

FOX, LONG & MAGAZZENI

discretisation, contains more that 1086 states for 8 batteries. Mausam and Weld (2008) describe a

planner for concurrent MDPs, which are MDPs with temporal uncertainty. Again, these problems

are similar to ours, although their planner does not manage continuous time-dependent resources, so

is not directly applicable to our problem. Furthermore, the largest problems they consider contain

4,000,000 states and take more than an hour to solve.

In solving very large MDPs, researchers have identified a variety of techniques that can help

to overcome the prohibitive cost of policy iteration or value iteration, the classical techniques for

solving MDPs. In general, these techniques approximate the solution, often focussing on those parts

of the policy that apply to states that are likely to be visited along the trajectory. Relevant techniques

are discussed in the work of Bertsekas and Tsitsiklis (1996).

Our approach is in the branch of work devoted to the development of plan-based reasoning under

uncertainty. In fact, when explicit modelling of uncertainty is impractical, sampling can provide an

effective alternative.

Hindsight Optimisation (HO) (Chang, Givan, & Chong, 2000; Fern, Yoon, & Givan, 2006)

has become a well-researched technique for learning policies based on plans. A policy always

proposes the best action to do next in any state, and is therefore more or less robust to the uncertainty

encountered in reality. The HO technique works as follows: given an MDP and a state, s, the first

step is to sample, from the MDP, a large number of deterministic instances of the process with

initial state s. The next step is to solve these instances using a deterministic planner over a fixed

horizon. Finally, the estimated value for the state s is computed as the average value obtained from

the deterministic plans. It is then possible to choose, in any state, the move that led to the best

performance on average in the samples.

Although our approach is similar to Hindsight Optimisation, there are significant differences.

First, previous works in this direction have only addressed propositional domains (see, e.g.

the work of Fern, Yoon and Givan (2004, 2006, 2007), or Königsbuch, Kuter and Infantes, 2010)

while here we are interested in a hybrid discrete-continuous problem, as we deal with the non-linear

continuous and deterministic planning models of the drain and recovery behaviour of batteries, using

sampling to provide the noise encountered in reality. The approach is to sample the deterministic

instances of the problem using simple assumptions about the underlying distributions governing the

physical reality. In many natural situations, Gaussian distributions work well as an approximation

of the uncertainty in the problem. In this work, for example, we show that by sampling many

deterministic discretised cases, and planning solutions to each of them exactly, it is possible to

classify the states of the solution plans into a policy that can robustly manage the load distribution

in both simulated and real battery configurations. The weaknesses of the assumptions made about

the underlying distributions are overcome by introducing default actions (described in Section 5),

which can be applied when the policy finds itself in a state outside the range of applicability of the

policy. Integrating the policy with the default action leads to very competent policies that perform

well across a wide range of physical situations, including situations that are dissimilar to those

encountered during the learning phase.

Another important difference is that rather than averaging over plan states to obtain a policy, in

our approach we use a decision tree classifier to arrange the states according to their information

content (reflected in how well they support a partitioning of the planned actions). This results in a

classification of actions into states, and a policy that proposes the best action to use in any state is

determined online by comparing policy state variables with the real values encountered as the policy

is executed. Although training for policy-learning is expensive in terms of time and computational

360

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

resources, the planning and learning is done offline, and the offline process is not strongly resource-

bounded. The classification phase produces a policy in the form of a decision tree, that is compact

and the execution of which takes negligible time and this is a key feature for this application. In fact,

due to the continuity involved in the battery model, and the need for planning to a very long horizon

(up to 60,000 time steps), the resulting state space is huge. This makes any approach based on an

explicit mapping of each state to an action impractical. In particular, it is not possible to compute an

HO-based policy offline and then map each state to the best action according to the policy values.

On the other hand, using HO online (which is viable in many cases) in infeasible in this application,

as the nature of the battery scheduling problem requires a very fast interaction between the policy

and the battery system. Our approach meets both the scalability and fast-response requirements.

Finally, the idea of looking ahead over “what if” scenarios, and then benefiting from the expe-

rience gained, is powerful. In HO it is assumed that, in general, the experience of the deterministic

planner is sufficient to give insights into the best moves possible in a real state encountered during

execution. However, another important aspect that makes our approach different, and that we inves-

tigated more deeply in a different context (Fox, Long, & Magazzeni, 2012), is that, in many cases, it

is necessary to distinguish between the plan state and the policy state. For example, while the plan

state might contain a variable representing whether an unreliable valve is open or closed, observ-

able experience records the effects of its unreliability – for example, the effect on flow-rate through

a pipe – over a given time period. A policy-state variable can therefore be constructed to record the

observed flow rate, which is a proxy for whether the valve is open or closed. This approach, which

we call observable-correlate policy learning, is very different from averaging over the plan states

encountered during planning, because policy states capture the actual situation being experienced,

while plan states remain abstracted and distanced from reality. In that work (Fox et al., 2012), we

apply exactly the same policy-learning technique as described here to the problem of learning robust

observable-correlate policies for following the boundary of a surface algal bloom. In this context

we define a collection of policy state variables which correlate plan state variables with observable

experience.

7. Physical Experiments

In this section we report the results obtained from a ‘kitchen table’ experiment comprising a simple

circuit constructed out of breadboard components and an Arduino Mega board which we used for

sensing and control.1 Using this apparatus we have been able to demonstrate that our simulation

results do translate into reality. As part of our future work, further experiments will be undertaken

in a professional laboratory to continue to explore the benefits and limitations of our approach.

