
RD-AI7S 871 PLAN RECOGNITION AND DISCOURSE ANALYSIS: AN INTEORRTED /.
ARRFRPPROACH FOR UNDERSTANDING DIRLOGUES(U) ROCHESTER UNIV
NY DEPT OF COMPUTER SCIENCE. D J LITNAN 1985 TR-1?S

UNCLASSIFIED N68114-82-K-6193 F/0 5/7 N

to4~~tows
.0

48.

"4,,,c~ oco , " '
U 0,'

~044. 9es CS

* ~ ... %

A:. z -.

00

Plan Recognition and Discourse

I Analysis: An Integrated Approach

for Understanding Dialogues

Diane J. Litman

Department of Computer Science
The University of Rochester

Rochester, NY 14627

TR 170
1985

CD,

Deportment of Computer Science V

University of Rochester
Rochester, New York 14627 ~

! " ", - . " "

A.,

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONSVIF:meREPORT DOCUMENTATION PAGE RE COMPLETIN FORMEFO E CO P ETIN G O R If.
1. REPORT NUMBER GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

TR 170 A7bAi6 k 7/
4. TITLE (mid Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Plan Recognition and Discourse Analysis: An Technical Report
Integrated Approach for Understanding Dialogues .6. PERFORMING ORG. REPORT NUMBER..- L--'

7. AUTHOR(e) a. CONTRACT OR GRANT NUMBER(s)

Diane J. Litman N00014-82-K-0193
N00014-80-C-0197

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK %%'.p.

Computer Science Department
University of Rochester
Rochester. NY 14627 ."

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency 1985
1400 Wilson Boulevard 13. NUMBER OF PAGES.,.. .

Arlinton. A 22209 183 -.
14. MONITORING AGENCY NAME & ADDRESS(I different from Controlllng Office) IS. SECURITY CLASS. (of thie report) .

Office of Naval Research unclassified
Information Systems ISa. DECLASSIFICATION/DOWNGRADING

Arlington, VA 22217 SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report) ".

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report) %

IS. SUPPLEMENTARY NOTES

, .f

I1. KEY WORDS (Continue on reverse aide if necesaary and Identify by block number)

discourse, plan recognition, meta-plans, speech acts, coherence, .>Z.y.,..:

subdialogues, ellipsis, equality

20. ABSTRACT (Continue on reverse side it necessary aid Identify My block number)

%1%Jr .. r1.

One promising computational approach to understanding dialogues has
involved modeling the goals of the speakers in the domain of discourse. In .0
general, these models work well as long as the topic follows the goal structure
closely, but they have difficulty accounting for interrupting subdialogues
such as clarifications and corrections. Furthermore, such models are typically
unable to use many processing clues provided by the linguistic phenomena of
the dialogues. (continued on next page)

OD FA N, 1473 EDITION OF I NOV OS is OBSOLETE : . .,

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

• , .. . - o _ . . , .- ..- -.' ' -,..- , - - "

,.-"- "- "- ". "- "- - .- .. _ ., ., ,..' " " " ; - - , .,,--. -,-" ,-'. -- ,.. -'.'''- .' ,- ," .? ;,w" ." ," ." .' r. - -t -" " ,""%

,~~~~T .7o ; %.

20. ABSTRACT (Continued)

This dissertation presents a computational theory and partial implementa-
tion of a discourse level model of dialogue understanding. The theory extends
and integrates plan-based and linguistic-based approaches to language processing,
arguing that such a synthesis is needed to computationally handle many discourse
level phenomena present in naturally occurring dialogues. The simple, fairly
syntactic results of discourse analysis (for example, explanations of phenomena
in terms of very local discourse contexts as well as correlations between
syntactic devices and discourse function) will be input to the plan recognition
system, while the more complex inferential processes relating utterances have
been totally reformulated within a plan-based framework. Such an integration
has led to a new model of plan recognition, one that constructs a hierarchy of
domain and meta-plans via the process of constraint satisfaction. Furthermore,
the processing of the plan recognizer is explicitly coordinated with a set of
linguistic clues. The resulting framework handles a wide variety of difficult
linguistic phenomena (for example, interruptions, fragmental and elliptical ..

utterances, and presence as well as absence of syntactic discourse clues),
while maintaining the computational advantages of the plan-based approach. The
implementation of the plan recognition aspects of this framework also addresses
two difficult issues of knowledge representation inherent in any plan recognition I
task.

q. 6

QUAIT %,-INSPECTED-

"qZ

.i

.1

,,. °°% p

II

Plan Recognition and Discourse

Analysis: An Integrated Approach

for Understanding Dialogues

Diane J. Litman
Department of Computer Science ".

The University of Rochester

Rochester, NY 14627

TR 170
1985

Aui b "

This report reproduces a dissertation submitted in partial fulfillment of
the requirements for the degree Doctor of Philosophy in Compute-
Science at the University of Rochester, supervised by James F. Allen. "

This research was supported in part by the Defense Advanced Research
Projects Agency under Grant N00014-82-K-0193, the National Science
Foundation under Grant DCR8351665, and the Office of Naval
Research under Grant NO) 14-80-C-0 197.

S -

I..0 1985 Diane Judidi Litman

a,

~4.

II.

4

4

'a.

a.a,.

Curriculum Vitae

Diane Litmant was born in Manhattan on March 5, 1958. She spent her first eight years

in the New York City area, then in the fall of 1966 moved with her family to the Washington

suburbs of Rockville, Maryland. Luckily she was young enough to lose her New York accent.

In 1976 Ms. Litnan entered the College of Mary and William in Virginia (no, it's neither

single-sex nor private). On the advice of her freshman roommate she decided not to take any

computer science ("Don't bother - it's just like typing classes."). Nonetheless. her physics

advisor changed her mind and as a sophomore she enrolled in the introductory programming

class. Soon after she dropped physics and officially declared herself a double major in the

areas of Mathematics and Computer Science, dabbling in Psychology on the side.

In 1979 Ms. Lit.man became a member of Phi Beta Kappa. and in 1980 she received her

A.B. in Mathematics and Computer Science with High Honors for senior research. (A GDI

and Yankee, Ms. Litman had generally preferred studying to frat parties). During her

summers Ms. Litman had helped support her schooling by working for the Interstate

Commerce Commission, the National Institute of Health's Division of Computer Research and

T chnology, and IBM's education group.

In the fall of 1980. after the required backpacking trip through Europe. Ms. Litman

begim her graduate career at the Computer Science Department of the University of Rochester.

LIso known as nano. dhe g q.. and d-squared

iii 1o

I~~~~~~k W.1 qw. -k. 117 -4. -k -..- Jt~T T~*... .

During those years she has been both a teaching and research assistant. In particular, she has

conducted research with both the ARGOT dialogue understanding project at Rochester and

the Knowledge Representation for Natural Language Understanding Group at Bolt Beranek

and Newman. During 1983-1984 she was eTectedstudent representative to the faculty, a term

notable for the passing of an enlightened graduate student support policy. Ms. Litman has also

spent a summer at the Linguistic Society of America Summer Linguistic Institute.

Ms. Litman will be the first woman graduate of the doctoral program of the Computer

Science Department. Besides learning all about computer science, she has learned that weather

does indeed matter. Finally, she has learned how to cook. Her speciality is homemade pasta.

P

4%SA

,-

' ********-.. ~-...x................ . .

Acknowledgments

C

I would like to thank my advisor. James Allen, for his guidance throughout this research

as well as my graduate career. When [arrived at Rochester I knew very little about artificial

intelligence and even less about doing research. James has been largely responsible for any

improvements I might have made in either of these areas. I'd like to acknowledge his fine 1

example, as well as his interest, time, and insights over the last five years. 4.

I would also like to thank the other members of my thesis committee - Gary Dell, Jerry

Feldman, and Pat Hayes - for their input and helpful comments throughout the various stages

of this work. Thanks also to Pat for flying back for my defense, despite an upcoming "site visit

from God and the Archangel Gabriel."

Much of this research developed from my work with the Knowledge Representation for

Natural Language Understanding Group of Bolt Beranek and Newman, Inc. (aka BBN Labs).

I would especially like to thank Candy Sidner for her interest, guidance, and many fruitful

discussions. Most people feel lucky if they can find even one interested advisor - I feel

especially fortunate to have had in effect two. I would also like to thank Brad Goodman and

Marc Vilain. Their professional interest and comments, as well as their continued friendship

and support, has meant a lot.

The academic environment at Rochester has been a particularly exciting yet pleasant one

to be a part of. Thanks to the various members of the artificial intelligence community.

V

vi
p

especially the gang of n and a.i. study group, for repeatedly listening to me speak and for

reading my papers. I would particularly like to thank Henry Kautz for discussions and

refereeing during all stages of this work. Thanks also to Brad Miller for reading the almost

final draft, and to Mark Kahrs, Lee Moore"(and 'the various hackers who had the bad luck to

be around when I was) for their help with troff' and in general with preparation of this

document.

One of the few bad things about student life is making then leaving so many good

friends. Thanks to Paul Cooper, Gary Cottrell, Rick Floyd, Alan Frisch, Leo Hartman, Boris r
p ,'.

Heliotis. Elise Hill, Mark Kahrs. Henry Kautz. Jim Mayer, Lee Moore. Jill Orioli. Rich

Pelavin. Don Perlis. Dan Russell, Lokendra Shastri, Dave Sher and Jay Weber. for lots of

wonderful times.

Finally, to "m." for lots of I+, food, and noises.

And, to my parents for their love and support (and the quals orchids).

.4.

%%

This thesis is dedicated to the memory of Lydia Hrechanyk, who should have been the

' first.

M1 Kahrs and L Moore. Adventures with typesetter-Independent TROt:F I'ech Rep L59. Un,,verstc, oC Ro-
) € chester.,lune 19R5

*

Abstract

One promising computational approach to understanding dialogues has involved

modeling the goals of the speakers in the domain of discourse. In general, these models work

well as long as the topic follows the goal structure closely, but they have difficulty accounting

for interrupting subdialogues such as clarifications and corrections. Furthermore. such models

are typically unable to use many processing clues provided by the linguistic phenomena of the

dialogues.

This dissertAtion presents a computational theory and partial implementation of a

discourse level model of dialogue understanding. The theory extends and integrates plan- 06

based and linguistic-based approaches to language processing, arguing that such a synthesis is

needed to computationally handle many discourse level phenomena present in naturally

occurring dialogues. The simple, fairly syntactic results of discourse analysis (for example,

explanations of phenomena in terms of very local discourse contexts as well as correlations

between syntactic devices and discourse function) will be input to the plan recognition system,

while the more complex inferential processes relating utterances have been totally

reformulated within a plan-based framework. Such an integration has led to a new model of

plan recognition, one that constructs a hierarchy of domain and meta-plans via the process of "
.,

constraint satisfaction. Furthermore. the processing of the plan recognizer is explicitly

coordinated with a set of linguistic clues. The resulting framework handles a wide'variety of

difficult linguistic phenomena (for example. interruptions. fragmental and elliptical utterances.

Vii 5

zez-

viii

and presence as well as absence of syntactic discourse clues), while maintaining the

computational advantages of the plan-based approach. The implementation of the plan

recognition aspects of this framework also addresses two difficult issues of knowledge

representation inherent in any plan recognition tas-k.

r

N.

6"

.

5%

I-

N, - a I' - * . * -

Table of Contents

1. Introduction ... I

1.1. O verview 1...

1.2. The Discourses and their Analyses ... 4

1.2.1. The Data .. 5

*1.2.1.1. Train Station Information Clerk .. 5

1.2.1.2. KLONE-ED system ... 6

1.2.1.3. Computer Operator.. 7

1.2.1.4. Chinese Cooking Consultant... 7 .

1.2.2. The Data Analysis ... 8
1.2.2.1. Subdialogues and their Relationships .. 8

1.2.2.2. Sentence Fragments and Elliptical Utterances...................................... 11
1.2.2.3. Surface Linguistic Phenomena .. 12

t.2.2.4. Multi- Sentential Utterances.. 13

1.3. A Computational Theory of Dialogue Understanding 13

1.4. Dissertation Overview .. 17

2. Plan Analysis... 19

*2.1. Background .. 19

2.2. Plan Structures... 271
2.2.1. Models of Plans ... 21

*2.2.1.1. Domain Plan Schemas.. 25

2.2.1.2. Meta-Plan Schemas.. 1............. 28

2...The Plan Stack... 35

2.3. Speech Acts .. 41

ix

x

2.4. Plan R ecognition ... 46

2.4.1. Forward Chaining .. 48

2.4.2. H euristics .. 49

2.4.2.1. C oherence H euristics 49

2.4.22. Plan Based Heuristics .. 52

2.4.3. Incremental Search . " " " 53

2.5. Sum m ary .. 54

3. D isco urse A nalysis .. 56

3.1. Background .. 56

3.2. Focus of A ttention .. 59

3.3. Surface Linguistic Phenom ena .. . 62

3.4. Incom plete Input 65

.3.5. C oherence .. 67

3.6. Interaction of Discourse and Plan Analysis .. 69

3.7. Sum m ary .. 70

4. Interrupting S ubd ialogues .. 72

4.1. Introduction ... 72

4.2. C larification Subdialogues .. . 74

4.3. C orrection Subdialogues 86

4.4. Sum m ary .. 99

5. Sentence Fragments, Ellipsis, and Plan Ellipsis 100

5.1. Introduction ... 100

5.2. Ellipsis .. 101

5.3. Plan Ellipsis and Initial Sentence Fragments 108

5.4. Sum m ary .. 112

6. Knowledge Representation for Plan Recognition: 115

Xi U,

6.1. Introduction ... 115

6.2. Consistency U nification ... 116

6.2.1. The Problem .. 116

6.2.2. Solutions .. 119

6.2.2.1. Theoretical .. 119

6.2.2.2. Practical ... 120

6.3. Th e Im plem entation ... 122

6.3.1. The A xiom s ... 122

6.3.2. M eta-Planning Requirem ents ... 129

6.3.3. The Transcnpt ... 132

6.4. Context- D ependent Reason ng ... 136

6.4.1. The Problem ... 136

6.4.2. Solutions .. 137

6.4.2.1. Theoretical ... 137

6.4.2.2. Practical ... 140

6.4.2.3. The Transcript ... 142

6.5. The Implementation and the Plan Recognition Algorithm 150

6.6. Sum m ary .. 152

7. C om parisons to R elated W ork ... 154

7.1. Plan-Based Approaches to Natural Language Processing 154

7.1.1. The Early W ork .. 154

7.1.1.1. Planning and Recognizing Speech Acts .. 154

7.1.1.2. U nderstanding D iscourse ... 157

7.1.1.3. Plan Recognition for O ther Tasks .. 158

7.1.2. D iscourse Extensions .. 160

7.1.3. Planning Extensions .. 164

7.2. Linguistic-Based Approaches to Discourse Processing ... 166

7.3. N on-Com putational Approaches ... 169

8. C onclusion .. 171

8.1. Sum m ary 171

8.2. Lim itations and Future D irections .. 173

8.3. C onclusion ... 178

.4 **'4

XII

ft

I

9

I b

ft

-ft

p

ft.

I

I
ft~

ftp

Pd

P~.*pp%
1

,. *~*.'**~.*ft.*** .. . -ft.

ft p ft *~ft N. ~ . *....~. .. . ~-

List of Figures

1.1. System Overview ... 14

1.2. Example .. 16
2.1. A Plan Schema .. 24
2.2. Domain Plan Schemas for the Train Domain .. 25
2.3. The Default Meta-Plans ... 29
2.4. A Clarification Meta-Plan .. 32

Z.5. Debugging Meta-Plans ... 33
2.6. A Clarification Plan Stack .. 38
2.7. An Interrupting Topic Change Stack ... 39
2.8. Speech Act Definitions ... 43

2.9. Introduce a Subplan to Continue the Executing Plan on the Stack 49

2.10. Introduce a Clarification Meta-Plan to a Plan on the Stack 51
2.11. Recognizing Multiple Plans from One Utterance .. 51
3.1. Task Structure and Discourse Structure .. 60
4.1. Train Domain Plan Schemas (Repeated from Chapter 2) .. 75
4.2. Meta-Plan Schemas (Repeated from Chapter 2) ... 75
4.3. Chaining Produces an Intermediate Plan Recognition Structure 76
4.4. INTRODUCE-PLAN and its Object Plan .. 78
4.5. Constraint Satisfaction Creates PLAN2 and PLAN3 ... 79
4.6. The Plan Stack after the First Utterance ... 80
4.7. The Plan Stack after the Clerk's Response ... 82
4.8. The Plan Stack after the Passenger's Second Utterance ... 83
4.9. Coherent Dialogue Continuations of Preference Two .. 84

4.10. Graphic Editor Domain Plans ... 87
4.11. Meta-plan Schemas used for Dialogue 2 (Repeated from Chapter 2) 87
4.12. The Two Plan Stacks after the First Utterance .. 89
4.13. The Plan Stack after the User's Second Uttcrance .. 92
4.14. The Plan Stack after the User's Elaboration ... 94

4.15. Continuation of the Original Domain Plan .. 96
4.16. If the System had Prompted .. 96
4.17. If the User's Utterances were Reverscd .. 98

Xiii i

Xiv

5.1. The Meta-Plans Needed for the Tape Example (Repeated from Chapter 2) 101
5.2. The Plan Stack After the First Utterance ... 103
5.3. The Plan Stack after the User's Elaboration.. 104

5.4. The Modified Plan Stack .. 106
5.5. The Train Domain Plan Schemas (Repeated from Chapter 2) 108

5.6. The Stack after the Initial Fragment........*... 109
5.7. The Modified Plan Stack .. 112

6.1. A Typical Plan Schema (Repeated from Chapter 2).. 117

6.2. The Implementation of a Typical Plan Schema ... 117
6.3. Part of the System's Type Hierarchy .. 123

6.4. The Meta-Plan Schema ASK and its Implementation...................................... 124

6.5. Other Axioms Needed for the Example .. 127
6.6. Sample of the Vocabulary Supporting Meta-Plans.. 129
6.7. The Need for Multiple Sets of Assertions.. 138 a

6.8. An Example Equality Context Tree with Inheritance....................................... 138
7.1. Plan Recognition and Helpful Behavior .. 155

Poe

,.