The goal of the experiment is to demonstrate that the plan-based policy method achieves similar

lifetime to that achieved by the best-of-two policy, but with significantly reduced switching. It is

clear from the simulation results that the plan-based policy can achieve close to optimal lifetime with

only a fraction of the switching that best-of-two requires, although the simulation also suggests that

the best-of-two policy should achieve within less than 1% of the theoretical optimal even switching

at a frequency of once every 5 minutes. We therefore expected little opportunity for our learned

policy to improve the lifetime and were therefore hoping to achieve similar lifetime but with a

1. The results and figures presented throughout this section are presented in colour in order to clarify the relationships

between multiple plots. Unfortunately, several figures are difficult to interpret in monochrome and the reader is

recommended to view the figures using an appropriate medium.

361

FOX, LONG & MAGAZZENI

Figure 16: A photograph of the battery apparatus constructed to manage two batteries.

much lower switching frequency. Our results show that the plan-based policy does exhibit much

lower frequency switching. In fact we found that the plan-based policy achieves significantly longer

lifetimes as well.

We begin by describing how we built the circuit that we used for the experiment. We then recall

the KiBaM model, and explain how its parameters were estimated. The plan-based and best-of-two

policies rely on being able to read the state of available charge of the batteries. This is very difficult

to estimate, and the performance of the policies depends absolutely on estimating this quantity

accurately, so we explain how we read state of available charge in our set-up. Finally we present the

results of our experiments and describe our plans for future work.

7.1 The Electronic Apparatus

We constructed an experimental apparatus for a suite of two batteries, shown in Figure 16. We

used Ritar 6 volt lead acid batteries of nominal capacity 1 Amp hour for 20 hours of discharge

(1Ah@20h). We connected each of these batteries in a circuit to an Arduino Mega board.

Part of each circuit was constructed to allow the Arduino to read the voltage on the connected

battery. We want to ensure that the current drawn to measure the voltage is negligible, so high

external resistance, of 3.6kΩ and 7.2kΩ, was used to bridge the Arduino input. Using a voltmeter

we read 6.5-6.7V on a fresh battery, so we consider VEMF = 6.5V. This is too high a voltage

for the Arduino inputs which have a maximum input voltage of 5V. Since, considering the battery

voltage sensing element of the circuit with resistance R, VEMF = iR and VEMF = 6.5V , we

use R = 7.2 + 3.6 = 10.8kΩ in order to divide the voltage and to achieve a negligible current of

0.0006A. A higher resistance might seem preferable to still further reduce the current losses, but the

362

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

1Ω

8Ω

6V 6V

1Ω

8Ω

3.6κΩ

7.2κΩ

3.6κΩ

7.2Ω

P
W

M
 O

u
t

S
2

V
o

lt
s

In
 (

B
2

)

P
W

M
 O

u
t

S
1

V
o

lt
s

In
 (

L
1

 H
i)

V
o

lt
s

In
 (

L
1

 L
o

)

V
o

lt
s

In
 (

L
2

 H
i)

V
o

lt
s

In
 (

L
2

 L
o

)

Arduino Mega

G
n

d

V
o

lt
s

In
 (

B
1

)

B2B1 −

+

−

+

Figure 17: The battery apparatus for two batteries.

Arduino uses an analog-to-digital converter based on measuring charge on a capacitor over time.

This approach relies on sufficient current flow into the capacitor to get accurate measurements in

short time periods and very high resistance prevents this. In practice, a resistance of∼ 10kΩ is about

the limit at which the Arduino can respond to changes in the inputs within the timing constraints

of our sampling. With these resistances the voltage reading at the Arduino is VEMF − 0.0006 ×
3600Ω = 4.34V , which is within its operating range.

The current is diverted to a load consisting of a switch and two resistors of 8 and 1Ω. The role of

the switch, which is a MOSFET IRF630 controlled using a pulse width modulated output from the

Arduino, is to ensure a smooth delivery of power to the resistors. The load is 6.5/(9+r+Rs) where

r is the internal resistance of the battery and Rs is the effective variable switch resistance under pulse

width modulated control. The data sheet for the Ritar 6V battery lists the internal resistance, r, as

50mΩ, while we measured 0.34Ω, a value almost 7 times greater. We believe that the discrepancy

comes from a systematic distortion in the sensed values reported by the Arduino. We consistently

use these readings in all of our experiments and regard the discrepancy as a systematic error. Our

experiments use currents varying between 0.2A and 0.3A, so, when VEMF = 6.5V and i = 0.3A,

Rs is about 12Ω, but is lower when the battery is less charged (and the voltage drops) and higher

when a lower current load is required.

The circuit diagram is shown in Figure 17. It will be noted that the load is duplicated in this

design, which completely separates the parts of the circuit responsible for interacting with each

363

FOX, LONG & MAGAZZENI

battery. In fielded systems the load would be common and diodes used to prevent flow of electricity

between batteries at different charge states.

7.2 Estimating Parameters

In this work we used the Kinetic Battery Model (Manwell & McGowan, 1993) and we followed

the parameter estimation process described by Manwell and McGowan (1994). Following their

description, the extended KiBaM has three parts: a capacity model, a voltage model and a lifetime

model. We use a simple lifetime model (we assume that there is no change in the battery behaviour

due to recharging).

7.2.1 THE CAPACITY MODEL

The capacity model, which describes how capacity varies as the battery is drained and allowed to

rest, is described by a first order differential system. The quantity

qmax(I)

is the maximum amount of charge, in Amp hours, that we could hope to extract from the battery

if we discharged it continuously, at nominal current I , until drained. The time it takes to drain the

battery at nominal current I is T . T and I are linked by the following equation:

qmax(I) =
Ck′cT

1− e−k′T + c(k′T − 1 + e−k′T)

derived from the model described in Section 3.2. The model relies on three constants: C, which is

the maximum capacity of the battery in Amp hours, k, which is the rate per hour of conductance

between the bound well and the available well of the model, and c, which is the ratio of available

charge to maximum capacity. In Section 3.2, k′ is defined to be k
c(1−c) . It can be seen that qmax(I) =

IT .