Chapter I

Introduction

1. Overview

Naturally occurring dialogues exhibit a wide variety of linguistic behavior problematic for

existing natural language understanding systems. In particular, much of the interpretation pro-
'p/

cess appears highly dependent on various types of discourse and pragmatic analyses. This

work presents a computational theory and partial implementation of a discourse level model of

dialogue understanding.

Consider the demands that the following dialogue (recorded at the information booth of

a train station in Toronto (Horrigan [471)) would place on a computer system that could take

the role of the clerk during the understanding process.

1) Passenger: The eight-fifty to Montreal?

2) Clerk: Eight-fifty to Montreal? Gate seven.

3) Passenger Where is it?

4) Clerk: Down this way to your left. Second one on the left.

5) Passenger: OK. Thank you.
'I

Dialogue I

In order to process initial sentence fragments such as utterance (1). such a system would need

knowledge regarding a presupposed context of the dialogue. For example, the system could

I|"" "" e ,".t.,e " " " ""-" 2¢" ," "e" ',=€ " "e'r.-.-".'-,.-,
"-

-,.,,'- -'....- ",'-", ,',,,...'.'."."",.' '- .. -",. .'

-,4-

2

use the knowledge that the speaker probably wants to either board or meet a train to infer that

the speaker wants to know the train gate. Yet. since the dialogue is more than a series of unre-

lated question/answer exchanges, the system's understanding process is also dependent on the

previous context provided by the dialogue-itself. For example, the system could not under-

stand the pronoun "it" and thus utterance (3) without using the knowledge provided by the

preceding utterances. Furthermore, the system should be able to ascertain that utterance (3)

initiates a clarification subdialogue with respect to the previous topic. Finally, the system

should be able to exploit various linguistic signals used by the speaker, for example the use of

"OK" to mark the conclusion of the clarification subdialogue and the use of "Thank you" to

mark the conclusion of the dialogue.

Analysis of dialogues in other domains yields similar results. Consider Dialogue 2

(Sidner and Bates [891), the initial portion of a, scenario developed from protocols in which a

user interacts with an editing system to manipulate network structures in a knowledge

representation language.

6) User: Show me the generic concept called "employee."

7) System: OK. (system displays network>

8) User: can't fit a new IC below it. Can you move it up?

9) System: Yes. <system displays network>

1O)User: OK. now make an individual employee concept whose first name is "Sam"
and whose last name is "Jones." The Social Security number is
234-56-7899.

11) System: OK.

Dialogue 2

As above, the system will need to be able to relate current utterances to previous utterances in

the dialogue. In particular, the system must recognize that some utterances introduce and con-

tinue a topic (e.g. the subdialogues corresponding to execution of an editing plan in lines (6)-

(7) and (10)-(11)) while others temporarily interrupt a topic (e.g. the correction subdialogue

"I

3

corresponding to lines (8)-(9)). Furthermore, relationships between utterances occur not only

across but also within subdialogues. as in lines (8) and (10). And atain, we see the use of

linguistic clues such as "OK" and "now" to explicitly signal utterance relationships (for exam-

ple, in (10) the resumption and continuatiob of the interrupted topic corresponding to execu-

tion of the editing plan).

Finally, imagine a system capable of taking the role of the operator and clerk in Dialogue

fragments 3 and 4, respectively.

12) User: Could you mount a magtape for me? It's tapel. No ring please. Can you
do it in five minutes?

13) Operator. We are not allowed to mount that magtape. Youll have to talk to operator

about it. After nine a.m. Monday through Friday.

14) User How about tape2?

Dialogue 3

15) Passenger Trains going from here to Ottawa?

16) Clerk: Ottawa. Next one is at four-thirty.

17) Passenger: How about Wednesday?

18) Clerk: One at nine thirty, nine thirty in the morning, four thirty in the
afternoon...yeah. that's it.

._

Dialogue 4

(Dialogue 3 is a terminal transcript of a user/operator link, provided by Bill Mann. Dialogue 4

is from the same corpus as Dialogue 1). As in the above dialogues, such a system will need to

be able to recognize various relationships between utterances. For example, the latter portions

of line (12) elaborate an initial request to mount a tape, while line (14) modifies and replaces

the whole set of utterances corresponding to the elaborated request. Furthermore, in both

dialogues we see the use of "how about" as an explicit signal for the modification relationship.

As in Dialogue 1. the system will also need to use some sort of context to understand sentence r

fragments and more generally elliptical utterances. While the linguistic context of the previous

discourse is sufficient to understand (14), to understand (15) and (17) knowledge regarding

--M

4

some other context is also needed. In line (15) this is because there is no previous discourse to

draw upon. while in line (17) this is because the concept that Wednesday replaces is only

implictly part of the preceding dialogue.

This dissertation will present a computational theory and partial implementation of the

dialogue understanding process that addresses these issues. As we will see, the theory extends

plan-based approaches for sentence and simple dialogue understanding by incorporating more

linguistic-based insights from the area of discourse analysis. In particular, the simple, more syn-

tactic results of discourse analysis (for example, explanations of phenomena in terms of very

local discourse contexts as well as correlations between syntactic devices and discourse func-

tion) will be used without change, while the more complex inferential processes relating utter-

ances have been totally reformulated within a plan-based framework. Such a theory will enable

the handling of a wide range of linguistic phenomena while maintaining the computational

advantages and complementary coverage of the plan-based approach. Such a model recognizes

that a dialogue can (and for robustness as well as efficiency, should) be analyzed along several

dimensions.

2. The Discourses and their Analyses

The theory presented in this work draws upon the analysis of four sets of person-person

dialogues, characterizing situations in which the desirability of a computer system as a conver-

sational participant is easily imagined. Examination of such dialogues provides data regarding

the kinds of language people will likely use in similar person-machine interactions as well as

indications of the kinds of interpretations people construct from such utterances.

Although the dialogues are somewhat restricted in topic and involve only cooperative

exchanges, we will see that they nonetheless exhibit many interesting linguistic phenomena

characteristic of more freewheeling exchanges. They thus provide a nice testbed for developing

a computationally tractable system that yet addresses some complex linguistic issues.

J.-r

o# * o o • ••' p-.° - - , .• -,. % % % . -' j . o-=- . ° . -.- o % ' o .". % o .- j % .- = o ., -' .

5 -

Before discussing the data. a bit of terminology will be useful. A discourse will refer to

any exchange involving more than a single sentence, for example texts, paragraphs, dialogues.

conversations, and stories. An utterance will refer to both a speaker's complete turn as well as

individual sentences within a turn; the inteded dsage should always be clear from the context.

For example, in the context of Dialogue 2 line (8) will be referred to as the user's second utter-

ance. while in the context of line (3) "Can you move it up?" will be referred to as the user's

second utterance. Finally, since the model treats spoken texts as written texts (i.e., intonation

cues, etc. are ignored) the terms speaker, hearer, and utterance will be used loosely for all the

dialogues.

2.1. The Data

2.1.1. Train Station Information Clerk .,.

With the permission of the station master. Horrigan (471 tape recorded a corpus of dialo-

gues between people seeking information and a clerk in the "green light" booth in Union Sta-

tion, Toronto, July 1976. Of the four hours of dialogue collected approximately the first hun-

dred dialogues were transcribed, sever.:een of which looked especially interesting and were

selected for further analysis.

The dialogues are examples of information-seeking dialogues, dialogues in which an agent

seeks information with respect to a plan that will not be executed during the dialogue. They

are similar to both the question-answering dialogues of Grosz [371, where a person quened a

(simulated) data base in order to solve an assigned problem. and the informauon seeking dialo-
'p.

gues of Carberry [151 in the domain of university courses. policies, and requirements.

The advantages of the train corpus were numerous. -he dialogues were collected in a

totally natural setting, yet provided data on the itpe of language people ,ould use if they had

verbal access to an intelligent provider of information. Furthermorc. the dialogues were sim-

..

"I

6

pie. Since they were typically short in length (less than a dozen lines) the theory could easily

be tested on full dialogues as opposed to just fragments. Similarly, since they were limited in

topic a small set of underlying plans formed the basis for a large number of dialogues. Practi-

cally all of the dialogues contained question' only related to meeting trains, boarding trains, or

4, locating rooms or offices in the train station. Yet, despite their simplicity the dialogues exhi-

bited the problematic linguistic phenomena targeted for investigation in this research.

-2.1.2. KLONE-ED system

Sidner [87] collected a set of eight protocols, each approximately two hours in length (i.e.

several single-spaced pages), between simulated natural language understanding systems and

users manipulating a database using natural language and a graphics display. Three of these

protocols simulated KLONE-ED, a graphic editing system that could manipulate structures in

the domain of the knowledge representation language KL-ONE [11]. To collect these proto-

cols, users were given a specific task to perform using the KLONE-ED system. All interactions

took place via a computer terminal using natural (i.e. non-simplified) English, and users were

aware that a person was simulating the KLONE-Ed system. From these protocols, Sidner and

Bates [891 constructed a prototypical scenario containing a subset of the capacities possessed by

the simulated systems, concentrating on those that seemed plausible for the near future. Dialo-

gue 2 is the initial portion of this scenario.

The KLONE-ED dialogues are examples of task-oriented dialogues dialogues in which

agents work cooperatively on a task that is performed during (and via) the dialogue. However,

the dialogues are unusual in allowing both linguistic and graphic modes of interaction. In

particular. the KLONE-ED system's interaction with the user is often non-linguistic, with utter-

ances only being produced to satisfy simple conversational conventions.

di

4"

,4

7

2.1.3. Computer Operator

The third corpus of dialogues was provided by Bill Mann and consists of sixteen

(cleaned-up) computer terminal transcripts collected when users linked to a (human) operator.

Like the train dialogues, the set of tape dialogues were collected in natural, as opposed to

experimental, situations. Like in the KLONE-ED dialogues, the mode of communication was

the more typical typed (rather than spoken) computer interface. In general the lengths of the

transcripts are approximately one type written page.

This corpus contains both information-seeking and task-oriented dialogues. For exam-

ple. there are dialogues where the user only wants a question answered, such as:

Linker Do you know if system will really be up all night?

Operator: Unless we crash!

There are also task-oriented dialogues such as Dialogue 3, where the user and the operator

need to cooperate in order to perform the user's task. Finally, the corpus contains some dialo-

gues that exhibit examples of both types of interactions.

2.1.4. Chinese Cooking Consultant

The final corpus of dialogues was collected by Kahrs at al [501. The data consists of two

computer terminal transcripts in which a (human) expert guides a novice in the preparation of

a Chinese meal. As in the KLONE-ED transcripts the dialogues correspond to several pages

of single spaced text and were elicited solely for the purposes of data collection. As in the

task-oriented dialogues of Grosz [371, where an expert instructed an apprentice on the assembly

of part of an air compressor, collection of the dialogues provided data on the language require-

ments of a possible computer consultant. Unfortunately, some of the data collected from these

dialogues was a bit too interesting with respect to the scope of this research. For example, the

fact that in both dialogues the expert and no, ice were friends led to the discussion of too many

topics unrelated to the immediate cooking task at hand.

.. o

8

2.2. The Data Analysis

Despite the differences among the sets of dialogues with respect to domain, genre, mode

of communication, length, spontaneity, and so on. a number of discourse level phenomena are

characteristic of all the interactions. Such generalities provide a natural set of goals for the

design of systems that ultimately will be able to understand the type of unrestricted English

now used in corresponding person-person interactions. The following sections will present the

results targeted for this particular research, identifying both the linguistic phenomena and their

implications for the design of a natural language system. (While the data could also be

analyzed to see how the frequency of such phenomena varies depending on such features as

mode of communication or gender of speaker, those types of results are irrelevant for the pur-

poses of this particular research).

2.2.1. Subdialogues and their Relationships

Any extended dialogue can be decomposed into subdialogue. cohesive subunits that can
..

themselves be decomposed into further subdialogues. Grosz [371 noted that removal of such

subunits does not seem to effect the coherency of the larger unit. She also noted various

linguistic devices supporting this segmentation phenomena.

The range of subdialogues exhibited varies across the sets of data. For example. in the

task-oriented exchanges subdialogues correspond not only to execution of the subtasks but also

to meta-discussions such as clarifications and corrections of the subtask execution. Recall

Dialogue 2. Lines (6)-(7) and (I0)-(Il) are subdialogues corresponding to editing subtasks.

while (8)-(9) is an interrupting subdialogue correcting the execution results of the previous sub-

task.

In the more personal cooking dialogues. subdialogues totally irrelevant to execution of

the task at hand occur, for example the gringo exchange of the following fragment:

% M: Are you going to use the wok?

IS p

I-.. ,... ',' .. ". ,',.... .".. ."."... .".".. -. . ' -,.'. - "" " """ " ," .' "S" -. ' "-. "

9 55

L: Yes, of course! How else does one cook szechuan food?

M: OK, then you should slice the garlic. Use 1-2 cloves. There are gringos in the
world my dear...

L: That's irrelevant. We're cooking chinese. not mexican food, senor.

M: There are gringos in EVERY cuisine!! i.e., there exists an x s.t. x is a cook an x is
mapped onto a prototypical gringo.

L: Do you know the chinese equivalent of gringohood?

M: No. I'm afraid I'm speechless.

L: Oh well. I don't know either. Back to the kitchen.

In contrast, subdialogues in the information-seeking exchanges do not correspond to exe-

cution of subtasks, since such execution takes place outside the dialogue. Recall Dialogue 1,

where the user's underlying goal is to board the eight-fifty to Montreal. Lines (1) and (2) form

a clarification subdialogue regarding the departure gate of the train to be boarded, while lines

(3)-(4) form a clarification of the previous clarification.

Finally, the train station corpus has a large number of subdialogues corresponding to

communication checks, due to the noisy environment. For example, consider the last two

utterances of the following fragment:

P: Going to Stratford. what gate would it be? ,

C: Which one is that?

P: Two fifteen. I think is the ...

C: Yeah. two fifteen. Gate number eight.

P: Number eight?

C: Right.

Not only do the subdialogues differ in content, but they also differ in the way they relate

to the existing discourse context. For example. Grosz [371 noted that in task-oriented dialogues

subdialogues corresponding to execution of subtasks could be related to one another via the

corresponding subtask execution structure. In other words. subtasks are generally related ia a

10

hierarchical tree structure: discussion of such subtasks generally precedes depth-first through

this tree. Thus, the backbone of the Chinese cooking dialogues should (and does) consist of

subdialogues organized according to the execution of the stages of the recipe.

Unfortunately the other types of subdialogues do not appear to fit into this framework.

In particular, many non-subtask subdialogues suspend, rather than continue, traversal of such

task structures; the subtask traversal is then resumed when the interrupting subdialogues are

concluded. For example, in Dialogue 2 the correction exchange of lines (8)-(9) temporarily

interrupts the flow of subtask subdialogues. Such an interruption dynamically occurred due to

the unanticipated aspects of the system's network display. In information-seeking dialogues

such as Dialogue I where the task execution is non-linguistic, such interruptions are all that

appear linguistically; use of the information booth is unnecessary when plan execution goes

smoothly. While the interrupting subdialogues are not generally organized into some sort of

larger global structure, they often can be related to the subdialogue interrupted. For example.

recall the clarification and correction relationships in Dialogues I and 2 with the preceding

subdialogues (lines (3)-(4) and (8)-(9), respectively). However, as illustrated by the cooking

exchange relationships that further the achievement of the underlying task are not necessarily

present.

The implications of these observations for the design of a natural language understanding

system are many. For example, the existence of subdialogues as cohesive units requires a sys-

tem that can recognize the boundaries of such units. Furthermore, a system should be able to

discriminate between certain kinds of subdialogues, since subdialogues corresponding to sub-

tasks. meta-discussions of subtasks, and interruptions unconnected to subtasks relate to the pre-

vious discourse in different ways. For example, depending on the context some relationships

between subdialogues are more expected than others. Furthermore, the interpretation of utter-

ances depends on the relationship inferred.

U.4

-S,

m5~S~

11

The data analysis also indicates what kinds of knowledge an intelligent computer system

will need to understand such dialogues. As Grosz [371 noted, recognition of a dialogue's

discourse structure is necessary to explain a class of linguistic phenomena. Since the structure

of task subdialogues corresponds to the., execution structure of corresponding subtasks,

knowledge regarding the structure of typical domain tasks is necessary. However, since in

many of the dialogues agents do more than merely execute a plan, knowledge about higher

level processes such as plan debugging will be useful. Finally, since any subdialogue may be

temporarily interrupted, structures for managing interruptions are necessary.

2.2.2. Sentence Fragments and Eiptical Utterances

Each corpus of dialogues also contained sentence fragments or other elliptical utterances.

While in isolation such utterances containing missing words or phrases are syntactically incom-

plete, in the context of a discourse the missing entities can usually be recovered. For example,

in Dialogue 3 the missing portions of line (14) can be recovered using line (12). Thus, our

desired natural language understanding system should be able to both maintain and use por-

tions of the previous dialogue.

Unfortunately, many types of elliptical utterances cannot be handled using only the con-

tent of the previous dialogue. Consider analysis of utterances (1) and (15), the initial fragments

of Dialogues (1) and (4), respectively. Since there is no preceding dialogue, to find the missing

phrases the system will need to draw upon an extra-linguistic context of knowledge about the

world and likely goals of the speaker. In other words, if the train clerk knows that persons

seeking information typically are boarding a train, meeting a train, or looking for a room in the

station. "The eight-fifty to Montreal" can be understood by using these plans to provide the

missing information (in this case, knowing that to board a train an agent needs to know what

gate to go to). Such analysis is also useful for understanding non-elliptical utterances. Since

the system not only knows what was said but also why. recognition of how an utterance con-

,- .-..-. a % % . - J . . & . ,I

"9

12

nects with a speaker's underlying goal provides a deeper level of understanding.