These constants are found by fitting a curve to data. We obtained our data by draining batteries

one at a time, from their fully charged state, using different currents in the circuit described in

Section 7.1. An example of the data collected is shown in Figure 18, where the top curve is the

measured voltage of the battery over time, the line at 5.25V is the point at which the battery is

considered dead, the point cloud comprising a thick curve at 208mA is the measured load, and the

thin straight line running through this point cloud is a rolling average of the load. The vertical line

shows where we treated the battery as dead. As shown in Figure 19, there is uncertainty about

exactly where the battery dies.

The values of C, k, c that we calculated are:

C = 1.372Ah

k = 0.1967h−1

c = 0.3870

and

k′ = 0.8290h−1

364

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

Figure 18: Battery discharge curve: terminal voltage (top curve) and load (bottom curve).

 4800

 4900

 5000

 5100

 5200

 5300

 5400

 5500

 5600

 33000 33500 34000 34500 35000 35500 36000 36500 37000 37500

m
ill

iv
ol

ts
 (

to
p

cu
rv

es
)

an
d

0.
1

m
ill

ia
m

ps
 (

bo
tto

m
 c

ur
ve

s)

half-seconds

Figure 19: A close up of the point cloud of the voltage curve at the point where the battery is

considered dead.

365

FOX, LONG & MAGAZZENI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14 16 18 20

I -
 A

m
ps

T - hours

Observed data
Fitted curve

Data Sheet values

Figure 20: Data for current and time to drain batteries. The Data Sheet values are shown for com-

parison.

The fitted curve of T against I , for the fitted C, k, c values, is shown in Figure 20. The square

points are our observed data, while the stars are the data points reported on the Ritar 6V battery

data sheet. We found that the data sheet appears to consistently under-estimate the performance

of the battery. It can be seen that our observed data points are clustered in the 0.17A to 0.3A
region of the curve. We were unable to report points for lower currents, because the pulse width

modulation could not be set to an appropriately low value without dropping the control voltage for

the MOSFET switch below the point at which the switch opens. We could not report points for high

currents without melting the resistors comprising the load on the circuit.

We used the C, k, and c values to construct the initial state of the battery load management

planning problem, and then we learned a policy from plans produced against this model. Therefore,

an accurate estimation of these parameters is very important. The policy will be far less effective

if the wrong capacity model is used. We learned a policy using a time granularity of 0.01h, which

is 36 seconds. In our timing loops for collecting data from the Arduino sensors we use averages

computed over 0.5 seconds: the data points in Figure 19 are shown at this resolution. Thus, we

collect 72 data points from each sensor between decision points at the granularity of our planning

model and, consequently, our learned policy. As can be seen, there is considerable noise in these

values and to reduce this noise we construct a rolling average over the preceding window of 65

points. We selected 65 to avoid the particularly noisy data values generated when there is a switch

between batteries.

366

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

7.2.2 THE VOLTAGE MODEL

In order to be able to exploit our plan-based policies it is necessary to be able to evaluate the state of

charge of the batteries at every decision point. It is known to be very difficult to accurately evaluate

state of charge because the behaviour of batteries is noisy, variable and highly non-linear. However,

terminal voltage is recognised as a reasonable proxy for state of charge. We therefore observe the

output voltage of each battery and calculate its state of charge from this reading.

The measured terminal voltage, Eobs, falls off as the battery is drained, producing a typical

“knee-shaped” curve representing the decrease in voltage over time as the current is drawn, and

illustrating the collapse in voltage once the battery is dead. Manwell and McGowan model this

voltage curve using the equation:

Vobs = VEMF +AX +BX/(D −X)

where X is defined to be Q
qmax(I)

and Q is the total charge consumed to date by the battery.

The parameters A, B and D are found by non-linear curve fitting to data, using voltage against

time for constant current discharges. We used 4 sets of data obtained by draining batteries from

fully charged, one at a time on our battery apparatus, to estimate the curve for the Ritar 6V batteries.

Figure 21 shows an example of a discharge curve. The batteries are effectively dead as soon as the

voltage drops over the knee. This occurs at 5.25V . Figure 21 also shows a voltage model curve (the

solid black line), of the type described above, fitted to the discharge data for a battery. In this case

we have discharged the battery past the critical point where it is considered dead, to show how the

voltage drops dramatically (and the load cannot be maintained reliably). The vertical line shows the

point at which the battery is judged dead and the curve is fitted to the data up to this point. As can

be seen, the curve fits well until after the knee, when the behaviour is no longer governed by the

simple quadratic voltage model.

The parameter values we computed for our batteries are:

A = −0.194mV s−1

B = −2.22× 10−3mV s−1

and

D = 1.05h.

A governs the almost linear decay in voltage over the first part of the discharge curve and it is the

easiest parameter to estimate accurately. B and D together determine the shape and initiation of the

dip in the voltage as the battery gets close to its dying threshold. The fit of the values for B and D
is much more sensitive to noise than is the value of A.

7.2.3 EVALUATING THE STATE OF CHARGE OF THE BATTERY

Using the Arduino Mega board, we collect voltage and current values from the batteries at a fre-

quency of every half a second. For each battery in use, we compute a rolling average over the last

65 voltage readings reported since the battery was first loaded (before this, the reported voltage

readings can be inaccurate). Having computed the first rolling average we can fix VEMF , which

is the value we take to be the fully charged open circuit voltage of the battery (ie: the voltage that

was available before any load was serviced). We calculate Eobs and Q every 36 seconds for every

battery.

367

FOX, LONG & MAGAZZENI

Figure 21: Voltage against time.

The observed voltage is affected by the load on the battery at the time that we observe it, so we

adjust the observed voltage reading, Eobs, to take into account the internal resistance and load on

the battery. This results in the unloaded observed voltage Vobs:

Vobs = Eobs + 0.34Iobs

We can then calculate the difference between Vobs and VEMF to be:

Vadj = Vobs − VEMF .

Then, to calculate X we first obtain a value F :

F =
B +AD + Vadj

2A

Then:

X = F −

√

F 2 −
DVadj

A

We use this root of the quadratic equation for X because X ≤ 1.

For a given battery, b, to calculate the charge consumed by b at time t, the sum of the current

readings taken so far (measured in milliamps, taken every half second) is divided by a large constant,

7.2× 106, which gives a result in Amp hours. This value is Q, the total charge consumed to date by

b.
The value X , which is the proportion of available charge at current I that has been drawn, is

obtained from the two parameters Eobs and Q, using the voltage model given above. Once we have

X and Q, we can compute qmax(I) as Q
X

.

368

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

We can now evaluate the state of charge of a battery. The variable γ is the total capacity,

C, minus the total charge consumed, Q, in Amp hours. This gives us an estimate of the total

remaining charge, but not all of this will be accessible because some of it is bound up in the chemical

properties of the battery. The variable δ is the difference between the bound and available charge

wells, enabling us to estimate how long we would need to drain the battery. Since available charge

will always be less than or equal to the bound charge, there is always a pair of values (Inom, Tnom),
such that, had the battery been run at Inom for time Tnom, it would have reached its current state of

charge. Given that

X =
Q

qmax(Inom)

and using the equation for qmax(I) given in Section 7.2.1, we have that

Ck′cXTnom

Q
= 1− e−k′Tnom + c(k′Tnom − 1 + e−k′Tnom)

Therefore, Tnom is the solution of

1 + (c− 1)e−k′T + ck′(1−
CX

Q
)T = 0

The time, Tnom, that is nominally required to continuously drain the battery from fully charged,

at current I , is calculated numerically by plugging these equations into the Newton-Raphson

method, with an appropriate initial value (we use 4, since the expected lifetime of the battery at

the discharge rates we are using is about 2-4 hours). Given that:

qmax(I) = Inom × Tnom

we have that:

Inom =
qmax(I)

Tnom

and δ is then computed as:

Inom(1− ek
′Tnom)

ck′

The available charge can be calculated from γ and δ as:

c(γ − (1− c)δ)

as discussed in Section 3.2.

The best-of-two policy discussed in Section 3 can now be implemented to always choose the

battery with the highest available charge. Executing this policy requires the state of charge to be

read with reasonable accuracy at the fixed frequency. For example, one might fix the frequency to

be every 6 minutes, and select for the next 6-minute interval the battery with the highest available

charge (which is equal to c(γ − (1− c)δ) as explained in Section 3.2).

369

FOX, LONG & MAGAZZENI

7.2.4 RECHARGING AND OTHER EFFECTS

It is clear that to perform multiple experiments with lead-acid batteries it will be necessary to

recharge them between discharges. Recharging lead-acid batteries is known to have an impact

on their performance: they deteriorate with repeated cycling. However, the gel-type batteries we

used are deep cycle batteries that can be cycled hundreds of times before they reach the end of their

design life.

Manwell and McGowan (1994) have proposed a lifetime model based on a rainflow cycle-

counting algorithm which takes into account the fact that recharging damages the batteries and

affects their ability to deliver charge. Given that our batteries were brand new, and we have used each

one no more than 30 times, we hypothesise that the effects of repeated discharging and recharging

will not be significant in the lifetime of our experiment2. For an extended, or larger scale experiment,

the rainflow model would be of interest, but adopting it, and exploring how it changes the behaviour

of our model, is left for future work.

An additional important effect on battery behaviour is temperature. All of our experiments were

conducted in an office environment with normal working temperatures. One of the factors that

governed our choice of discharge currents was the fact that at high discharge currents the batteries

do warm up noticeably, so the model we are using is likely to cease to be valid without changes to

the parameters. We ignored temperature effects and treat the batteries as though they are used at a

constant standard operating temperature, which is a reasonable approximation.

7.3 The Experiments

We carried out three sets of experiments on an apparatus consisting of two Ritar 6V batteries con-

nected to the circuit shown in Figures 16 and 17. In our simulation tests we demonstrated the

performance of our approach on suites of 8 batteries, but performing the same experiments on the

physical apparatus would have been too time-consuming. Each of our 2-battery experiments took

over 11 hours to drain the batteries and, if anything went wrong during an experiment, such as loss

of communications with the PC, the experiment had to be restarted resulting in the loss of a day or

more.

When performing the experiments we noticed that the Arduino distorts all measured values:

time and voltages, and therefore amps and internal resistance. Its distortions appear consistent

across all experiments, resulting in systematic error. In particular, all of the times we measured

suggest that the Arduino measures 1 hour every 1.4 hours of real time, so a 7 or 8 hour lifetime

measured by the Arduino is actually approximately 10 to 11 hours of real time. We report all data

values directly from the Arduino measurements, unadjusted for the systematic errors, so it can be

borne in mind that our lifetime values are considerably longer when measured in “real” time. For

consistency, all other times are reported in the same relative measures (in practice, timing of load

control and discharge curves and other values were all performed using the Arduino clock, so the

measurements are entirely consistent with one another).

We randomly generated 10 different load profiles, drawn from the same distribution as we used

to train our policy, each alternating between 0.2 and 0.3 Amps and having intervals of constant

load of durations that are distributed around 30 minutes with a distribution as shown in Figure 22.