While the use of planning 'nowledge in understanding utterances (1) and (15) (or any

utterance in isolation) is not a discourse level phenomena, it is similar in that understanding

involves connecting an utterance to some previous context, in this case an extra-linguistic con-

text. Thus. connecting an utterance to a context of speaker goals can usually provide an alter-

native to solely linguistic explanations of discourse level ellipsis. This suggests that a natural

language system should be able to use and coordinate both linguistic and plan-based analyses

of the same phenomena. Furthermore, plan-based analyses appear to be able to explain

discourse level examples that are problematic for the linguistic method. Recall "How about

Wednesday" in Dialogue (4), where the entity that "Wednesday" replaces is not explicitly men-

tioned in the previous dialogue.

2.2.3. Surface Linguistic Phenomena

Many researchers have noted that surface linguistic phenomena. e.g. the particular lexical

items and syntactic structures used in an utterance, explicitly signal the role of an utterance

with respect to the overall discourse. It has been shown that choice of referring expressions (for

example pronouns and definite noun phrases) varies depending on the status of the subdialo-

gue containing the entity. Also, many seemingly insignificant words and phrases not only mark

transitions between subdialogues, but also indicate the relationships between such subdialo-

gues. For example, consider the use of "OK" in Dialogues 1 and 2, "how about" in Dialogues

3 and 4. and "by the way" in the following dialogue fragment.

L: The eggplant has been sliced. It's (good) that you advised cutting by judgement in-
stead of absolute directions. We got a monster eggplant that split into ten sec-
tions. By the way. the eggplant is turning brown. The tradftional method for

preventing oxidation is to sprinkle the food with lemon juice. Do you recom-
mend doing so?

M: I'm not sure that it's necessary since we're going to use it soon. If you would like
to. you can, but the lemon taste may carry over.

L: [dig. Well skip it then.

m-"

i . ~~~~~~~~. , ,-....,-. ,,

? I-,

13 '

"By the way" typically indicates not only the beginning of a new subdialogue, but also that

the subdialogue temporarily interrupts the subdialogue structure corresponding to the prepara-

tion of the eggplant recipe as guided by the consultant. With respect to the design of a natural

language system, these results indicate that Iystenisshould be able to use such discourse clues.

However, since such clues are not always present (for example, no clue precedes the interrupt-

ing utterance (8) in Dialogue 2), systems should also be able to proceed as best they can

without them. Thus, we again see the need for linguistic as well as extra-linguistic knowledge.
4.

2.2.4. Multi-Sentential Utterances

Often a speaker will express a single thought via a set of utterances rather than a single

utterance. For example, the first three utterances of Dialogue 3 could easily have been

replaced with the single utterance "Could you mount tapel for me with no ring please?" Just

as subdialogues needed to be related to one another in various ways, sentences in multi-

sentential utterances (i.e. sentences within a subdialogue) will need to be related. For example,

to understand "It's tapel" in Dialogue 3 a system will need to be able to relate it to the previ-

ous discourse and/or plan context provided by "Could you mount a magtape for me?" A

desirable system design would be one that uses the same structures and mechanisms to recog-

nize the previously discussed relationships.

3. A Computational Theory of Dialogue Understanding

As mentioned above, the results of the discourse analysis along with constraints of com-

putational plausibility both guided and later supported the design of the theory presented in

this dissertation. Previous work in the area had generally concentrated on either (1) the com-

putational recognition and use of plan structures for understanding single sentences and dialo-

gues without interruptions, or (2) linguistic explanations of interruptions and other discourse

phenomena often dependent on computational processes that were unrealistically presupposed.

In contrast, this work was based on the desire to use both planning and linguistic knowledge

t •

!7 -7 - 'P

14

during the process of dialogue understanding [4,56]. The result was an investigation that con-

cerned itself primarily with extension of the results of the plan-based work using issues and

tractable results of the more linguistic work.

The initial phase of this research [571 focused on the clarification subdialogues and sur-

face phenomena of the train domain, and resulted in the hypothesis that an important kind of

interrupting relationship between utterances could be recognized by extending the system's

knowledge regarding specific plans to include knowledge about things people could do with

such plans (e.g. introduce them, execute them, clarify them, debug them...). Yet, as in the

linguistic theories, surface phenomena could still be used to guide the recognition of underly-

ing dialogue (here plan) structures, and conversely recognized structures could be used to

-4 explain other surface phenomena. In other words, a way of coordinating alternative linguistic

and plan-based explanations of the examined set of discourse phenomena was developed. The

initial theory was then applied to the other dialogues (for example, see [58J). While some of

the particular details needed to be generalized. the basic structures and algorithms held. In

particular. the scope of the theory was extended to include dialogues with (and without)

several kinds of interruptions. Also, it turned out that ellipsis and the (very limited) number of

multi-sentential utterances could be analyzed without recourse to any new theoretical mechan-

isms. The final result was the formal theory and partial implementation of a system capable of

understanding a set of discourse level phenomena in many dialogue variants.

Figure 1.1 presents the components and interactions that would be found in such a sys-

tem. For every utterance, the system's processing would consist of both linguistic and plan-

based analyses of discourse level phenomena. In other words, the design of the system is

based on two major assumptions:

(1) People form and execute plans containing linguistic (as well as non-hiaguistic) actions.

plans that other agents can infer from observation of these actions.

(2) The structure of dialogues and the use of surface linguistic phenomena are highly

rule-governed.

'fm
a

-. ,'~ % ~ % ,

15

PLAN ANALYSIS LINGUISTIC ANALYSIS

Plan Structures Clue Words

domain plans Local Discourse Phenomena %
meta-plans
plan stack pronouns

ellipsis

Incremental Plan Recognition

plan-based heuristics
coherence heuristics

Preliminary Syntax and Semantics

Figure 1.1: System Overview

The scope of the work is constrained by also assuming that agents will cooperate and share the

same knowledge.

The input to such a system is a syntactic and semantic analysis, typical of the kind of out-

put produced by existing parsing systems. As the dialogue progresses, the system performs the

necessary plan analysis (formalized in the incremental plan recognition algorithm) using

knowledge about the structure of typical plans (domain plans), a preliminary set of things peo-

pie do with plans (meta-plans), and a previous dialogue con, ext consisting of the set of previ-

ously recognized executing and interrupted plans and their relationships (maintained via the

plan stack). The recognition algorithm is a search process guided by both rules of rational

planning behavior and rules about the structure of the dialogues in terms of relationships

between the higher-level (meta) planning processes that underly them. Finally. clue words

present in the utterance as well as typical linguistic analyses of local discourse phenomena are

also input to the plan recognizer and used to constrain its default plan-based search process.

Note, however, that if such linguistic analyses are not available, plan recognition can still

~ .A~ 2

16%

proceed, and in fact can be used to provide alternative plan-based analyses of the local linguis-

tic phenomena.

As we will see, the behavior just described is flully specified by the theory. The imple-

mentation, however, is only partial and corresponds to the major contribution (i.e. the plan

recognition aspects) of the theory. In particular, the current implementation illustrates the

recognition of a stack of executing and interrupted domain and meta-plans from a representa-

tion of the parse of "The eight-fifty to Montreal?" The implementation also addresses two

difficult issues of knowledge representation (related to equality reasoning) inherent in any plan O

recognition task. Finally, while the parser and linguistic analyses are simulated in the current

system, actual implementations demonstrating such capabilities do exist either at Rochester or

other institutions.-:

Figure 1.2 illustrates (at a very high-level) how the theory is used to simulate a system

processing a dialogue by constructing and manipulating a stack of recognized user and system

plans and meta-plans. For example, given an input such as (the syntactic and semantic analysis

of) the noun phrase "The 8:50 to Montreal," the system, here taking the role of the clerk, will J°

use its knowledge regarding domain plans, meta-plans, the previous discourse (currently an

empty stack), and the plan recognition algorithm to hypothesize that the passenger is introduc- 'p

ing a plan for the system to clarify the passenger's domain plan to board the 8:50 to Montreal.

The system performs this analysis by recognizing the various plans and their relationships, then

placing them on the stack. Each meta-plan on the stack refers to the plan below it. with the
'S

domain dependent task plan at the bottom. The top plan is currently executing and the others

will be resumed when the plan immediately above is popped. The system will then manipulate

this stack and generate an appropriate response: the resulting stack provides a context for

understanding the next user utterance. To understand "Where is it?" the system will, as

before, analyze the passenger's utterance as an introduction of a plan for the system to clarify a

plan. However. in this case the clarification is with respect to the previously executed system '.-

".5'

17

passenger INTRODUCES

clerk CLARIFIES clerk CLARIFIES

passenger BOARDS train passenger BOARDS train

P: The 8:50 to Montreal? -) C: 8:50 to Montreal. Gate 7.

passenger INTRODUCES

clerk CLARIFIES clerk CLARIFIES

clerk CLARIFIES W clerk CLARIFIES

passenger BOARDS train passenger BOARDS train .

P: Where is it? ----- C: Down this way to your left.
Second one on the left.

passenger BOARDS train

P: OK. Thank you.

Figure 1.2: Example J4

clarification rather than a new passenger domain plan. In other words, once the dialogue is in S

progress the system prefers an interpretation that coheres with the previous dialogue. Finally.

understanding of the last passenger utterance shows how the system can use linguistic clues to

guide its default (plan-based) manipulations of the plan stack.

4. Dissertation Overview

The next two chapters will present the structures and algorithms of the theory in detail.

Chapter 2 will present the plan-based aspects, while Chapter 3 will show how various insights

in the area of discourse analysis have either been reformulated in or interfaced to this frame-

? ;' r" 'r''' ' :Y '" I :.... 1" ' ' ' , • , • j

:'x. m - -'. -. J. -, . ..p 'c - -w - .u , r z 'W '.. . . 7 .N ,. ' . -, '\ L. 'p r.' .~ .p x. -p ' y .: - ' - - : - - r 7 ., 'P: .

18

work.

Chapters 4 and 5 will show how the theory can actually be used to process the four

examples given at the beginning of this chapter. Chapter 4 will concentrate on the recognition

of interrupting subdialogues (both clarification and corrections), while Chapter 5 will concen-

trate on the use of another type of interrupting subdialogue to explain sentence fragments,

linguistic, and extra-linguistic elliptical utterances. While the examples are quite detailed and

thus somewhat tedious, to fully understand the theory the reader should at least comprehend

the first example of Chapter 4.

Chapter 6 will discuss technical issues relating to the implementation. In particular, the

chapter will concentrate on the discussion of two modes of reasoning that many current

knowledge representation systems lack but all plan recognition systems need. The chapter will

show how the current implementation of the plan recognition process for '"The eight-fifty to

Montreal?" addresses these (as well as the plan recognition) issues. For example, the chapter

will show how the process of constraint satisfaction can be used to implement the recognition

of object plans from meta-plans. Finally, the chapter will discuss the significance of the imple-

mentation with respect to the theory. We will see that unlike many discourse models, all com-

putational processes required by the theory have either been implemented in this system or

simulated here and implemented elsewhere. Chapter 6 can be skipped by readers not con-

cerned with either issues of implementation or knowledge representation.

Finally. Chapter 7 will place this work into the context of the relevant literature, while

Chapter 8 will summarize and elaborate on future directions.

.4, °,
4'. ' #o ' ' .' . '' - . '' '' 4 ' '' . '

"
"' ,t "' """ ' ,' '' 4 '' , '' . ' ' .' . '" . '"", ,""P,. . " . " " . '' -

,,' . \ ,4

Chapter 2
,s

Plan Analysis

,' 1. Background

Plans, sequences of actions that achieve a set of goals, are a central concept in artificial p.

intelligence research. Early work was in the context of robot problem solving systems (Newell

and Simon (671, Fikes and Nilsson [301) and involved generating plans, linear sequences of exe-

cutable robot actions, given an iaitial world state. a goal state, and a library of actions a robot

could perform. Actions were formally modeled as operators that changed one state of the

world into another- mechanisms were developed for searching through state spaces to find

operator sequences connecting initial and goal states. Later work extended the framework to

include hierarchical (Sacerdoti [79,801) and non-linear (Sacerdoti [801. Tate [921) planning. By

allowing plans to be developed level by level, i.e. hierarchically, low level details could be post-

poned. Plans at each level were thus shorter and more manageable. This work was also in the

context of a robot generating plans for a toy "blocks world" domain.

Many artificial intelligence researchers have used such robot planning frameworks to

address a wide variety of issues in the area of natural language. Bruce [141 suggested and

Allen. Cohen. and Perrault 13.221 pursued a plan-based approach to conversation based on

insights from the philosophy of language (Austin [91. Searle (841, Grice [351). The work in phi-

losophy suggested viewing utterances as speech acts, actions performed by speakers to achieve

19

'a

20

intended effects. Understanding an utterance thus involved both constructing a literal interpre-

taton as well as recognizing underlying intentions. Allen, Cohen and Perrault, adopting this

purposeful view of language, developed computational models for recognizing and generating

speech acts based heavily upon the work i01 rob6tproblem solving. For example, speech acts

were modeled as action operators in a language planning system: understanding a speech act

involved recognizing the speakers intentions (i.e. plan). Their theory produced a new view of

question-answering conversations, and led to systems that could provide more information than

required as well as understand indirect speech acts and sentence fragments.

Other plan-based work has been concerned with issues of discourse context, i.e. relating

the current utterance to the previous utterances in the conversation. For example, goal analysis

has been used to relate sentences processed in story-understanding systems. Schank [821 noted

that stereotypical stories could be understood. by the use of a script, a data structure for

representing such stereotypical situations. Scripts provided expectations in the form of slots,

which were filled in during story understanding. Wilensky [961 generalized this idea by using a

more flexible intentional (i.e. plan-based) analysis. By reasoning about the story situations in

terms of interacting goals and plans of the characters, his system could understand novel (as

well as stereotypical) goal-based stories. With respect to conversational analysis, Grosz [371
',p

noted that in task-oriented dialogues the topic usually follows the task (i.e. plan) structure. She

used this result to process various linguistic phenomena exhibited in the dialogues, such as

definite noun phrases and elliptical utterances. Sidner and Israel [86] and Carberry [15] have

used similar intuitions to recognize multi-step plans. Carberry used the plan context to help

track the changing task goals of a speaker during information-seeking dialogues. Similarly,

-., Sidner and Israel extended Allen [3] by using plan knowledge to provide a context. They also

suggested using the framework to recognize interruptions of faulty plans. This problem of

when to ignore the expectations provided by discourse context, as in an interruption or change

of plan. has generally been ignored. Sidner [901 begins to tackle the problem of interruptions

, , - ,, • ,.*,. *' q, , , . - . ,s -7' ' -,,,- % ,, .7.17 T . ,- V2 W6-,7 * U 1.'--. - .

U

21

in order to recognize when two or more plans underlie a discourse. Related to this issue is

how the actual phrasing of the utterance controls (whether to overrule or reinforce) the plan

recognition process. As will be seen in the next chapter, issues of interruptions and linguistic

analysis have been of concern primarily outside tWe'plan-based field.

This chapter will present a new theory of plan recognition, one that will be able to sys-

tematically use (or ignore) the previous conversational context and thus handle a wide variety

of subdialogues. As will be seen, in addition to the standard domain-dependent knowledge of

task plans, some knowledge about the planning process itself will be introduced. This will be

done via meta-plans. domain-independent plans that refer to the state of other plans. During a

dialogue, the theory will specify how to incrementally recognize instantiations of such plans

and put them on a stack, each meta-plan on the stack referring to the plan below it, with the

domain-dependent task plan at the bottom. In the next chapter we will see that the manipula-

tion of this stack of plans is similar to the manipulation of topic hierarchies that arise in

discourse models. In that chapter we will also see how the plan recognizer can use some of the

results of the more linguistic models.

2. Plan Structures

2.1. Models of Plans

In a plan-based approach to language understanding, an utterance is considered under-

stood when it is related to some underlying plan of the speaker. The hearer must thus bring co

the understanding task some knowledge about typical speaker plans. A library of plan schemas

will be used to represent this type of general knowledge. (Plan instantiations are formed from

such general schemas by giving values to the schema parameters.)

Plan schemas can be used for both plan generation and plan recognition. For example. a

planning system would use these schemas in the same way it would have used STRIPS action

22

descriptions (30], i.e.. to generate sequences of matched and instantiated schemas to achieve

some goal. Once generated. the complex plan instantiation is executed much as one would run Ii.

a program. A plan recognizer, on the other hand, will use the plan schemas to recognize the

plan instantiation that produced an executid action. In particular, the recognizer will be con-

cerned with recognizing plan instantiations from actions executed as part of a dialogue. Plan

will be used loosely to refer to both plan schemas and plan instantiations. The intended mean-

ing should always be clear from the context.

Every plan has a header, a parameterized action description that names the plan. The

parameters of a plan are the parameters in the header. As usual in many models of planning

(for example. STRIPS [301), action descriptions are represented as operators on the planner's

world model and are defined in terms of prerequisites and effects. Prerequisites are conditions

that need to hold (or be made to hold) in the world model before the action operator can actu-

ally be applied. Effects are statements that are asserted into the world model after the action

has been successfully executed. By assuming that all other aspects of the planner's world model ,A

remain unchanged, the frame problem [631 can be suppressed. Since the particular plans that

will be used in this work have prerequisites that aren't falsified, and so on, it will not be neces-

sary to have effects that delete statements from the world model, as in STRIPS.

Action descriptions may also have decompositions, which enable hierarchical planning

(Sacerdoti [80]). Although the action description of the header may be usefully thought of at

one level of abstraction as a single action achieving a goal, such an action might not be execut-

able. i.e. it might be an abstract as opposed to primitive action. Abstract actions are in actuality

composed of primitive actions and possibly othe, abstract action descriptions (i.e.. other plans).

Thus. decompositions may be sequences of pnmitive actions. abstract actions, goals to be

achieved (action sequences to be dynamically constructed) or a mixture. Note that the usual

distinctions between the terms "action" and "plan" have become blurred. In STRIPS. (primi-

ti'e) actions *ere organ1ed into plans. Here. as in AI3STRIPS (791 and NO-\H [801. plans

ip

23

(abstract or primitive actions) are organized into larger plans. It is useful to precompile well-

defined plans for a goal as abstract actions to capture their generality as components within

higher level plans.

A few things atypical of such planning models should also be noted. Associated with

each plan is a set of consiraints. These are similar to prerequisites, except that the planner

never attempts to achieve a constraint if it is false. Thus, any action whose constraints are not

satisfied in some context will not be applicable in that context.1 Also, plans may involve both

physical and linguistic actions. In a typical plan involving a conversation, for example, agents

often take turns executing actions corresponding to the utterances in the conversation. Finally,

plans may contain actions with both the system and the user as possible agents. Since both

agents are assumed to be cooperating, there is no reason why the user can't construct a plan

that depends on the system's help.

Figure 2.1 illustrates a very simple plan schema with header "BUY-TICKET (passenger,

clerk, ticket)" and parameters "passenger," "clerk" and "ticket." An instantiation of such a

plan schema might be generated and then executed to change a world in which a passenger

doesn't have a ticket into one where he or she does. Before the plan instantiation can be per-

formed, the prerequisites indicate that the passenger must have (or construct a subplan to

obtain) enough money to pay for a ticket. Similarly, the constraints indicate that the clerk

must be a ticket-seller. However, unlike a prerequisite, if this condition is not already true

then the ticket cannot be bought from this particular clerk. In other words, it doesn't make

sense to treat this condition as a goal to be achieved since it is beyond the passenger's capabili-

ties. Assuming that these conditions are met, buying a ticket can then be performed by having

the passenger first pay the clerk, followed by the clerk giving the passenger the ticket. The

world model is then updated to indicate that the passenger now has the ticket and the clerk

'These constraints should not be confused with the constraints of Stefik [9tI. which are d.namtically formulated
dunng hierarchical plan generaton and represent the interactions between ubproblems.

24

now has the money.

HEADER: BUY-TICKET(passenger, clerk, ticket)

PREREQUISITE: HAS(passenger, price(ticket))

DECOMPOSITION: PAY(passenger, price(ticket))
GIVE(clerk, passenger, ticket)

EFFECTS: HAS(passenger, ticket)
HAS(clerk, price(ticket))

CONSTRAINT: TICKET-SELLER(clerk)

Figure 2.1: A Plan Schema

When the implementation is presented, we shall see how such schemas are axiomatized

using a typed horn clause logic [61, where types are organized into hierarchies as commonly

found in semantic network formalisms. The naming of the parameters in the schemas will

reflect such type restrictions. Thus, when an instance of the schema in Figure 2.1 is created,

passenger and clerk are restricted to people (or systems) and ticket is restricted to tickets. We

will also see how the representation of plan schemas as described in this chapter glosses over

difficult issues of knowledge representation, and thus does not exactly correspond to the

representation of schemas in the implementation. Other assumptions that underlie the above

representation follow. In general, relaxation of any of the assumptions produces a topic worthy

of its own research effort.
-a

Although a STRIPS based plan representation is typical, there are ultimately several limi-

tations. For example, the only temporal constraint on a plan schema is an implicit linear ord-

ering of the actions in the decomposition. Thus. in Figure 2.1. the clerk must be paid before $
the ticket is given. In NOAH [801 a representation enabling non-linear planning was

developed. More recently, Allen [71 has developed a much more general theory of action and

,ha

Sb

S.,

25
S%

time useful for a plan generation system (Allen and Koomen (5]). Regardless of the time issue,

a STRIPS based representation system will also prove inadequate for certain types of plan

inference. Pollack [731 is developing a more expressive model that will enable reasoning about

plans that an agent might have even though'they ire unrealizable.

All issues involving non-mutual beliefs of agents will be ignored. In other words, it is

assumed that what agent A believes that agent B believes is equivalent to what agent B

believes. For example, all participants in the dialogue share the same plan library; knowledge

about what plans exist as well as how they are performed is mutually believed by all. While

greatly simplifying representation issues, this assumption would need to be relaxed when

understanding dialogues containing deceit (Bruce [131) or various types of miscommunication

(as discussed in Chapter 8).

2.1.1. Domain Plan Schemas

Domain plan schemas represent typical tasks that might be performed in a given domain.

Such knowledge has been the mainstay of previous plan-based works. Figure 2.2 presents a

subset of the relevant domain plan schemas necessary for processing the dialogues in the

Toronto train station. Although the formalizations are obviously incomplete, they will be

sufficient for the purposes of this dissertation.

Since, as mentioned above, the naming conventions in the figures presume an underlying

type hierarchy, it will be useful to briefly discuss the particular type hierarchy used before dis-

cussing the figures in depth. Obviously one of the types needed will be a train type, defined as

follows:

(subtype TrainType PhysicalObjectType
(gate LocationType)
(station CityType)
(time TimeType)) ,,

Note that the representation permits complex structured types. i.e. frame-like structures (661.

26

HEADER: GOTO(agent, location, time)

EFFECT: AT(agent, location..time)

HEADER: MEET(agenc, arriveTrain)ft

DECOMPOSITION: GOTO(agent, gate(arriveTrain), time(amrveTrain))

HEADER: BOARD(agent. departTrain)

DECOMPOSITION: GOTO(agent. gate(departTrain). time(departTrain))r

GEI'ON(agent, departTrain)
....

HEADER: TAKE-TRAIN'TRIPagent, departTrain. destination) '

DECOMPOSITION: SELECT'TRAIN(agent. departTrain. departTrainSet)
* BUY'TICKET(agent. clerk, ticket)

BOARD(agent. deparETrain)

CONSTRAINTS: EQ UAL(destination, station(departTrain))
EQUAL(destination, sration(departTrainSet))
EQUAL(departTtain. object(ticket))

Figure 2.2: Domain Plan Schemas for the Train Domain

by allowing a set of distinguished function names called roles here "gate," "station" and

"time." The role values are type restricted and can be accessed fuinctionally. Thus

"gate(trainl)," where traini is an instance of type TrainType, refers to the specific gate filling >'

the gate role.

Trains will be fuirther decomposed into arriving and departing trains. More formally,

(subtype AmrveTrainType TrainType)
(subtype DepartTrainType TrainType)

As common in semantic network hierarchies, subtypes inherit the properties of their super-

types: thus, these two types inherit the three roles of TrainType. Finally, implicit in these

types is the fact that the information booth is in Toronto. It is assumed that gates and times

refer to Toronto. while the station refers to the other city that the train is either going to or

coming from.

27

The first plan in Figure 2.2 summarizes a simple plan schema with header

"GOTO(agentlocation.time)," with parameters "agent," "location," and "time," and with the

effect "AT(agent.location,time)." The header specifies a primitive action so there is no decom-

position. The prerequisites and constraints-are noishown. Throughout the dissertation, only

AL the parts of the plan schemas needed for the examples will be presented.

The second plan summarizes a plan schema for the abstract action MEET, which is exe-

cuted by performing a constrained version of the primitive action GOTO. As mentioned

above, constraining the type of train to be met to arriving trains, defined as trains going to
C

Toronto, captures the knowledge that the information booth, and hence the agents, are in the

Toronto station. Thus this plan schema would best be described in English as "meeting a train

at a gate in the railroad station of Toronto" rather than as the general action of "meeting a

train."

The BOARD plan schema is similar to MEET, and is one step of the complex plan

schema TAKE-TRAIN-TRIP (again, implicitly from Toronto). The first constraint of TAKE-

TRAIN-TRIP captures the fact that the train taken. i.e. departTrain, must have as the value of

its station role destination. The second constraint indicates that this is also the only restriction -,

on the the set of possible candidates for departTrain used by SELECT-TRAIN. The third con-

straint indicates that the ticket purchased will be used to take departTrain. The specification of

the other plans needed in this domain, e.g. plans to select a particular train from a set of possi-

bilities, plans to buy tickets, plans to ask directions. etc., are not needed to process the exam-

pies chosen.

Since domain plans are domain dependent, participation in the KL-ONE or tape dialo-

gues involves reloading the initial plan library with an appropriate set of domain plans. The

actual plan schemas used in those domains will be given with the examples in later chapters.

*55
'% ° " ' " '"" " "" " " +'" ++ " '"" ' "+ J +'4' " "% '' "" " "4" "'2" ,+- " .' -' "-." ,." "'.'" "- - " " "" ° ..,",,,' " "",e" ''" " "

28

2.1.2. Meta-Plan Schemas
*6

Plans about plans, or meta-plans. deal with introducing plans, executing plans, specifying

parts of plans, debugging plans, abandoning plans. etc., independently of any domain.

Although meta-plans can refer to both domain plans or other meta-plans as we shall see

domain plans can only be accessed and manipulated via meta plans.

Except for the fact that they refer to other plans (i.e. they take other plans as arguments).

meta-plan schemas are identical in structure to domain plan schemas. However, to allow these

plans about plans, a vocabulary for referring to and describing plans will be needed. Develop-

ing a fully adequate formal model would be a large research effort in its own right. The

development so far is meant to be suggestive of what is needed, and is specific enough for the

preliminary implementation.

For example, to talk about the structure of plans a predicate PARAMETER (P. plan) will

be assumed which asserts that P is a parameter of the specified plan. A predicate STEP .6
C-

(action, plan) will also be used, to assert that the specified action is a step in the decomposition

of the specified plan. The rest of the predicates will be introduced as they are needed.

Plans are not the only objects whose structure needs to be examined. In addition, there

will be a need to refer to parameters of actions and propositions (for example, equality asser-

tions) as well. Thus, the logic used will need to admit plans, actions, and propositions as

objects. The PARAMETER predicate will be used to make assertions about the structure of all

these types of objects. ii

The first two examples of meta-plans are given in Figure 2.3. INTRODUCE-PLAN

takes a plan, of the speaker that involves the hearer and presents it to the hearer, who is

assumed to be cooperative. The way of introducing a plan given in the decomposition is to

request one of the actions in the plan for which the hearer is the agent (the constraints). The

definitions of speech acts such as REQUEST will be provided in the next section. Since the

29

hearer is cooperative, he or she will then adopt as a goal the joint plan containing the action

(the first effect). The NEXT predicate (the second effect) informally means that the action so

marked will be the next action to be executed in the plan. Similarly, a predicate LAST will be

used to mark the action most recently erecutid& These predicates encode aspects of the

discourse analysis and will be explained further in the next chapter.

HEADER: INTRODUCE-PLAN(speaker, hearer, action, plan)

DECOMPOSITION: REQUEST(speaker, hearer, action)

EFFECTS: WANT(hearer, plan)

NEXT(action, plan)

CONSTRAINTS: STEP(action, plan)

AGENT(action. hearer)
.... o..............

HEADER: CONTINUE-PLAN(speaker, hearer, step, nextstep, plan)

PREREQUISITES: LAST(step, plan) .

WANT(hearer. plan)

DECOMPOSITION: REQUEST(speaker, hearer, nextst.p)

EFFECT: NEXT(nextstep, plan)

CONSTRAINTS: STEP(step, plan)
STEP(nextstep, plan)

AFTER(step, nexstep)
AGENT(nextstep, hearer)
CANDO(hearer, nextstep, plan)

Figure 2.3: The Default Meta-Plans

Since this work is concerned with the development and use of meta-plans as a way of

explaining conversational phenomena, it will be assumed that all meta-plans will be achieved

via verbal communication with another agent. For example, other ways of introducing a plan,

such as via a written contract, will be ignored throughout.

The second meta-plan. CONTINUE-PLAN. takes an already introduced plan defined by

the WANT prerequisite and moves execution to the next step. One way this may be done is

by asking (the REQUEST in the decomposition) the hearer to perform the next step. assuming

0I

-r77TI!17r. 71 'p -

b
w

30

of course that the step is something the hearer actually can perform. This is captured by the

decomposition together with the constraints. The effect will be that the portion of the plan to

be executed is updated. This will be done with the predicates NEXT and LAST, which as

mentioned above will also be useful for interactinj with the discourse analysis.

As an example. consider an analysis of the following KL-ONE editor dialogue fragment

using the above meta plans. (All such excerpts will come from the naturally occurring data

unless otherwise noted.)

User Good morning. Please show the concept Person.

System: Drawing...Ok.

User. Add a role called hobby.

System: Ok.

User: Make the vr be Pastime.

System: Alright

User Make a subc of Pastime called Sport..

Assume an edit plan involves accessing then performing a sequence of editing actions on a

pre-existing concept. The first request of the user introduces a plan to edit the KL-ONE con-

cept person. Each successive user utterance continues through the plan by requesting the sys-

tem to perform the various editing actions. The first user utterance would thus correspond to

INTRODUCE-PLAN (User, System, show the concept Person, edit plan). Since one effect of

this INTRODUCE-PLAN is that the system adopts the plan, the system responds by executing

the appropriate action in the plan, i.e. by showing the concept Person. The user's next utter-

ance can then be recognized as CONTINUE-PLAN (User, System, show the concept Person.

add hobby role to Person, edit plan), and so on for the other user utterances.

The above fragment is typical of the class of dialogues currently considered in plan-based

approaches to language understanding. Systems are usually limited to discussion of one task,
a*.

id
.

31

with subdialogues corresponding only to execution of the subtasks. In terms of the proposed

meta-plans, such dialogues would be modelled by introducing, then continuing through, a task

plan. The two meta-plans thus make explicit some underlying mechanisms of the earlier

works. "

More importantly, these two meta-plans are part of a larger set of meta-plans enabling a

uniform treatment of a wide range of subdialogues. As the data analysis illustrated, dialogues

reflecting smooth plan execution are almost an exception rather than the norm. Instead, subdi-

alogues often correspond to interruptions due to problems that arise during plan execution. A

response that a speaker predicts will be easily understood might in actuality need clarification.

Or, the system might perform an action based on incorrect assumptions, causing parts of the

incorrectly executed plan to later be redone. Introductions, plan continuations, or even interr-

uptions can themselves be interrupted. The remainder of the meta-plans were developed to

formalize some of these ways in which the expected domain and meta plan execution is inter-

rupted.

Figure 2.4 presents an example clarification meta-plan, IDENTIFY-PARAMETER, that

helps identify a parameter that appears in another plan.

HEADER: IDENTIFY-PARAMETER(speaker, hearer, parameter, action, plan)

DECOMPOSITION: INFORMREF(speaker hearer, term, proposition)

EFFECTS: NEXT(action, plan)
KNOW-PARAMETER(hearer parameter, action, plan)

CONSTRAINTS: PARAMETER(parameter, action)

STEP(action, plan)
PARAMETER(parameter, proposition)
PARAMETER(term, proposition)
WANT(hearer. plan)

Figure 2.4: A Clarification Meta-Plan

32

IDENTIFY-PARAMETER provides a suitable description of a parameter in the plan referred

to that enables the hearer to execute an action in the decomposition of the plan. It is per-

formed by describing the parameter via some description, using a proposition relating the

parameter to the new description (INFOIMEF" iill be further explained in the section on

speech acts). It has several constraints on the relationship between the meta-plan and the plan

it concerns, namely that parameter must be a parameter of an action that must be in the plan,

and that the describing proposition will also involve the specification of term. Finally, the plan

being clarified must already be a goal. The effect of this plan is the predicate KNOW-

PARAMETER (agent, parameter, action, plan), defined to mean that agent has a description of N
.',

parameter that is informative enough to allow agent to execute action in plan. all other things

being equal. While the axiomatization of KNOW-PARAMETER is problematic, it shall only
"'p

be used in simple cases where its use is straightforward.

For example, in the following dialogue fragment the first user utterance introduces a

domain plan involving mounting tapes, i.e. INTRODUCE-PLAN (User, System, mount tapeS,

mount tapes).

User Can I get tape5 on a drive?
"a

System: Write enabled?

User: No. Also, while you're up. can I get tape4 without write enable? ,,.

However, since the system does not know whether the tape should be write enabled, the

expected execution of the action is interrupted for initiation of a user clarification, i.e.

INTRODUCE-PLAN (System, User, IDENTIFY-PARAMETER (User, System, read-only or 'p

write-enabled, mount tapeS, mount tapes). clarification plan). The user responds with the

IDENTIFY-PARAMETER, instantiating and executing its decomposition with INFORMREF

(User. System, no write-enable, the mounting of tape5 is not write enabled), then resumes the

interrupted plan to mount tapes. Note that rest of the user's second utterance now provides

enough information to avoid a clarification.

t%'

33

Figure 2.5 presents the last class of meta-plans, those that debug plans that did not exe-

cute as expected.

*HEADER: CORRECT-PLAN(speaker hearer, laststep. newstep, nextstep. plan)

*PREREQUISITES: WANT(hearer, plan)
LAST(laststep, plan)

DECOMPOSITION-i: achieve WANT(hearer. newstep)

DECOMPOSITION-2: achieve WANT(hearer. nextstep)

EFFECTS: STEP(newstep. plan)
AFTER(laststep. newstep)
AFTER(newstep. nextstep)
NEXT(newstep, plan)

CONSTRAINTS: STEP(laststep, plan)
STEP(nextstep. plan)
AFTER(laststep. nextstep)
AGENT(newstep, hearer)
'CANDO(speaker. nextstep. plan)
MODIFIES(newstep, laststep)
ENABLES(newstep.' nextstep)

HEADER: MODIFY-PLAN(speakerhearer, change. changee,
newAction. oldAction, oldPlan, newPlart)

*PREREQUISITE: WANT(hearer. oldPlan)

DECOMPOSITION: REQUEST(speaker hearer. newAction)

EFCS: POP(CLOSURE(oldPlan))
NEXT(newAction)

CONSTRAINTS: PARAMETER(oldAction, changee) -EQUAL(change. changee)
STEP(oldAction, oldPlan) REPLACE(stack. oldStack)
STEP(newAction. newPlan)
EQUAL(newAction, SUBST(change. changee. oldAction))
EQUAL(TYPE(change). TYPE(changee))

* Figure 2.5: Debugging Meta-Plans

CORRECT-PLAN inserts a repair step into a pre-existing plan that would otherwise fail.