2. The experiments we report for load profiles 1–6 were run with batteries having been cycled up to 15 times. For

later profiles we did observe that some of the batteries showed behaviour that suggested a slight deterioration in

performance and it is possible that lifetimes are lower for these experiments than would be the case for new batteries.

370

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

Figure 22: Distribution of load durations used for experiments.

For each load profile we ran best-of-two and the plan-based policy so that we could perform a

direct comparison of lifetime achieved and number of switches performed. This resulted in 16

load-execution experiments. For the first two load profiles we restricted the best-of-two policy to

switch at most every 5 minutes, so that the best-of-two policy and the plan-based policy switched a

similar number of times in an entire run. Our simulation results suggest that the plan-based policy

should switch no more than about 20 times, but our experiments reveal that the noise in the sensor

data leads to errors in the estimation of the state of charge which cause the policy to switch more

frequently than we would anticipate. Frequent switching indicates that the policy is responding to

spurious artifacts in the sensed data and to the variability in the real behaviour of the batteries. We

discuss this further in Section 8.

The plan-based policy was applied every 36 seconds (0.01 hours), reflecting the granularity of

the plans and learned policy. We also ran an experiment in which the best-of-two policy was allowed

to switch every 36 seconds, to ensure that the results we obtained were not biased by offering the

plan-based policy a faster reaction time, to changes in the battery state of charge, than best-of-two.

We wanted to establish whether the plan-based policy can achieve similar lifetimes to the best-

of-two policy with a lower numbers of switches. We also wished to confirm that it is better than the

naive but simple policy of sequencing, in which the first battery is used until it is dead, and then the

second battery is used. This should be obvious (the sequencing policy is much worse in simulation),

but the observed behaviour of the plan-based policy is superficially similar to sequencing, since it

favours mostly using one battery until it is heavily discharged before switching to the second battery

for significant intervals, so we thought it useful to perform a physical comparison. In the case of

a 2-battery setup sequencing involves only 1 switch (the minimum number of switches possible in

the two battery case).

We ran 21 complete experiments in total. In all of the plots showing battery voltages during

these experiments, the last lowest point on the battery voltage curves (the red and green curves) are

the points at which the corresponding battery died.

Figure 23 shows the best-of-two policy running on the second load profile. The curves show

the characteristic discharge/recovery pattern, separated by a step separation caused by the internal

resistance of the battery (when the battery is recovering its voltage is open circuit, when it is loaded

it is then reduced by the internal resistance).

371

FOX, LONG & MAGAZZENI

Figure 23: A run showing the behaviour of the best-of-two policy.

Figure 24: A run showing the behaviour of the plan-based policy.

The load and voltage curves for the red curve (battery B1) are fuzzy because there is more noise

in the readings from these sensors than for the other battery. This phenomenon is consistently a

problem for B1 and is not dependent on the battery, but appears to be a feature of the circuit itself.

372

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

Figure 25: Best-of-two and the plan-based policy, both running on the same load profile. It can be

seen that the lifetime achieved by the plan-based policy is longer, and the number of

switches is also reduced. The y-axis has been removed, but load is measured in tenths

of milliamps and voltage in tenths of millivolts, as before.

The strange striations for the green (B2) curve at the start of the graph are due to a failure

of the Arduino to correctly capture the battery voltage over this period, but it does not affect the

performance of the policy (we have simple fail safes to ensure that spurious data of this sort do not

affect our performance).

Figure 24 shows the behaviour of the plan-based policy running on the second load profile. The

top two curves represent the usage of the two batteries, B1 and B2. Battery B1 (the red curve)

is used for the first 10,000 half-seconds, then B2 is briefly used before the policy switches back

to B1 until about half way through the run. In the second half of the graph, the two batteries are

interleaved, and the rising curves of B1 correspond to the periods in which B2 is in use and B1 is

resting.

The alternating load is represented by the bottom two curves. It can be seen that when the load

changes, the measured voltage changes (the top curve registers a slight blip). This is because of the

internal resistance which means that there is a lower voltage loss in the battery when the current

changes. We would expect this to be about 34mV (if the internal resistance is 0.34Ω) because the

difference in current is 0.1A. It is actually higher than that, but this appears to be because there is

a slight over-reaction to changes in the load, causing the battery voltage to drop sharply when the

battery is first loaded, and then pull back, while the battery tends to recover sharply, and then fall

back in line, when its load is reduced.

Figure 25 shows the best-of-two policy and the plan-based policy both being run on the second

load profile side-by-side. The red plots are B1 and green are B2. The blue and purple points shows

373

FOX, LONG & MAGAZZENI

Figure 26: Two executions of the plan-based policy on different load profiles. The y-axis has been

removed, but load is measured in tenths of milliamps and voltage in tenths of millivolts,

as before.

where B1/B2 serviced the load (and the value of the load) for best-of-two, while the black points,

slightly displaced above these, show where B2 serviced the load under the plan-based policy (B1

serviced the load the rest of the time). The voltage curves for the plan-based policy have been offset

from curves for best-of-two so that they can be displayed on the same plot. The labelling on the

y-axis has been removed to avoid confusion. We can see three interesting features:

1. The plan-based policy tends to use B1 first and B2 second, although not sequentially.

2. The plan-based policy runs for longer, demonstrating that increased lifetime is achieved.

3. Best-of-two essentially alternates between the batteries (minor variations are due to slight

discrepancies in the batteries and other factors).

Figure 26 shows a comparison of the plan-based policy working on the first and second load

profiles. The performance of the policy on the first load profile is shown in the upper voltage curves

and the upper load curves, while the curves for the second load profile have been displaced to

differentiate them. The plot highlights the similarity in the way the policy manages the batteries in

each case: the general strategy is to run B1 until it is at the knee, resting it only briefly in this period,

then oscillate between B1 and B2 at low frequency for a while, before entering a period in which

B1 is rapidly switched with B2 as B1 converges on empty. The policy then finishes off with B2.