More specifically. CORRECT-PLAN takes a pre-existing plan having subparts that do not

interface as expected during execution: the plan thus needs to be modified by adding a new

* goal to restore the expected interactions. The pre-existing plan has subparts lasistep and

1%

34

nexistep, where laststep was supposed to enable the performance of nexistep. but in reality did

not. Thus the plan must be corrected by adding newstep to the executed plan. which enables

the performance of nexistep and thus of the rest of plan. As in INTRODUCE-PLAN, the plan

to be corrected can be introduced by a REQUEST for an as yet to be performed step (here,

either nexistep or newstep). The effects and constraints capture the plan situation described

above and should be self-explanatory, with the following exceptions. MODIFIES (action2,

actioni) means that action2 is a variant of actioni, for example the same action with different

parameters or a new action achieving the still required effects. ENABLES (actioni, action2)

meatis that the problematic preconditions of action2 are in the effects of action!.

As in the last KLONE-ED fragment, in the following fragment the user is also executing

an edit plan.

User: Good. Now put a part role on robot toes whose VR is unlabelled and which is
superc'ed to physical objects, and under it put three generics labelled toe joints.
nail catchers, and toe padding. That'll finish this little bit.

System: Drawing (sigh)...OK.

User: You forgot the cables.

In particular, the first utterance shown is a CONTINUE-PLAN (User, System, last User edit

action, System put a part role on robot toes.... User edit plan). However, since the system exe-

cutes the requested portion of the plan incorrectly (the goal of having the generics connected

to the toe parts via cables was unmet), the user must interrupt execution of the editing task to

correct the system. This is done via "You forgot the cables," eg. CORRECT-PLAN (User.

System. System put a part role.... System add cables to result of previous put, next User edit

step, User edit plan).

Finally, the last meta-plan to be discussed is MODIFY-PLAN, which replaces an

incorrect plan with a modification of the plan. This is in contrast to CORRECT-PLAN, which

just augments the original plan. More specifically, a new action is constructed from an

incorrect action by replacing the filler of one of its parameters with a different value. A

N4,.

I1

'pe

35 '

modified plan is then constructed and re-executed by replacing the old action with its

modification. These relationships are defined via the plan constraints. As in CORRECT--

PLAN, the prerequisites indicate that the plan to be debugged must already be a goal. One

way to perform this meta-plan is to requesiexecfition of the modified action. The POP effect

and REPLACE constraint explicitly overrule the normal stack operations described in the next

sections. Informally, instead of returning to the interrupted plan we instead re-execute a

modification of this plan.

In the following fragment, the user's second utterance modifies the plan incorrectly exe-

cuted on Wednesday (reintroduced by the user's first utterance).

User: On Wednesday, I created a rather lengthy listing on the line printer. I hope it hasn't

been discarded. I neglected to ask anyone to hold it.

System: It has been discarded.

User: Okay. I'll do it again. Don't throw it away. Ill pick it up this afternoon.

More specifically, the user's second utterance is recognized as achieving MODIFY-PLAN

(User, System, holding time of listing explicit, holding time of listing defaulted, today's create

lengthy listing, Wednesday's create lengthy listing, plan using old listing, plan using new list-

ing).

While many other ways of interrupting normal plan execution could be developed, recog-

nition of the small set of meta-plans shown will be sufficient to understand several subdialogue

classes in all three domains.

2.2. The Plan Stack

A plan stack will be used to monitor execution of a task plan and its various clarifications

and corrections. During a dialogue, a stack of executing and suspended plans is built and

maintained by the plan recognizer, each meta-plan referring to the plan below IL with the

domain-dependent task plan at the bottom and the currently executing plan at the top. The

N.,q

.5.r'

stack will thus encode the domain plan and various meta-plans introduced, their relationships
5,,

to one another, and knowledge about which plans are currently executing and which will later

be resumed. As will be seen in the next chapter, other models of discourse (e.g., Reichman

[76], Polanyi and Scha [711) have shown That bpic structure follows a stack-like discipline.

Within the plan stack, a single element corresponds to either a domain or meta-plan instantia-

tion structure. In earlier systems, traversal of one such structure (which could itself be

modeled with a stack (Grosz [371)) constituted the dialogue processing.

In this work, the stack of plans will always represent what the system believes is the state

of the joint plan. Because both agents may construct and execute these plans, however, at tirmes

it will seem that the stack is not truly a stack. This occurs when the user acts and the system

has to recognize what sequence of planning and execution steps the user did. For example, if

the user popped the top plan, and executed a step in what is now the use,"s top plan. the sys-

tem would recognize this as executing a plan in the second from the top plan. This anomaly is

quickly resolved as the system can then pop its stack to bring the two agents' views back into

synchronization. Thus, once the plan recognition process is completed, the observed action is

always in the plan that is on the top of the stack. 4.

To rephrase this, plans are added and deleted according to the stack discipline. The plan

recognizer, however, is allowed to inspect the entire stack in order to recognize that the user

has popped the stack before the user executed the recognized action. Even when the system

believes the top plan has completed successfully, it cannot be popped before some ack-

nowledgement from the user, thus allowing for a clarification of the complete plan. The ack-

nowledgement could be explicit, but most often is implicit in that the user acts in such a way

that the system recognizes that it must pop the top plan.

The stack can thus be viewed as having a mixture of both suspended (partially executed)

and completed plans. At the top of the stack there is a set of plans (possibly null) that the

:...

37 '

recognizer believes has been executed and completed. As just discussed, these plans cannot be

eliminated as a possible topic until the user acknowledges their successful completion. Below

these plans is at least one currently suspended plan. Each suspended plan will be resumedr

when the one above it is popped. In the 'base wvhen there are no completed plans, the top

suspended plan is also believed to be executing. Thus, the top of the stack is either an execut-

ing or just-execuced plan. The rest of the stack may contain other suspended or completed

plans. If the stack is empty, a task will either be introduced or has just been concluded. The

actual pushing and popping of plans will be dizxu! ed in the section on plan recognition.

As an example, a clarification subdialogue is modeled by a mer~a-plan structure that refers

to the plan that is the topic of the clarification. When a clarification plan is recognized, it is

pushed onto the stack. The previous top, the plan being clarified, is temporarily suspended.

When the clarification is complete and its success acknowledged, the stack is popped and

resumptionof the previous plan is recognized.

For example. consider the continuation of an earlier dialogue fragment, the fragment

illustrating the INTRODUCE and CONTINUE meta-plans in the last section.

1) User' Make a subc of Pastime called Sport.

2) System: OK.

3) User: Make an iconcept of Sport called Golf.

4) System: OK.

5) User: Is there a concept called mailing-address or something like that?

.?

6) System: There is no concept "mailing-address." What do you mean by "or some- %
thing like that?"

7) User: Anything that partially matches spelling of the concept name given or that
identifies the concept indirectly via some other concept.

8) System: There is a concept called Address. Is that of help?

Recall that at the point shown (utterances (1) and Gso (3)) the user is just continuing the previ-

ou'

6) Sste: Tere s n cocep "malin-adres." Wat o yu man b "o soe-

~~thn .ik that?" . * ,."~

38

to request a system clarification. This is necessary since to edit a concept the user has to be

able to uniquely identify the concept. With the first part of utterance (6) the system begins the

clarification, but then decides to suspend it to initiate another clarification subdialogue (regard-

ing the first request for clarification), as donie via tie second part of utterance (6). In terms of

the stack, the initial clarification was pushed on top of (and then suspended) the user's original

edit plan. Similarly, the second clarification was then pushed onto the first. The state of affairs

at this point is shown in Figure 2.6. where the top of the three element stack corresponds to

the top of the page.

clarification subdialogue-2
(executing) META-PLAN

What do you mean by
"or something like that?"

clarification subdialogue- I
(suspended) META-PLAN

Is there a concept called mailing-

address or something like that?

topic of clarification
(suspended) DOMAIN PLAN

edit concepts

Figure 2.6: A Clarification Plan Stack

With utterance (7) the user completes the second (but executing) clarification subdialogue.

The system can then pop the stack and complete the now resumed initial clarification subdialo-

gue (via utterance (8)). Finally, the stack could then be popped once more and the domain

plan resumed.

As mentioned above, in this work the stack will typically consist of a series of meta-plans.

each referring to the plan below it. with a domain dependent task plan at the bottom. This

4i

39

reflects the fact that in the data the majority of the interruptions refer to the previous topic.

whether it be the original domain plan or one of its interruptions. However, when there are

unrelated topics as in the following dialogue, a stack like the one in Figure 2.7 will be con-

structed. " _

User: Can I get tape5 on a drive?

System: Write enabled?

User No. Also, while you're up. can I get tape4 without write enable?

System: Ok...

User: Is archive being run more than once per week. yet? %
IA.

System: No.

System: Ok, tape5 is on drivel and tape4 is on drive 2 without write enable. .

introduce
(meta-plan)

obtain information on archive .

(domain plan)

continue
(meta-plan)

mount tapes
(domain plan)

Figure 2.7: An Interrupting Topic Change Stack
-S

In other words, the third line continues execution of a clarified domain plan, which as indi-

cated by the fourth line will take some time. The user takes this opportunity to initiate discus-

sion of an unrelated topic. This is the state of the stack shown. With the final system utter-

ances the interruption is concluded (the top 2 plans popped) and execution of the tape mount-

ing plan continued.

'P

40

A stack metaphor obviously is an idealization for naturally-occurring conversations. For

example, interrupted topics are not always returned to. Consider the following fragment (the

continuation of Dialogue 2), where the user ignores the system's question:

User: Is there a role on employee called "retirement fund" or something like that?

System: No there isn't. What information are you trying to add? X

User: How about a role called "pension program" or "pension plan?"

In terms of the plan recognition model, we shall see that while an interpretation that

corresponds to the stack discipline is preferred to one that doesn't, if no such choice exists the

non-stack-like behavior will be pursued. With respect to the above fragment, the system will

eventually have to pop the incomplete clarification subdialogue in order to understand the

user's last utterance.

As will be seen in the next chapter, the default stack mechanism can also be explicitly

overruled by the particular phrasing of the dialogues. In cases like the above, phrases such as

"never mind" could be used to signal non-resumption. Another type of divergence from the

stack metaphor occurs with resumption of topics previously popped from the stack (and thus

considered as completed topics). Linguistic devices exist to signal such unexpected behavior,

for example prefacing an utterance with temporal phrases as in

Yesterday. you mentioned that the recipe calls for scallions, but you didn't list them as an in-
gredient today. [501

Thus, the default mode of plan recognition will prefer stack-like interpretations whenever

it has a choice, unless the surface linguistic phenomena explicitly indicate otherwise. However,

one type of non-stack-like behavior that the model will not be able to handle is illustrated by

the following fragment.

L: Hi M. Let's cook.

M: Right! And with gas! OK. here is a list of ingredients:
1. Eggplant

'.n

'".' : "t "2¢2'2,",2"2. ".'.'_ " .''- ". " '2 2-,'e 2" "- ¢"-'_."",'': ." ". " ". ". ",2 ,',
.
" €;.--,."-"."-:<• ",°€ ".-'. ",'. ; ".'.,',-" ', "

41

2. Garlic
3. A small piece of ginger
4. Some hot peppers
5. Hoi sin sauce

Ok. any questions?

L: Hi. yes, there's one small thing .hat might cause trouble. We have ginger power.
not real ginger.

M: I don't think they can really be substituted because the ginger is supposed to lend a
subtle flavor to the oil, but you can do without OK, no problem...

L: It's not a question of doing totally without. We have ginger powder.

M: The first thing to do is to peel the eggplant into about 8 lengthwise pieces and then
halve them.

L: OK. will do. Be back soon.

M: Right. but I sorta think that ginger powder isn't the same as sliced ginger.

L: It's obviously not Liebnizian identical to it but I think it will do.

M: Let me know when you have finished with the eggplanL By the way, the idea is to
make the eggplant slices into bite size morsels. So use your judgement really.

L: Thanks for the tip. We were just wondering about that.

M: If you want to use ginger powder instead of real ginger, go right on ahead! I'll be
interested in the results.

L: The eggplant has been sliced...

In this fragment the discussion of the ginger powder versus the ginger pieces is interleaved

with the execution of the steps in the recipe. This could not be explained via a stack mechan-

ism except by continuously popping a topic (viewing it as finished) and then immediately

pushing (or reviving) it, which does not really capture the sense of multiple active topics.

While such dialogues are possible, they are fairly uncommon in the data. To many people

they also seem "ill-formed."

3. Speech Acts

Speech act theory (Austin [9), Searle [841. Grice [35]) views utterances as actions that

achieve intended effects, rather than as statements that are either true or false. For example.

Austin noted that utterances such as "I christen this ship the Queen Nancy" actually change -a.

%"

'p.

42

the state of the world, rather than just assert something that is true, as in "Grass is green."

Searle expanded on this idea, categorizing the various types of speech acts and analyzing the

conditions under which they may be successfully performed. Allen, Cohen and Perrault (3.221

used a language planning system to compudtionally formalize some of these ideas. This sec-

tion will present the definitions of the speech acts used for this work. based on the definitions

given in Allen and Perrault [3].

4"
6*°e

*0

I".

9'°li.

43

HEADER: REQUEST(speaker, hearer, action)

PREREQUISITE: WANT(speaker, action)

DECOMPOSITION-i: SURFACE-REQUEST (speaker, hearer, action)
DECOMPOSITION-2 SURFACE-REQUEST(speaker, hearer.

INFORM IF(hearer, speaker, CANDO(hearer, action)))
DECOMPOSITION-3: SURFACE-INFORM(speaker, hearer, -(CANDO(speaker, action)))
DECOMPOSITION-4: SURFACE- INFORM(speaker, hearer, WANT(speaker. action))

EFFECTS: WANT(hearer, action)
KNOW(hearer, WANT(speaker, action))

CONSTRAINT: AGENT(action. hearer)
o.................. o.. o..

HEADER: INFORM(speaker, hearer, proposition)

PREREQUISITE: KNOW(speaker, propostion)

DECOMPOSITION: SURFACE- INFORM(speaker. hearer, proposition)

EFFECTS: KNOW(hearer, proposition)
KNOW(hearer, KNOW(speaker proposition))

..............

HEADER: INFORMREF(speaker, hearer, term, proposition)

PREREQUISITE: KNOWREF(speaker, term, proposition)

DECOMPOSITION: achieve KNOW(hearer, proposition)

EFFECT: KNOWREF(hearer, term, proposition)

CONSTRAINT: PARAMETER(term, proposition)
o.... o.... o °. o •

HEADER: INFORMIF(speaker, hearer, proposition)

PREREQUISITE: KNOWIF(speaker, proposition)

DECOMPOSITION-i: achieve KNOW(hearer, proposition)
DECOMPOSITION-2: achieve KNOW(hearer, -proposition)

EFFECT: KNOWIF(hearer, proposition)

Figure 2.8: Speech Act Definitions

As shown in Figure 2.8. speech acts are formalized as plan schemas. using the notation

* developed in previous sections. For example, the first speech act is a request from the speaker

to the hearer for an action. The constraint specifies that the hearer is the agent of the action. 2

2Technically this is only true for the first two decompositions. When the third decomposition (and iomeumes .0
the fourth) is used. the agent changes from the speaker in the decompositon to the hearer in the header For example.

4+ 'S.'

IL

%.

44

The decompositions indicate several typical surface linguistic acts templates for actual utter-

ances that could be used to execute the speech act. For example, if the speaker wanted the

hearer to mount a magtape, any of the four following utterances could be used to convey the

request: - -

"Mount a magtape." (decomposition 1)
"Can you mount a magtape?" (decomposition 2)
"I can't mount a magtape." (decomposition 3)
"I want to mount a magtape." (decomposition 4)

Note, however, that only the first decomposition literally conveys the intended request. Unlike

Allen and Perrault [31, decompositions have been modified to include the conventionalized

forms of indirect speech actx speech acts that are realized through surface forms that literally

appear to mean something else. Although such inferences could be derived from first princi- I

pies (Allen and Perrault (31), those issues will not be addressed here. Finally. the first effect of e

REQUEST is based on the assumption that the hearer is cooperative (see Cohen and Perrault

* [221 for a formulation where this assumption is not made). The second effect is new. and expli-

citly asserts that the hearer then believes the preconditions held if the act is done successfully.

This could again be inferred from first principles, but adding it to the definition allows the use

of a simple plan recognition algorithm throughout.

The treatment of INFORM and its two other variants is similar. The typical INFORM F

speech act is a declarative sentence, where the speaker tells the hearer something that the

speaker but not the hearer knows. An example is "The train leaves at eight-fifty."

INFORMREF and INFORMIF are two variations needed to handle wh-quesuons and yes/no

questions, respectively. For example, "When does the train leave?" is a REQUEST to

INFORMREF. and "Does the train leave at 8:50?" is a REQUEST to INFORMIF. The only

difference from Allen and Perrault [31 is that there is an extra parameter to INFORMREF and

KNOWREF. The assertion KNOWREF (agent. term. proposition) means that agent knows a

_____________________ ,

'..

45

description of term which satisfies proposition.

This is simply a notational variant that is closer to the actual implementation. Thus,

rather than stating the goal to know when train TRI leaves as

KNOWREF (agent, the x: depart-time (TR1, x))

as in Allen and Perrault [31, we write

'J6
KNOWREF (agent, ?time, EQUAL (depart-time (TRI), ?time)),

where "?time" is a variable of type time.

Not all such assertions involve the equality predicate. For example, the representation of

the goal behind the utterance "What do you want?" would be

KNOWREF (speaker, ?action, WANT (hearer, ?action)).

This operator can be formally defined within" a possible worlds semantics of the BELIEF

operator by using "quantifying in" as done in Allen and Perrault [3]. While this analysis is not

fully satisfactory, it is adequate for the present purposes.

As in Allen and Perrault [31, determination of the literal surface linguistic act is fairly

straightforward. The surface speech act is correlated with sentence mood as well as particular

words. Imperatives indicate SURFACE-REQUESTS, declaratives SURFACE-INFORMS, and .

interrogatives SURFACE-REQUESTS to INFORM. Words such as "when" can further res- %

trict questions to a SURFACE-REQUEST to INFORM of a time. The propositional content

of the surface acts (e.g. action in SURFACE-REQUEST and proposition in SURFACE-

INFORM) can be determined via the standard syntactic and semantic analysis of most parsers.

A new surface form called SURFACE-NP has also been included. This allows a simple

treatment of sentence fragments such as definite noun phrases. As with indirect speech acts.

determination of the underlying speech act is left to the plan recognizer. For example, a

this happens when "I can't reach that book" requests the tall hearer to reach it instead

'.

46

SURFACE-NP is yet another way of executing a REQUEST. More formally, the REQUEST

(speaker. hearer, action) schema would be as above, with a new decomposition of SURFACE-

NP(speaker,hearernoun-phrase) and an added constraint CONTAINS (action, noun-phrase),

where CONTAINS states that the action i-volves"the noun phrase as a parameter or recur-

sively, as a parameter of a parameter. An utterance such as "Track eleven?" would be parsed

as a SURFACE-NP (passenger, clerk, trackli), which could be recognized as a REQUEST(

passenger, clerk, action (...track~l...)). Since the utterance was a question, besides indicating a

REQUEST action can be further constrained to be an inform. Carberry [171 has independently

proposed a similar idea for the representation of fragments. For example, her semantic

representation of "Track eleven" would be the proposition genpred(Trackll), which "indicates

that the name of the specific plan proposition is as yet unknown but that one of its parameters -

hust associate with the constant" track eleven.

As mentioned above, it will be assumed that all meta-plans are done using speech acts.

For example, another way to achieve KNOWREF goals would have been to look up the

answer in a reference source. At the train station, for example, one can find departure times

and locations from a schedule.
4,

4. Plan Recognition

Plan recognition is the process of inferring an agent's plans and goals from utterances or

physical actions, the effects and methods of achieving such goals. Such a process involves not

only recognizing an initial plan, but also deciding whether subsequent utterances are related to

the same plan as opposed to a new one.

Assumptions often made in plan recognition depend on certain relationships between the

observer and the agent being observed. In intended plan recogniibn. the agent being observed

not only knows of the observation, but also performs actions that are intended to facilitate the

observer's recognition process. The speech act view of communication (Gnce [351, Searle [841)

Iii

47

and systems based on it (Allen and Perrault [31 Sidner and Israel [861) are examples. Each

agent is aware of what inferences the other could make, given their mutually believed plan

libraries. Thus. the speaker constructs utterances enabling the desired inferences. The hearer in

turn views the inferences made as intendea to 6e'made, and thus acts on what the speaker

intends for the hearer to think about the hearer's wants. This is in contrast to keyhole recogni-

tion (Cohen et al [231). Here the agent being observed is not aware of the observation and

thus does not structure behavior in a way that facilitates plan recognition, as when an observer

watches an agent through a keyhole. The BELIEVER system [831 and PAM [961 infer in this

manner. Helpful behavior provides unintended (as well as intended) responses and thus relies

on both types of recognition. For example, given a question such as "When does the train to

Montreal leave?", "Eight-fifty. Gate seven" would be a helpful response since it provides more

ihformation than requested. As will be seen below, assuming an intended mode of plan recog-

nition will help justify making it an incremental process.

In this work, the plan recognizer attempts to recognize the meta-plan, and thus the object

domain or meta-plan, that led to the production of the input utterance. The plan recognizer

has at its disposal a library of domain and meta-plan schemas, the representation of the parse

of the input utterance, and the plan stack representing the current state of the dialogue. Using

the plan recognition algorithm, the recognizer will then output a modified plan stack,

representing as much of the updated plan state underlying the dialogue as can be unambigu-

ously determined. An utterance either continues an existing plan on the stack or introduces a

meta-plan to some plan on the stack. If either of these is not possible for some reason, the

recognizer hypothesizes a plausible plan using any of the plan scaiemas. At the beginning of a

dialogue there is no stack, so the general expectations from the task domain are used to guide

the plan recognizer. For example, a train clerk expects questions about boarding and meeting

trains. The plan recognizer performs its task using an incremental heuristic search.

.,1'

I.

48

4.1. Forward Chaining

The plan recognizer's task is to find a sequence of instantiations of plan schemas. each

one containing the previous one in its decomposition,3 that connects every utterance to an

expected meta-goal. More specifically, the system tries to find plans in which the utterance is a
,

step, and then tries to find more abstract plans for which the postulated plan is a step, and so

on. Since every meta-plan takes other plans as arguments, recognition of any meta-plan will

need a recursive recognition on the argument plan introduced. For example, suppose a

speaker asked to buy a train ticket. A search through the decomposition of the meta-plan

schemas indicates that this request may be a way of introducing a plan to buy a ticket. Chain-

ing from introducing a plan does not yield any higher level goals. The same search process is

then performed on the introduced plan to buy a ticket. Searching through the plan library

shows that this act could be a step in a plan to take a train trip, which is itself not a step in any,

other plans in the library. Since taking a trip is a domain plan, no other plans are introduced

and recursive chaining halts.

Once a set of plans is recognized, each is expanded top-down by adding the definitions of

all steps and substeps until there is no unique expansion for any of the remaining substeps.

Each plan is then pushed onto a stack so that the original meta-plan is on top, every meta-plan

refers to the plan below it, and the domain dependent plan is on the bottom.

While this search is a simple tree climbing process and thus theoretically terminates, if

unconstrained it can be both costly as well as unable to yield a unique plan interpretation.

The search process needs to be controlled with various heuristics, as well as limited by dividing

it into incremental stages.

3Plan chaining can also be done via effects and preconditions. (Pollack 1731 is even extending these types of links
to enable recognition of non-existent library plans). To keep the examples simple. all plan schemas have been ex-
pressed so that chaining via decompositions is sufiicient.

% %~

j= = , :-= :- -. (v, i , , a. tn ru . . S ,' - .,. r . ,4 r' :- r r ,-- r T -, .- t - , " ,W~ . ' -o u ''v tT• V

49-

4.2. Heuristics

4.2.1. Coherence Heuristics

The search process described above is. too general, for it does not take into account the

influence of the portions of the previous discourse context still being discussed or interrupted

(as maintained on the stack). The following ordered heuristics control the search process by

preferring sequences that correspond to the most coherent continuations of the dialogue. If

during the search process the observed action can be incorporated into a plan according to one

of the following three ordered preferences, the chaining stops:

(1) by a continuation of the executing plan on the stack (i.e. recognition of CONTINUE-
PLAN)

(2) by introducing a clarification or correction meta-plan to any plan on the stack

(3) by constructing meta-plans and associated object plans that are plausible given the
domain-specific expectations about plausible goals of the speaker %

Thus the recognizer prefers an utterance interpretation that continues a plan rather than

suspending one for its clarification or correction, which is more coherent than introducing a

new plan altogether.

Preference (1) involves situations where the agent does exactly what was expected in the

given situation. The most common example of this occurs in answering a question, where the

answer is explicitly expected. As another example, if the agent was observed going to the ticket 4

window and paying for a ticket, the BUY plan would be postulated. If the agent is next

observed receiving the ticket, it would be recognized as a continuation of that BUY plan. A

more complex example is illustrated in Figure 2.9, where a BOARD subplan connects an

observed GOTO action with an expected (stacked) TAKE-TRAIN-TRIP goal. (The notation

represents the hierarchical structure of a plan instantiation as a tree).

While preference (1) involves expanding and executing the plan on top of the stack.

preference (2) allows for suspension of the top plan. For example, an agent may require more

14p del ~. - . -I

50 ,
A

agent TAKE-TRAIN-TRIP on train

agent*BO RD train

agent GOTO train gate

Figure 2.9: Introduce a Subplan to Continue the Executing Plan on the Stack

information in order to actually execute the next step, and will thus need to temporarily

suspend execution while engaging in a clarification. Of course, this clarification may itself be

suspended by another clarification during execution, and so on. Preference (2) thus involves

not only recognizing a clarification meta-plan based on the utterance, but also, in satisfying its

constraints, connecting the meta-plan to a plan on the stack. If the plan on the stack is not the
"1,s

top plan the stack must be popped down to this plan before the new meta-plan is added to the

stack. If the plan that is the object of the clarification is ambiguous, the alternative closest to

the top of the stack is preferred. For example, if a BUY plan is on the top of the stack, the

utterance "How much does the ticket cost?" could be recognized as a request for a clarification

of the PAY subplan. The clarification plan would be placed on the stack and the BUY plan

suspended as shown in Figure 2.10. Recall that the stack represents joint plans and may

involve multiple agents. The recognizer not only reconstructs the goals of the hearer, but by

being cooperative automatically adopts them as its own goals as well.

r..

'4

51 9%

clerk IDENTIFY-PARAMETER ticket-price

agent BUY train ticket
agent PAY ticket-price rk G ticket

Figure 2.10: Introduce a Clarification Meta-Plan to a Plan on the Stack

Preference (3) may involve not only introducing a new plan but also, if it is a meta-plan,

using the constraints to recursively introduce a plausible plan for the meta-plan to be about.,p

This occurs most frequently at the start of a dialogue or topic shift, i.e. when the previous plan

context either does not exist or is ignored. Suppose a speaker begins a dialogue with "I want

to buy a ticket to Montreal." The utterance is recognized as an explicit plan introduction, a

meta-plan with constraints that enable the recognition of the plan being introduced as well.

Figure 2.11 shows the stack constructed out of these plans. As desired, the plans are placed on

the stack in the order they were generated rather than the order they were recognized.

INTRODUCE-PLAN

I want to buy a ticket to Montreal

agent TAKE-TRAIN-TRIP to Montreal

agent BUY train ticket

Figure 2.11: Recognizing Multiple Plans from One Utterance

Note that each preference involves not only recognizing a meta-plan based on the utter-

ance. but in satisfying its constraints, also involves connecting the meta-plan to an expected

plan (which is either an already stacked plan or an introduced plausible domain plan).

.

52

While these heuristics and their ordering have not been validated with psychological

experimentation. they have intuitive appeal. For example, if the first heuristic was always appli-

cable, the discourse behavior would default to the earlier systems in which a dialogue contains

no interruptions. Preferring the second hefiristic'over the third corresponds to the view that

without any explicit linguistic markings (as discussed in the next chapter), topic change is

always least expected. Thus, while interruptions are not generally predicted, they can be han-

dled when they do occur. These heuristics also follow the principle of Occam's razor, since

they are ordered as to introduce as few new plans as possible. Other models of discourse (e.g.,

Carberry [151, McKeown (641) use similar heuristics.

4.2.2. Plan Based Heuristics

Candidate plans are also eliminated by a set of heuristics based on assumptions regarding ,

rational planning behavior. These heuristics are applied to each candidate plan after every step

of the chaining process. For example, as in Allen and Perrault [31 plans that are postulated

whose effects are already true are eliminated, since achieving these plans would produce no

change in the state of the world. Similarly, it would be foolish to postulate plans containing

preconditions that could not have been met or constraints that cannot be satisfied. Thus, if a

clerk in an information booth was asked "The eight-fifty to Montreal?" a likely response would 5-

be "Gate 7" but not "Ten dollars." However, "Ten dollars" would be a likely response if the

clerk in a ticket window heard the same question. This is because the constraint of the buy-

ticket plan states that the hearer must be able to sell tickets. Thus the information clerk thinks

that the speaker is boarding a train rather than buying a ticket. Applicability of these heuris-

tics, of course, depends on our assumption that the speaker and hearer share the same

knowledge regarding plan schemas.

Allen and Perrault also have heuristics preferring candidate plans closest to the expecta-

tions. The coherence heuristics discussed above greatly elaborate on this idea. Within these
""

n =.4

-ii9

53

coherence preferences there also exists a heuristic that eliminates plans if setting unknown con-
,'S

stants in the plan being recognized equal to known constants in the plan previously recognized

causes a contradiction. Thus, in "I'd like to go to Montreal. Where is the gate?", only plans

that postulate that the requested gate is equal to the gate of the train to Montreal are not elim-

inated.

4.3. Incremental Search

Even after application of all heuristics (and as we will see in the next chapter, linguistic

constraints), the search may still lead to several possible plans at the same preference level and

thus be potentially explosive. The strategy chosen here is that after reaching such branch

points, the search is terminated until input of the next utterance. For example, since both

BOARD and MEET plans can be recognized from a GOTO (recall Figure 2.1), chaining would

halt with two branches if both plans were plausible (even though further chaining is possible).

Such premature termination is typical in dialogue processing (Sidner and Israel [861, Carberry

[15]), since later utterances in the dialogue often eliminate many of the branches. This will be

seen in one of the examples in Chapter 4. This is in contrast to question-answering systems

such as Allen and Perrault [3]. Since the input is all that exists and the system needs to pro-

vide an immediate response, they do not have the luxury of waiting for further input and

either cannot or prefer not to initiate a clarification subdialogue. Instead such systems often

use fairly ad-hoc probabilistic ratings to rank the options and control the search. In cases of

intended plan recognition, Cohen, Perrault and Allen [231 argue that incremental recognition p.

is also philosophically as well as pragmatically justified. 0'

A special heuristic is useful to control intended plan-recognition inferences. It is based on the
assumption that the speaker is a rational agent, and thus only intends inferences to be drawn if

they can be drawn unambiguously. The heuristic therefore terminates intended inference
chains that lead to mutually exclusive alternatives, for which the hearer has no reason to select

one over the others. Of course, the success of this heuristic depends on the accuracy of the
models the speaker and hearer maintain of each other, a not unreasonable condition. [231

Since it is assumed that the hearer is provided with appropriate information to recognize what

.
' .°

0

54 ,"

is intended, any decisions beyond branch points are indeed arbitrary. Note, however, that

incremental recognition will only be used for plan branch points and not for speech act recog-

nition. For example, in the current formulation determination of an underlying speech act

appears to be a side effect of the plan recogflition'piocess.

Thus. the bottom-up inference process halts when we have either incorporated the utter-

ance into our expectation structure (satisfied a coherence heuristic) or the search space becomes

too large. In the latter case, multiple stacks are created to record each branch and the plan

remains ambiguous. There are then several ways one might be chosen over the others. If it is

the hearer's turn in the dialogue (i.e., no additional utterance is expected from the speaker),

then the hearer may initiate a clarification subdialogue. If it is still the speaker's turn, the

hearer may wait for further dialogue to distinguish between the possibilities.

5. Summary

A plan recognition system based on a library of domain specific plan schemas, a library

of domain-independent meta-plan schemas. and a context-dependent, incremental recognition

algorithm has been presented. The algorithm is applied after each user utterance, and con-

structs or updates a stack representing the joint plans of the user and system. More
.1

specifically, an initial stack is constructed containing a domain plan to be executed. Such a dK
plan is expanded and executed until suspended for a new plan pushed onto the stack. This

new plan is itself subject to suspension. When an interrupting plan is concluded, it is popped.1i]
from the stack and the suspended plan below it resumed. Only as much of the stack as can be

unambiguously determined is constructed during any given application of the algorithm.

The recognition algorithm is simple and general, yet since it is highly constrained it is

also tractable. In choosing a best explanation for an observation, constraints arise from several

sources - coherence with the previous dialogue, simplicity of the structures postulated, and con-

formity with principles of rational planning behavior. Furthermore, many complications of

,'I.

K - •- --. %.. -

r

55

earlier systems are eliminated by declaratively encoding knowledge of the plan execution pro-

cess in meta-plans.

The formalization and use of the meta-plans also allows a clean, well-specified mechan-

ism for plan execution issues, particularly plan suspension and resumption. The plan recog-

nizer is unique in explicitly computing not only the goal being pursued, but also the execution

relationship with the previous plan structures on the stack. This latter information is captured

in the meta-plan, and connected to the former via constraint propagation.

-,k

'I-

~.- * - S S. - j
S . **54 *S~S 5

Chapter 3

Discourse Analysis

1. Background

Researchers in artificial intelligence, as well as in various branches of linguistics and the

social sciences, often study an utterance in the context of the discourse within which it occurs.

Such an analysis has proven useful for improving explanations underlying surface linguistic

phenomena the actual lexical items and syntactic structures used in an utterance. It appears

that such phenomena are correlated with particular discourse functions, that is, many

phenomena regarded as syntactic are controlled by non-syntactic factors as well. For example,

mode of reference is related to an object's changing status during a discourse. Early discourse

work in artificial intelligence was done by Grosz [37], who used the influence of a global,

hierarchical discourse structure to explain referring expressions in task-oriented dialogues.

Linde [551 had similar results using apartment descriptions. Grosz and later Sidner [881 and

Grosz, Joshi, and Weinstein [391 were also concerned with surface linguistic phenomena that

appeared to be influenced by a more local discourse context. Reichman [761 developed an

alternative model that was not limited to any particular dialogue genre and also explained a

wide variety of referring expressions. Besides mode of reference, other lexical items proved to

serve the important discourse function of marking shifts in or interruptions of units in a

discourse structure. Grosz [371, Reichman [75,761, Cohen [251, Polanyi and Scha (711, and

56

%..