374

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

Figure 27: The plan-based policy plotted with estimated available charge. The y-axis has been

removed, but load is measured in tenths of milliamps and voltage in tenths of millivolts,

as before. Charge is measured in tenths of milliamp hours.

An interesting difference is a consequence of the (random) loads: B1 is faced with heavier

loads during the first part of the second profile, so it dies faster than in the first profile. However, B2

faces a slightly less arduous time during the second half of the second profile and manages to last

considerably longer. In particular, the load in the interval 30,000–33,000 was a high load serviced

by B2 in the first profile, while the same period happens to be a lower load in the second profile.

This is a key reason why B2 dies faster in the first profile: its available charge is depleted in that

period and there is no real opportunity to rest it after that point. The final period of load in the first

profile is a high load and that kills B2 quickly, while the final period of load in the second profile

is a lower one. This allows B2 to recover some of its bound charge over that period, depleting its

available charge more slowly and sustaining it a little longer in that critical period.

In Figure 26 the upper policy execution switches frequently in the window between 41,000 and

43,000 half seconds, just before B1 dies. This is because the plan-based policy includes a default

action to switch to the other battery to avoid the currently loaded battery dying prematurely. The

reason for this is to protect the batteries and the policy from the effects of errors in the sensor data

that propagate into the state of charge model. The effect of the default action in this case is to

cause the policy to switch to B2 when B1 is almost out of charge, but back to B1 as soon as it has

recovered enough to be able to be loaded once again (according to the state of charge model).

Figure 27 shows the policy for the first load profile again, this time plotted with the estimated

available charge (based on the voltage readings and the voltage model). The graph shows several

important features. The black crosshairs mark the estimated available charge (measured in 0.1mAh

units) for B1 and the grey crosshairs show it for B2. The discontinuities are due to the changing

375

FOX, LONG & MAGAZZENI

Figure 28: The sequencing policy showing its shorter lifetime on load profile 2.

load values. There should be no discontinuity, because the model adjusts for the load (using our

estimated internal resistance), but it is clear that there is an additional effect here that we cannot

capture this way. As we have already mentioned, it is also the case that the discrepancy between

battery terminal voltage readings for the different loads should be 0.1A × 0.34Ω = 34mV , where

0.1A is the difference in load and 0.34Ω is the internal resistance, but the graph shows differences

that are much greater. This effect appears to worsen as the battery discharges (see the widening

gaps between the loaded and unloaded voltages recorded for the batteries in the red/green curves —

particularly for the red curve). However, interestingly, the voltage-capacity model seems to be

marginally less unstable for lower states of charge (the steps get slightly smaller in these cases for

the black curve).

As can also be seen, the available charge model breaks down in some situations (when the

observations cannot be fitted consistently to the initial state we assumed for the battery). This leads

to some of the available charge values being negative (particularly in the 42000–45000 period). This

causes the policy to revert to the default action, but the somewhat simplistic implementation of the

default leads to the oscillation between batteries during this period.

Figure 28 shows the results obtained by draining the batteries in sequence, using the second

load profile. This performance is optimal in terms of switching, but the lifetime achieved is much

shorter than that achieved by the plan-based policy and similar to the lifetime of the best-of-two

for this case. The fact that best-of-two does worse than sequential scheduling for this profile is

probably due to variation in the battery behaviour: it seems likely that best-of-two should perform

more similarly to the results in the other load profiles.

It can be clearly seen that the plan-based policy achieves a consistently longer lifetime than the

best-of-two policy, with significantly reduced switching. The results are summarised in Table 5.

376

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

Load Plan-based Policy Best-of-two Sequential Max.

Profile Lifetime Switches Lifetime Switches Lifetime Switches

1 7.887 71 7.534 73 – – 8.77

2 8.033 47 7.000 81 7.079 1 8.91

3 7.974 91 7.563 705 – – 9.04

4 7.831 158 6.998 701 – – 9.23

5 7.030 17 6.226 609 – – 9.11

6 7.120 36 7.085 706 – – 8.81

7 7.669 21 7.645 649 – – 9.11

8 7.677 88 6.515 584 – – 8.87

9 8.341 33 5.901 567 – – 8.91

10 6.972 13 6.890 690 – – 8.92

Mean 7.653 57.5 6.936 651.4 7.079 1 8.97

Table 5: Table summarising results of physical experiments. Lifetimes are given in ‘hours’, but

these are as reported using the Arduino clock and our measurements revealed that an hour

measured by our Arduino was approximately 1.4 hours of real time. The first two ex-

periments used lower switching frequency for the Best-of-two policy: as can be seen, the

increased frequency for the later experiments does not offer any apparent advantage. These

two results are not included in calculating the mean number of switches for the Best-of-two

policy.

A paired t-test on these results shows that they are significant (p = 0.013). We expect that these

improvements will be even more marked in the case of n > 2 batteries, but performing such ex-

periments is the topic of future work. The final column in the table, labelled “max” shows the

theoretical maximum lifetime of the batteries for the given load profile. These values are probably

rather higher than the maximum value that could be achieved in practice, since the point at which

the batteries are considered dead is based on observed terminal voltages when loaded. The internal

resistance of the batteries means that this point is earlier than it is in the idealised battery model

used in the simulation. The average efficiency of the batteries is 85% with our policy and 77% with

the best-of-two compared with this theoretical maximum, which is consistent with both the expec-

tation that the theoretical value is rather high and with previously reported performance of battery

management systems that typically achieve around 80% efficiency.

8. Future Work

This paper brings together three distinct directions of research. Firstly, the work is concerned with

a specific problem and its solution: the management of multiple batteries. Secondly, we develop

and exploit techniques for planning with PDDL+ and continuous non-linear dynamics. Thirdly,

we devise and implement an approach to policy construction based on planning for deterministic

samples. Each of these directions offers scope for further work.

377

FOX, LONG & MAGAZZENI

Figure 29: The battery voltage, load and estimated charge curves for the plan-based policy running

on load profile 4. The y axis shows millivolts, 0.1 milliamps or 0.1 milliamp hours for

each curve respectively.

The research on battery management has potential for real application and our physical experi-

ments reveal that the theoretical results translate into measurable benefits. The physical experiments

show higher switching rates for the plan-based policy control than our simulation results lead one to

expect and we have noted that a key reason for this is the errors in the attempt to diagnose the state

of charge of the batteries from noisy sensed voltage data. We anticipate that more robust sensing

could resolve this problem to some extent, but a further modification is to consider a more careful

implementation of the default action and of the tracking of state of charge. Figure 29 shows that in

the plan-based policy run on the fourth load profile, the estimated available charge is often judged

to be negative! This triggers application of the default action and in many cases these switches are

contrary to the policy choices on either side of the spurious data point. In fact, of the 158 switches

in this execution run, at least 90 are generated by spurious data triggering default actions. Similarly,

for load profiles 1–3 we can identify at least 50, 8 and 54 cases respectively, in which the default

action causes a switch in batteries against the advice of the policy for more sensible state of charge

estimates on either side of the switches. This strongly suggests that a more careful implementation

of the estimation of the state of charge, respecting the expected continuity of the behaviour, could

lead to much better switching rates and better stability in the behaviour of the policy.

The experiments would obviously benefit from being performed on more a robustly constructed

experimental apparatus and from additional runs to accumulate additional data. We hope to con-

tinue to pursue this direction in collaboration with commercial partners who might be interested in

exploiting our ideas to achieve fielded systems.

378

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

The work on continuous planning, particularly for problems that include complex processes

and events, remains a focus of research interest for us. We are now considering problems arising

in different domains, including control of autonomous underwater vehicles and control of power

systems (Bell, Coles, Coles, Fox, & Long, 2009). We are also exploring the ways in which hybrid

planning might interface effectively with lower control levels through a shared model of system

dynamics. The role of dynamic discretisation in managing complex process dynamics, particularly

for non-linear behaviours, is one that we are continuing to explore.

Our work on the construction of policies via classification of trajectory samples built with a

planner applied to sampled initial states is also a direction we are continuing to pursue. Our recent

work on algal bloom mapping (Fox et al., 2012) indicates the directions we are considering. In

particular, the states used in a planning model to allow a planner to solve sampled problem instances

need not be the same as the states that are used in learning a policy. This is important, because

the planner can exploit knowledge available in determinised instances of the problem to find high

quality solutions and we can then hope that by careful selection of the observable elements of the

visited states to be presented to the classifier, the classification process can discover correlations

between the observable states and the actions selected by the planner in those states, in order to

identify effective policy structures. This is a potentially powerful way to approach planning under

uncertainty and we intend to investigate it much further.

9. Conclusions

This paper has presented an interesting and potentially important problem, managing systems pow-

ered by multiple independent batteries, and constructed a novel solution to it. In doing so we have

brought together research on planning and policy learning to arrive at a new and powerful approach.

We have experimentally evaluated our plans and learned policies in simulation and these results re-

veal that our solution can achieve better than 99% efficiency compared with the theoretical optimal

(which is unachievable in practice). Not only do we achieve very high efficiencies, but we do so at

low cost in terms of battery switching. This is beneficial because switching is wasteful of energy

and tends to reduce the quality of service without additional smoothing circuitry that adds to energy

losses.

Having confirmed our results in simulation we have gone on to explore the behaviour of the

ideas in physical tests and those results confirm that real batteries are far less well-behaved than their

simulated counterparts. Nevertheless, the policies we learn continue to behave very successfully —

indeed we get results showing between 5% and 15% lifetime improvements over the best-of-two

policy on equal load profiles, while still achieving lower switching rates.

Our approach to solving the battery usage problem adapts several existing technologies for

automated planning, to solve a problem that can be seen as an MDP. We use Monte Carlo sampling

to generate instances of determinised load profiles and solving these problems using an optimal

deterministic solver, before combining the solutions to form a policy. Adopting a sampling approach

to tackling problem-solving under uncertainty has become increasingly common and one of the

reasons for this is that it usually offers better scaling opportunities than attempting to explicitly

reason with distributions. Our policy construction approach adapts the use of machine learning to

construct a classifier. In the construction of high quality solutions to deterministic problems, we use

a special variable-range discretisation to solve a non-linear continuous optimisation problem with

very high accuracy, while exploring a very small proportion of the state space.

379

FOX, LONG & MAGAZZENI

Our approach is scalable and effective. Although the solution as we implement it for this paper

is domain-specific in several respects, the components are general and we have already begun to

illustrate this point by adapting the approach to other problems. The elements that are most tailored

to our problem are the selection of the discretisation range and the search heuristic. However, we

believe that the characteristics of the multiple battery usage problem are shared, in outline, by other

domains and expect the approach can be adapted to these domains with relative ease.

Acknowledgments

We would like to thank Marijn Jongerden and Boudewijn Haverkort for introducing us to the multi-

ple battery usage problem, and drawing our attention to the scheduling problem and related policy-

based approaches. We would also like to extend our thanks to the anonymous reviewers and the

handling editor, Carmel Domshlak, for their help in improving the text of the paper.

This work was partially funded by the EPSRC Project “Automated Modelling and Reformula-

tion in Planning” (EP/G0233650).

References

Alur, R., & Dill, D. L. (1994). A Theory of Timed Automata. Theoretical Computer Science,

126(2), 183–235.