57

Grosz and Sidner [40] have investigated these clue words or discourse markers for a wide

variety of genres. For example, a phrase such as "by the way" often precedes interruptions of

a topic.
-

Discourse context has also proven useful when understanding utterances with missing

words or phrases, for example sentence fragments and other elliptical utterances. While such

inputs appear ill-formed at the sentence level, often they can be understood by using the

preceding dialogue to fill in the missing parts. The most common approach is to view the

problematic utterance as a reformulation of part of an old utterance. The interpretation of the

elliptical utterance is then the interpretation of the old utterance, modified with the appropriate

replacement. The Lifer system [441, Planes [941. Weischedel and Sondheimer [951, and Grosz

[371 take this approach, using both syntactic and semantic information as the basis for the sub-

stitution. Carbonell and Hayes [191 extend these results by using a case-frame analysis. For

example, case frames could handle utterances with more than one semantically similar frag-

ment, and utterances that did not preserve linear ordering. Another approach is to use expec-

tations based on not only language, but also world knowledge. For example, Granger [341 uses

situational and intentional expectations to fill in unknown conceptual cases of verbs. Some-

times, however, the missing portion can not be recovered from the previous dialogue at all. A

special case of this occurs when a dialogue begins with a sentence fragment, e.g. "The eight-

fifty to Montreal?" Allen and Perrault [31 have shown how knowledge of a speaker's underly-

ing intentions can be used to understand such initial sentence fragments. Carberry [171 shows

how such planning knowledge, combined with knowledge of discourse goals, can also be used

to process intersentential ellipsis.

Another area of concern has been the development of a set of domain-independent,

linguistic relationships that relate units in a discourse. Sets of such relationship have been

called conversational moves (Reichman [761), rhetorical predicates (McKeown [641. Mann [601,

Woolf and McDonald [991). or coherence relations (Hobbs [461), and have been developed from

- .4

58

examinations of naturally occurring texts. For example, in a well structured argument a claim

might best be followed by a support for the claim. To understand an argument this implicit

support relationship must also be understood. If achieving other discourse goals, the same

information might be structured differently."Furtfieirmore. limiting the ways such relationships

can interact (for example by using schemas or grammatical productions) provides a useful A"

mechanism for understanding or generating texts that are rhetorically well organized. Unfor-

tunately, such mechanisms cannot handle naturally-occurring texts that aren't structured so

nicely. Another problem with this approach is that in general the semantics of the predicates

are very subjective, making it hard to algorithmically correlate them with specific surface utter-

ances.

While the work described above could add another dimension to plan-based analyses of

discourse, such a synthesis has been rare. Grosz [381, Levy [541, and Appelt [81 (inspired by

Halliday [421) suggested that actions achieve multiple goals. for example, intentional, discourse,

and social (e.g. politeness) goals. While the system of Appelt formalized some of the multiple

perspectives advocated by Grosz and Levy, discourse knowledge was only used to facilitate

reference, generally in a single utterance. Early work on the ARGOT system [41 also

attempted to integrate discourse and intentional goals. Sidner [901 argues that a plan recog-

nizer able to recognize relationships between plans must use discourse markers; however, her

system does not actually show to to coordinate this. Most recently. Grosz and Sidner [401 pro-

pose that to properly explain interruptions a framework incorporating intentional, attentional.

and linguistic structures is necessary. Unfortunately. many of the particular details of such a

theory have not yet been developed.

In this chapter we will see one way of merging discourse analysis and a plan recognition

framework. As above, surface linguistic phenomena will provide clues regarding the underly-

ing structure, here an intentional structure. The plan recognizer will use such information to

provide further constraints on its processing. In contrast, most of the complex reasoning about

k.......... ,.

59

implicit relationships between utterances will be totally re-expressed in terms of meta-plans

and the plan recognition process. This will provide a formalization and tractability generally

not available in the above works. Since this work concentrates on incorporating the domain-

independent linguistic results into a plan recognition framework, rather than on a new investi-

gation of the linguistic issues, each section will first elaborate on the relevant linguistic results

and then explain how they either interface with or are incorporated into a theory of plan

recognition.

2. Focus of Attention

Grosz [31] noted that in task-oriented dialogues, the task structure could be used to guide

the discourse structure. She developed the notion of global focus of attention to represent the!

influence of the discourse structure. Without such selective consideration the knowledge neces-

sary for understanding in even simple domains becomes overwhelming. For example, focus

proved useful for limiting the search space during the resolution of definite noun phrases, as

well as providing an alternative to recency explanations of pronoun resolution (Winograd [981).

The following excerpt (Grosz [371) illustrates the usefulness of a hierarchical dialogue segmen-

tation (corresponding to the task hierarchy).

Expert: Good morning. I would like for you to reassemble the compressor.

Expert: I suggest you begin by attaching the pump to the platform.
... (other subasks)

Expert: Good. All that remains then is to attach the belt housing cover to the belt housing
frame.

Apprentice: All right the belt housing cover is on and tightened down.
(30 minutes and 60 utterances after beginning)

Expert: Fine. Now let's see if it works.

The pieces of dialogue between the italicized pronoun and its referent correspond to subtasks,

which although recent are not salient and thus not relevant for pronoun resolution. A

I An utterance will correspond to a single unit in the discourse structure (e.g. to a meta-plan). The analysis of

specific dialogues, for example the correction dialogue in the next chapter. will show how multi-sentenual utterances
making a single point (e.g. "Can you mount a magrape? It's tape '." as opposed to "Can you mount tapel ") are
analyzed.

60

computational representation of this highlighting was achieved by segmenting the knowledge

base into hierarchically structured focus spaces, corresponding to the discourse structure at a

given point in the dialogue. The focus spaces contained the items explicitly mentioned in the

subdialogue as well as items necessary for andersitnding and thus implicitly present, i.e. they

contained all the salient items at a particular point in a dialogue. Moreover. Grosz observed

that task-oriented dialogues subdivided into units just as the tasks subdivided into subtasks.

Thus, such a representation could be computationally updated; the task structure could be

used as a guide for discourse structure shifts.

Ti

4 5 T68

. :.

..

Figure 3.1: Task Structure and Discourse Structure

For example, Figure 3.1 illustrates how the task structure predicts dialogue pops. returns to dis-

cussions of higher-level tasks.

When task T6 is completed, there is a return to the focus of T2 and possibly directly to TI.
Objects that participate only in T4 or T5 are not in focus. Similarly, objects in T2 or T4-T6
cannot be directly referenced from T7 or T8. When T8 is completed, there may be a "pop" up
to T3 or TI. (Grosz [37D

Global focus needs to be distinguished from immediate focus (Grosz [371, Sidner [881) or

centering (Grosz et al (391), which represents the influence of the linguistic form of the utter-

ance.

The idea of global focus. i.e.. that at any point in a dialogue some items are more salient

than others, has been incorporated with some modification into my plan recognition system.

'p

,A"..:.~...a' * .. , *.,,' .**

61

Each plan on the stack has a marked subplan that is under execution or will be executing when

the plan is resumed. This subplan is indicated using predicates as follows:

NEXT (subplan, plan) -- true only if subplan is the part of plan that is currently being
executed, or will be executed when the plan is resumed;

LAST (subplan, plan) -- true if subplan is the last (i.e., most recent) part of plan to be

executed.

These subplans will often be referred to as the part of the plan that is in focus, drawing an

analogy with the discourse models above. In other words, when a plan is recognized the step

that was executed is marked as in focus. When a plan is in focus, so are the items explicitly

and implicitly involved in the plan. However, unlike in Grosz, the plan that is recognized

from an utterance is always a meta-plan and thus introduces an associated object plan. Among

the effects of every meta-plan are assertions that update these predicates with respect to the

plan referred to. Recall INTRODUCE-PLAN, as defined in Figure 2.3. When recognized

from a request, the plan recognizer will mark the executed request as in focus, using LAST.

Furthermore, the particular action (subplan) introduced in the object plan will also be marked -'

as in focus, via the predicate NEXT, as an effect of the plan.

As Grosz noted, the items in focus switches during the course of a dialogue, correspond-

ing to shifts in the subplans currently being executed. Typically, hierarchical plans are

represented as trees and executed depth-first as discussed with respect to Figure 3.1 above. We

can now see that the CONTINUE-PLAN meta-plan declaratively encodes this control strategy. ,,

In particular, preference (1) of the coherence heuristics corresponds to simply following the

task structure in the cop plan. The other two preferences extend the shifting of focus in ways

that allow interruptions, as will be described below. By making this knowledge explicit, both

subtask and non-subtask (e.g. clarification, correction, and topic change) subdialogues can be

treated uniformly. %

-

p.,.

62

Thus, the idea of global focusing proves useful at a purely intentional level by making

plan recognition context dependent (and more efficient since the search space is constrained).

The notion of focus is used solely at this level in Carberry [151, Sidner and Israel [861, and

Carver et al. [201. Carberry [15] provided explicit plan recognition rules for tracking shifts in

the task structure. From an utterance, she recognized part of the task plan, which was then

used to provide expectations for future plan recognition. For example, upon completion of a

subtask, execution of the next subtask was the most salient expectation. However, the utility of

the idea of focus was also due to its connection with surface linguistic phenomena. How this

can be done in a plan recognition system will be discussed in the next section.

Finally, as mentioned above, glooal focus needs to be distinguished from immediate

focus, which is also useful for explaining surface phenomena such as pronouns. In this work an-?
immediate focus system will be assumed, the output of which is input to the plan recognizer

along with the representation of the parse. The clarification subdialogue example in the next
p.

chapter will illustrate the details of this interaction, as well as what would happen if an

immediate focus system were not available. In this latter case we will see that while the plan

recognition task is harder, the pronoun resolution will ultimately be made as the plan is con-

nected with its context.

3. Surface Linguistic Phenomena

Grosz 1371 noted that shifts in the discourse structure were not only marked by shifts in

the task structure, but also by various surface linguistic phenomena. As discussed above, glo-

bal focus was useful for limiting the search space during the resolution of definite noun

phrases. However, when a resolution could not be made using the items currently in focus, the

definite noun phrase explicitly marked a shift in the focus. Other non-intentional clues to

shifting were explicit words like "ok." which marked a discourse pop.

%1

63

Reichman [761 was concerned with explaining linguistic phenomena totally non-

intentionally. She developed a model that was not limited to task-oriented dialogues, and

accounted for a much wider range of discourse popping (e.g.. topic switch, a popping between

plans rather than solely within plans). In hei' theo;ry, she also noted that the non-linear struc-

ture underlying a dialogue was reflected by the use of surface phenomena such as referring

expressions. The type of expression (e.g., pronoun, definite noun phrase, etc.) used to refer to

an object was shown to reflect the object's degree of focus. She also showed how clue words

provided clues to changes in the underlying discourse structure. Clue words signaled a boun-

dary shift between the discourse units hierarchically structured as well as the kind of shift. For

example, the clue word "now" indicated the start of a new unit that further developed the

currently active unit, "by the way" indicated an interruption of the currently active unit for a -,

tbtally new unit, while "anyway" indicated a pop of the interruption for a return to a previ- ./

ously active unit. (Note how this popping contrasts with the popping discussed in Figure 3.1.

It is critical to keep the stack implicit in a depth-first traversal of a plan separate from the

explicit stack of such plans). Reichman's model thus illustrated that spontaneous dialogues

were indeed highly rule-governed rather than unstructured. In particular, rules of effective

communication governed the use of clue words and choice of reference.

Many other researchers have also shown the usefulness of such clue words. In argument

understanding, Cohen [251 claims clue words reduce the processing load of the hearer and are

also necessary to overrule a small set of default argument structures. Polanyi and Scha [71]

show how syntactic as well as other clues (e.g. change in gaze or intonation) are useful for

their theory of discourse, particularly for allowing interruptions. Sidner [901 and Grosz and

Sidner [401 claim that many interruptions and returns to interrupted topics cannot be under-

stood unless they are explicitly marked as such.

The idea that surface linguistic phenomena in the input utterance can be used to help

recognize and track changes in the underlying structures of the theory will be crucial to this

64

work as well. With respect to definite noun phrases, if the plan recognizer cannot match the

input with objects in the focused plans, the other preferences will be applied and thus a new

plan found, explicitly shifting the plan in focus.

With respect to clue words, correlations between specific words and the meta-plans dis-

cussed earlier will be available to the system. For example, the following is a list of a few clue

words and the meta-plans they mark:

"how about" INTRODUCE-PLAN, MODIFY-PLAN
no" CORRECT-PLAN. MODIFY-PLAN

"by the way," "incidentally" INTRODUCE-PLAN,IDENTIFY-PARAMETER,
CORRECT-PLAN

now." "also" CONTINUE-PLAN
anyway" CONTINUE-PLAN (after popping an interruption)

"ok" CONTINUE-PLAN, CONTINUE-PLAN (after popping)

This list of clue words would be made available to a parser. which could then note the

occurrence of clue words in the input. Thus. if an utterance begins with "by the way," this

fact would be available at the start of the plan recognition process. The plan recognition algo-

rithm described in the last chapter can then be explicitly modified as a result. Since the plan

recognizer knows that "by the way" is a signal for an interruption, the search will not even

attempt to satisfy the first preference heuristic since a signal for satisfaction of the second or

third is explicitly present. Without the explicit preface to the utterance, such a focus shift

would be unexpected and less coherent, hence the ordering of interruptions as the later prefer-

ences. Now we can see that the ordering of the preferences encodes expectations as to the

o most coherent focus shifts, where shifting of focus has been extended to include interruptions.

In particular, the most coherent continuation simply follows the task structure in the top plan,

corresponding to preference (1). Following that, a clhrification or correction of some corn- p

pleted subplan is expected, corresponding to preference (2). Finally. a topic change (preference

(3)) is least expected in the unmarked case.

Z<]! 5

65

Consider the following excerpt:

L: The eggplant has been sliced. It's (good) that you advised cutting by judgement instead of
absolute directions. We got a monster eggplant that split into ten sections. By the
way, the eggplant is turning brown. The traditional method for preventing oxida-
tion is to sprinkle the food with lemon juice. Do you recommend doing so?

M: I'm not sure that it's necessary since we're going to use it soon. If you would like to, you '.

can. but the lemon taste may carry over.

L: I dig. Well skip it then.

M: By the way, if you would like some rice, may I recommend you start that soon? (Like
now)

,*,. L: That's helpful advice, but we don't have any rice. 2

M: Are you going to use the wok?

Note how "by the way" is used before introducing a new topic of making rice. Without this .

marker, the plan recognizer would have tried to first interpret making rice as relating to the

main dish discussion (which was itself interrupted with "by the way" for the oxidation subdi-

alogue). Thus, if an interruption is explicitly marked the second and third preferences increase

priority, so clue words are used to explicitly overrule as well as reinforce default processing

strategies. This is in contrast to the last utterance, which is an unmarked topic pop back to the

original recipe instructions. Without a discourse marker, the plan recognizer had to first fail in

relating using a wok to not cooking rice, before it could recognize the pop. Thus, if unmarked

it is a possible interpretation, although hard to find. This is a more flexible model than those

of Sidner [901, Grosz and Sidner [40], and Cohen [24], which are unable to handle many

unmarked deviations.

4. Incomplete Input

Hendrix [441, Waltz [941, Grosz [37], Carbonell and Hayes [191, and Weischedel and Son-

dheimer [95] all noted that a large number of elliptical utterances could be understood by

modifying a previous utterance based on syntactic and semantic knowledge. For example. I

Hendrix [441 used a semantic grammar as a basis for finding substitutions. In an input such as

%A

66

What is the salary of Martin Devin?

Of professors in the Math Department?

"professors in the Math Department" would be parsed as an instance of the category

"employee." The previous parse tree woula theni be used to provide the missing information

of this elliptical utterance, by substituting "of professors in the Math Department" for "of

Martin Devin," where "Martin Devin" is the old instance of the category "employee."

Unfortunately, none of the above approaches handle cases where the missing portions of

an utterance refer to a speaker's non-linguistic, as opposed to discourse, context. This is true

when a dialogue begins with an utterance such as a sentence fragment. For example, Allen

and Perrault [31 show how a fragment such as "The train to Windsor" could be recognized as a

request for the train's time or gate, or as a request for its price, depending on whether the

speaker's goal was to board the train or buy a ticket. This need for a plan context also arises

when processing certain intersentential fragments. For example, Carberry (17] develops a

mechanism using both discourse and task goals to process exchanges such as "I want to register

for a course. But I missed pre-registration. The cost?"

The plan recognition theory developed in the last chapter will enable the handling of
t..

wha will be called plan ellipsis i.e. utterances that contain missing parts that are recoverable

from an underlying plan. Such utterances can appear as both sentence fragments and more

traditional looking elliptical utterances. For example, imagine an exchange such as

User: Could you possibly retrieve Filenamel and Filename2?

System:Tape numbers?

'Me system's utterance appears elliptical: however, reformulation of the semantic or case out-

put of the uw-er'5: utterance will not provide the missing information. One ne-ds knowledge of

the underlying plan to do this. e.g. knowledge that one way of retrieving files is by mounting

tapes they have been stored on. As will be seen in the examples in the following chapters,

IleI'a"
°' (.-t., "" ..''.''.-%- .), '° '''''.'"''.''.,/.-''-''- ":o''o° "•'.'#'.°= '." .'.''-'''.'. .°."".' ?4 'o'''.'.'.

- •
".-.-. '-",£',° .- 'a°

"p

67

both fragments and elliptical utterances are sufficient input to the plan recognizer. Any miss-

ing portions will be recovered as a side-effect of the plan recognition process. This is similar to

the treatment of other phenomena governed by immediate focus, i.e. by a local discourse con-

text. That is, ellipsis is filled in without risorting to the plan structure if possible. In such

cases, the plan recognizer is given more information with which to begin, and thus has a more

constrained search. However, if for some reason a parser is either not augmented with such "P

capabilities, or handling the ellipsis required knowledge of the plan, the plan recognizer will r

still be able to proceed. The process will be less constrained and more difficult, but possible.

Furthermore, once done, the ellipsis will be filled in as a side-effect.