Bell, K. R. W., Coles, A. J., Coles, A. I., Fox, M., & Long, D. (2009). The Role of AI Planning as a

Decision Support Tool in Power Substation Management. AI Communications, 22(1), 37–57.

Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., & Scarsi, R. (2001). Discrete-Time

Battery Models for System-Level Low-Power Design. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 9(5), 630 –640.

Benini, L., Macii, A., Macii, E., Poncino, M., & Scarsi, R. (2003). Scheduling Battery Usage in

Mobile Systems. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 11(6),

1136 – 1143.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific.

Chang, H. S., Givan, R., & Chong, E. K. P. (2000). On-line Scheduling via Sampling. In Proceed-

ings of Int. Conf. on Automated Planning and Scheduling (ICAPS), pp. 62–71.

Della Penna, G., Intrigila, B., Magazzeni, D., & Mercorio, F. (2009). UPMurphi: a Tool for Univer-

sal Planning on PDDL+ Problems. In Proceedings of Int. Conf. on Automated Planning and

Scheduling (ICAPS), pp. 106–113.

Eberle, W. A. T. (2008). MOSFET Current Source Gate Drivers, Switching Loss Modeling and

Frequency Dithering Control for MHz Switching Frequency DC-DC Converters. Ph.D. thesis,

Queen’s University, Kingston, Ontario, Canada.

Fern, A., Yoon, S. W., & Givan, R. (2004). Learning Domain-Specific Control Knowledge from

Random Walks. In Proceedings of Int. Conf. on Automated Planning and Scheduling (ICAPS),

pp. 191–199.

Fern, A., Yoon, S. W., & Givan, R. (2006). Approximate Policy Iteration with a Policy Lan-

guage Bias: solving Relational Markov Decision Processes. J. Artificial Intelligence Research

(JAIR), 25, 75–118.

380

PLAN-BASED POLICIES FOR EFFICIENT MULTIPLE BATTERY LOAD MANAGEMENT

Fox, M., & Long, D. (2006). Modelling Mixed Discrete-Continuous Domains for Planning. J.

Artificial Intelligence Research (JAIR), 27, 235–297.

Fox, M., Long, D., & Magazzeni, D. (2011). Automatic Construction of Efficient Multiple Bat-

tery Usage Policies. In Proceedings of Int. Conf. on Automated Planning and Scheduling,

(ICAPS), pp. 74–81.

Fox, M., Long, D., & Magazzeni, D. (2012). Plan-based Policy-Learning for Autonomous Feature

Tracking. In Proceedings of Int. Conf. on Automated Planning and Scheduling (ICAPS).

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA

Data Mining Software: An Update. SIGKDD Explorations, 11(1), 10–18.

Howey, R., Long, D., & Fox, M. (2004). VAL: Automatic Plan Validation, Continuous Effects

and Mixed Initiative Planning Using PDDL. In Proceedings of Int. Conf. on Tools with AI

(ICTAI), pp. 294–301.

Jongerden, M., Haverkort, B., Bohnenkamp, H., & Katoen, J.-P. (2009). Maximizing System Life-

time by Battery Scheduling. In Proceedings of 39th Annual IEEE/IFIP Int. Conf. on Depend-

able Systems and Networks (DSN 2009), pp. 63–72.

Jongerden, M., & Haverkort, B. (2008). Battery Modeling. Tech. rep. TR-CTIT-08-01, Centre for

Telematics and Information Technology, University of Twente.

Jongerden, M., & Haverkort, B. (2009). Which Battery Model to Use?. IET Software (Special Issue

on Performance Engineering), 3(6), 445–457.

Manwell, J., & McGowan, J. (1993). Lead Acid Battery Storage Model for Hybrid Energy Systems.

Solar Energy, 50, 399–405.

Manwell, J., & McGowan, J. (1994). Extension of the Kinetic Battery Model for Wind/Hybrid

Power Systems. In Proceedings of 5th European Wind Energy Association Conference

(EWEC), pp. 284–289.

Mausam, & Weld, D. S. (2008). Planning with Durative Actions in Stochastic Domains. J. Artificial

Intelligence Research (JAIR), 31, 33–82.

Meuleau, N., Benazera, E., Brafman, R. I., Hansen, E. A., & Mausam (2009). A Heuristic Search

Approach to Planning with Continuous Resources in Stochastic Domains. J. Artificial Intel-

ligence Research (JAIR), 34, 27–59.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA.

Rao, R., Vrudhula, S., & Rakhmatov, D. (2003). Analysis of Discharge Techniques for Multiple

Battery Systems. In Proceedings of the 2003 Int. Symposium on Low Power Electronics and

Design (ISLPED ’03), pp. 44–47.

Sanner, S., & Boutilier, C. (2009). Practical Solution Techniques for First-Order MDPs. Artificial

Intelligence, 173(5-6), 748–788.

SBS Implementers Forum (2000). System Management Bus (SMBus) Specification, Version 2.0.

Tech. rep., The System Management Interface Forum, Inc.

Teichteil-Königsbuch, F., Kuter, U., & Infantes, G. (2010). Incremental Plan Aggregation for Gen-

erating Policies in MDPs. In Proceedings of 9th Int. Conf. on Autonomous Agents and Multi-

Agent Systems (AAMAS), pp. 1231–1238.

381

FOX, LONG & MAGAZZENI

Wang, T., & Cassandras, C. G. (2011). Optimal Control of Multi-Battery Energy-Aware Systems.

In Proceedings of 50th IEEE Conference on Decision and Control and European Control

Conference (CDC-ECC), pp. 1497–1502.

Yoon, S. W., Fern, A., & Givan, R. (2007). Using Learned Policies in Heuristic-Search Planning.

In Proceedings of Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 2047–2053.

382