5. Coherence
~.".

In order to fully understand a sequence of utterances, one must know how they cohere,

i.e. one must be able to find implicit relationships between them. For example,

The text "John took a train from Paris to Istanbul. He likes spinach." is not coherent, even eS'.
though "he" can refer only to John. At this point the reader may object, "Well. maybe the
French spinach crop failed and Turkey is the only country...." But the very fact that one is
driven to such explanations indicates that some desire for coherence is operating, which is
deeper than the notion of a discourse just being "about" some set of entities. (Hobbs [46D

Current computational models of discourse vary both in the number of relationships

allowed, and in the way the relationships can be combined with one another. Nodes in the

structures of both Grosz [371 and Cohen [241 are connected by a single type of link (subtask

and evidence, respectively). Furthermore, discussion of any given node can only be followed

by discussion of nodes produced by certain types of traversals of the structures (unless of

course linguistically marked to the contrary). In Grosz (37], discussion of a subtask is generally

followed by discussion of the next subtask to be executed. In contrast. McKeown [64], Reich-

man [761, Hobbs [461, Mann (601, Polanyi and Scha (701. and Woolf and McDonald [991 each

have a set of predicates, combinations of which may be captured in a grammar

(60.64.70,76,991. For example, in the following debate (Reichman [761), a claim (lines 6-7) is

¢,,. .- . ,,-- .- .-,-..- .-.- ., -. ,. .. ,,.,,. ... ,. ,,...-;, -.,.-, - -.... % ..,-. -.., ..,,,,.

68

preceded by an authority support (lines 1-4) for the claim.

R: 1. Except however. John and I just saw this two hour TV
2. show

M: 3. Uh hum, -.

R: 4. where they showed-it was an excellent French TV
5. documentary--and they showed that. in fact, the
6. aggressive nature of the child is not really that
7. much influenced by his environment.

Only Reichman [76], Polanyi and Scha [721 and Grosz and Sidner [401 allow a relationship of

interruption, or non-coherency, at any point. Reichman also tries to formalize her conversa- 4"

tional moves using a representation quite analogous to that of plan schemas (although her

primitives are extremely informal). For example, moves are characterized in terms of their

preconditions (discourse context that must be present for appropriate performance), effects on

the discourse structure (shifts and status reassignment, expectations) and modes of fulfiliment.

The approach taken here lies somewhere in between. Within a single plan, e.g one ele-

ment of the plan stack, all nodes of the plan's tree structure are connected by subtask links.

However, plans are also connected with other plans on the stack, in ways captured by the vari-

ous meta-plan relationships. If plan execution goes smoothly, subsequent utterances will just

continue plan execution by shifting to the next subplan. (As mentioned earlier, within each

element of the stack of plans, this traversal process can itself be modeled as a stack). However,

at any point in the dialogue an utterance can also interrupt a plan's execution, for example by

clarifying which objects are needed for execution or by debugging plans that are not executing

correctly.

In other words, the implicit relationships allowed in this system are captured by the small

set of domain independent meta-plans. They are similar in quantity to the various systems of

rhetorical predicates, but differ in quality in that the relationships are all explicitly plan-based.

Thus, besides allowing for specification of fairly objective semantics. the same process of plan

recognition can be used for both domain and mecta-plans. providing a tractable algorithm for

I

5,

-,1-" 1 .. .I" " : ; ""-

*L- L - VV.. %- W IT. VV .- W .A Sf F7 -Z bJ 7_: R 1M

69

computing the relationships. Furthermore, although the meta-plans are correlates of communi- %

cative or rhetorical plans, there is no reason why they could not be used in non-linguistic plan-

ning situations as well. Finally, the way the various relationships interact is very flexible (yet

simple) and does not require a restrictive gammr." A dialogue is continued (as in Grosz [371

and Cohen [241) except when interrupted, which can happen at any point. This is similar to 04

Polanyi and Scha 1711, where discourse units are created, continued, interrupted, resumed, and

completed. With respect to interruptions, we can see how the meta-plans and stack mechanism SD

capture Reichman's manipulation of the context space hierarchies for topic suspension and

resumption. If the plan recognized is already on the stack, then the speaker is continuing the

current topic, or is resuming a previous (stacked) topic. If the plan is a clarification or correc-

tion meta-plan to a stacked plan, then the speaker is commenting on the current topic, or on a -'

O revious topic that is implicitly resumed. In other cases, the speaker is introducing a new topic.

6. Interaction of Discourse and Plan Analysis

Since some of the discourse analysis results can be obtained independently of (as

opposed to being incorporated into) the plan recognition process, a model of interaction is

necessary. Conceptually, the discourse and plan analysis cannot be performed in a fixed

sequence. When the task structure is used to guide the discourse structure, which is then used or

for noun phrase resolution (Grosz [371), plan recognition (production of the task structure)

must be performed first. Similarly, such a priority will be needed in cases where linguistic

expectations are violated, such as when questions are ignored. However, suppose the user sud-

denly changes task plans. Discourse analysis could pick up any clue words signaling this unex-

pected topic shif indicating the expectation changes to the plan recognizer. What is important

is that either type of analysis should be able to guide the other depending on the utterance, in

contrast to any a priori sequential (or even cascaded [111) ordering. The examples in the fol-

lowing chapters will illustrate the necessity of such a model of interaction.

.JO

*0

I.

70 %

For the purposes of the current work, a simplified control structure has proved sufficient.

Particular portions of the discourse analysis are co-routined with certain portions of the plan

recognition process. A subset of the discourse analysis would be performed immediately, in

particular clue words are noted and surface phenomena governed by immediate focus are

resolved. When the plan recognizer receives these results (along with the other input), it con-

strains its default processing accordingly. For example, depending on the clue words, the

preference ordering of the coherence heuristics might be modified, as when "by the way" over-

rules the first preference. Or. candidate plans are pruned if the pronoun cannot be resolved as

the linguistic analysis suggests. However. without the discourse clues the plan recognizer can

stili act, although in a much less constrained search space. The plan recognition process will

then be used to limit the search space during definite noun phrase resolution, which itself may I

then provide feedback to the plan recognition algorithm if the resolution fails in the suggested

context.

Although such an ordering appears sufficient when discourse markers are used correctly,

the ordering may be invalid if the discourse and intentional analyses yield contradictory results.

For example, if "by the way" preceded a non-interruption, the clue word analysis would take

priority. Thus, an interpretation viewing the utterances as an interruption would be favored

over the other possible solutions (and in particular the correct solution) in the search space.

An investigation of the misuse of surface linguistic phenomena with respect to discourse func-

tion is beyond the scope of this work.
"p

7. Summary %

The plan recognition model described in the last chapter was developed to both incor- .1

porate and be constrained by a set of results from the area of discourse analysis. In other

words, the domain dependent intentional approach was extended to include domain indepen-

dent knowledge about communication. Such an integration recognizes that a dialogue can be
.. . .

PI.

..

S."

.- . , - ...- - - ". -. - -.5- - - . - ."' ". ' .. '' '. : . - ... " - - - ' ' - . -. "

71

analyzed along several dimensions. Besides the fact that dialogues have common topics or

domains of discourse (here, the tasks being executed), dialogues also cohere due to domain

independent strategies for talking about any topic. In this work the former point is reflected in

the fact that a chain of meta-plans ultimately referring to a domain plan constitutes a topic.

The latter point is reflected in the fact that without linguistic evidence to the contrary, a given

plan can only be either continued or interrupted in well-specified ways. Surface linguistic

phenomena may add to the coherence of a text by explicitly marking these implicit relation-

ships.

This chapter, in combination with the last, thus presents one way of merging discourse

and plan analysis. The simple, more syntactic results of discourse analysis (clue words,

immediate focus, ellipsis) are left intact. If such phenomena are present in an utterance, the

discourse information they convey is used as input to a plan recognition system, constraining

its processing and making it more efficient. Yet, since the plan recognizer is defined indepen-

dently, when such clues are not present the system can fall back on a purely intentional

analysis. This implies, for example, that without such clues, interruptions are hard to process,

but not (as others have claimed) impossible. The plan recognizer, in turn, then helps with the

resolution of definite noun phrases and plan ellipsis.

In contrast, the more complex semantic results, e.g. rhetorical predicates and the like,

have been reformulated in domain independent meta-planning terms. Their importance in

this theory is reflcted by the fact that both meta and object plans, e.g goals as well as their

relationships with other goals (or at least the fact that there is a relationship, even if no further

delineated between a continuation or interruption), must be explicitly recovered when under-

standing a dialogue. The formulation of such relationships as meta-plans allows more objective

semantics as well as use of the tractable plan recognition process. Using this theory, a wide

range of subdialogues. including interruptions, can be treated.

". S.

11-1. If _W_,P7 r -,b- -- r-W -I -_ -jW '7 . 7 ' -6 J..V -W. 7. 14' W -rWT-- -. -V -M

Chapter 4

Interrupting Subdialogues

1. Introduction

This chapter and the next will illustrate how the theory developed in the last two

chapters is actually applied to discourse phenomena problematic for most systems. In particu-

lar, this chapter will show how the system processes dialogues containing interruptions, illus-

trating its points and generality on two dialogues from different domains and genres.

Each example will show the discourse and plan analysis performed, as well as their

interactions. The examples will simulate a trace through a run of the system as it understands

the user's utterances in the course of a complete dialogue. The system at present does not con-

cern itself with the planning or generation of natural language responses. The examples will

describe what the system should do (using the actual response in the dialogue as a guide), con-

centrating on how the response effects the representation and analysis of the mutual plan stack.

A computer trace of a slightly simplified version of the "Eight fifty to Montreal" (Litman

and Allen [571)- illustrating recognition of a clarification meta-plan and object plan will be

presented in Chapter 6. The plan recognition system is implemented on a Vax 750 in Franz

Lisp, using the HORNE Reasoning System [61, a lisp-embedded horn clause theorem prover

with typing and equality reasoning, as the starting point for the knowledge retrieval mechan-

ism. Aspects of the HORNE typing system were discussed ;i Section 2.1.1 of Chapter 2 and

72

73

need to be elaborated on in order to understand the examples. As we will see, the complex

matching supported by unification is very useful when dealing with such frame-like types.

Recall that HORNE types can have- a set of distinguished function names called roles,

each with an associated type. For example, the type TrainType is a subtype of the type Physi-

calObjectType and has three distinguished, type-restricted, roles, as shown:

(subtype TrainType PhysicalObjectType
(gate LocationType)

(station CityType

(time TimeType))

In other words, role function names are just another type of object to HORNE. The notation

?fn(trainl) will be used to represent a role value of trainl (where trainl is an object of type

TrainType). Thus, ?fn could be any of the three role names listed above (e.g., gate). If the sys-

tem later were to match ?fn(train) with a variable of type CityType, ?fn(trainl) would be

further restricted to the station of train1.

Objects of type proposition and action are also represented in the type hierarchy and have

roles defined for each argument, as is done in semantic network representations. Thus, in the ,,

implementation, PARAMETER (term, proposition) is defined to be true only if term fills a role

of proposition.

Finally, the current system assumes that a highly-specialized semantic grammar (121 has

parsed the utterances in the train domain. This allows the avoidarce of some difficult parsing

issues and concentration on the plan recognition model. While such a grammar has in actuality

been implemented, it is currently not hooked up to the plan recognition system.

Implementation details concerning issues of knowledge representation will also be glossed

over in this chapter. Chapter 6 discusses the requirements a plan recognition system places on

a reasoning system and shows how the particular implementation satisfies these requirements.

!6

, 4,4 ,.:,- , - _.

74

2. Clarification Subdialogues

This section simulates the system's processing of Dialogue 1. repeated below for conveni-

ence.

1) Passenger: The eight-fifty to Montreal?

2) Clerk: Eight-fifty to Montreal. Gate seven.

3) Passenger: Where is it?

4) Clerk: Down this way to the left. Second one on the left.

1, 5) Passenger: OK. Thank you.

4. The example will show how the system, taking the role of the clerk, understands the

passenger's utterances.

The initial state of the system consists of a library of meta-plans and domain plans

regarding trains, knowledge of the type hierarchy, and the plan recognition algorithm. The

subset of the plan libraries used in this example are repeated below.

4.

%54.

%4

~,%

,i ..s " i-"2"". . ." "s. ,2'"'''. , . . "" ."'?" " "":" ' "r. :" "" "" "" " .. "" "

75 A

HEADER: GOTO(agent. location, time)

EFFECT: AT(agent. location, time)
.... -.-.. z

HEADER: MEET(agent, arriveTrain)

DECOMPOSITION: GOTO(agent, gate(arriveTrain), time(arriveTrain))
.....° ° .°.°°.° °.. °... ° °

HEADER: BOARD(agent, departTrain)

DECOMPOSITION: GOTO(agent, gate(departTrain), time(departTrain))
GETON(agent, departTrain)

.. °°°°°°°.°.°.. °.°................°°°°°°. °°°. .. ° . .°,°°°.°°°°°.......... .. '

HEADER: TAKE-TRAIN-TRIP(agent, departTrain. destination)

DECOMPOSITION: SELECT-TRAIN(agent, departTrain, departTrainSet)
BUY-TIC KET(agent, clerk, ticket)
BOARD(agent, departTrain)

CONSTRAINTS: EQUAL(destination. station(departTrain))
EQUAL(destination. station(departTrainSet))
EQUAL(departTrain, object(ticket))

Figure 4.1: Train Domain Plan Schemas (Repeated from Chapter 2)

The following (simulated) parse of "The eight-fifty to Montreal?" is input to the system:

SURFACE-REQUEST (Personl, Clerk1,
INFORMREF(Clerkl, Personl, ?term. EQUAL(?term, ?fn (dtrainl))))

with constraints:

station (dtrainl) = Montreal
time (dtrainl) = eight-fifty

In other words. Personl is querying the clerk about some (as yet unspecified) term, ?term, that

is the value of some role of dtrainl. Dtrainl is identified as a train from the input since trains

are the only objects in the domain that are described using times and cities. If there were other

possibilities, other interpretations would need to be constructed as well. Dtrainl is restricted to

a depart train (i.e. Montreal is restricted to a destination) using the preposition "to." Such an

analysis is similar to that produced in Allen and Perrault [31 for interrogative sentence frag-

ments. The next chapter deals with a more general treatment of sentence fragments and will

A,"a

"..,,-',"%,",'€-'-.".', r.'" '., "" ." ., "'"" .""."".", °" '- ."".-.7.",
7

....,'.,g(,.'..',.....'. . -,....','v,.' .".' :.r ' 5 .,'. " "'' S, .

I.

76

HEADER: INTRODUCE-PLAN(speaker, hearer, action, plan)

DECOMPOSITION: REQUEST(speaker hearer, action)

EFFECTS: WANT(hearer, plan) "
NEXT(action, plan)

CONSTRAINTS: STEP(action, plan)
AGENT(action, hearer)

HEADER: IDENTIFY-PARAMETER(speaker, hearer, parameter, action, plan)

DECOMPOSITION: INFORMREF(speaker, hearer, term, proposition)

EFFECTS: NEXT(action. plan)
KNOW-PARAMETER(hearer, parameter, action, plan)

CONSTRAINTS: PARAMETER(parameter. action)
STEP(action, plan)
PARAMETER(parameter, proposition)
PARAMETER(term, proposition)
WANT(hearer, plan)

Figure 4.2: Meta-Plan Schemas (Repeated from Chapter 2)

show how the same results will be achieved using a simpler analysis, one that only knows that

the input is a definite noun phrase and a question. Finally, there is no input from the

,-V

discourse analysis, since the utterance contains no clue words or phenomena governed by

immediate focus.

Since the stack is empty, the plan recognizer can only construct an analysis corresponding

to coherence preference (3), where an entire plan stack is constructed based on the domain-

specific expectations that the speaker will try to take or meet a train. From the SURFACE-

REQUEST, via REQUEST, chaining via decompositions produces an instantiation of the

INTRODUCE-PLAN meta-plan, as shown in Figure 4.3. The INFORMREF action will be

referred to using the name "1." Although chaining could also proceed from the SURFACE-

REQUEST via an INFORM (i.e. the utterance could have been an indirect speech act), an

INFORM is a decomposition of IDENTIFY-PARAMETER. Since preference (3) favors plan

'V"

77

INTRODUCE-PLAN(Personl, Clerkl, 11, ?plan)

REQUEST(Personl, Clerk1. 11)

SURFACE-REQUEjT(Personl. Clerkl,
I1: INFORMREF(Clerk1, Personl, ?term, EQUAL(?term.?fn(dtrainl))))

Figure 4.3: Chaining Produces an Intermediate Plan Recognition Structure

introductions, the clarification interpretation is thus eliminated. Similarly, chaining from an

alternative SURFACE-REQUEST to INFORMIF parse would also be eliminated since a

yes/no question interpretation is inappropriate.

Before pursuing the candidate plan any further, the plan recognizer checks on the plan's

reasonableness using the plan-based heuristics. From constraint satisfaction it knows that the

INFORMREF must be a step in an bbject plan. To satisfy this constraint i.e. STEP(lI,?plan),

an object plan will be created (and arbitrarily called PLAN2). This new state of affairs is

shown in Figure 4.4, where the name of a plan structure appears at the top left-hand comer.

In accordance with the constraint, the INFORMREF [1 is part of PLAN2.

5',2

i%

'6.

78

PLANI

INTRODUCE-PLAN(Personl, Clerkl, 11, PLAN2)

REQUEST(Personl, Clerkl. 11)

SURFACE-REQUEST(Personl, Clerki,[1)

PLAN2

11: INFORMREF(Clerkl, Personi, ?term, EQUAL(?term. ?fn(dtrainl)))

Figure 4.4: INTRODUCE-PLAN and its Object Plan

The second constraint, e.g AGENT(I1, Clerki) is already satisfied. Finally, the recognizer

*vrifies that the effects of the meta-plan are not already true, i.e. that the clerk does not already

have PLAN2 as a goal. Since the heuristics support PLANI, the recognizer can now resume

chaining, but since INTRODUCE-PLAN is not a step in any plan, chaining stops.

However, recall that INTRODUCE-PLAN is a meta-plan and via constraint propagation

an associated object plan (PLAN2) has been introduced. The recognizer recursively expands

this plan and recognizes that it is part of an IDENTIFY-PARAMETER plan, using decomposi-

tion chaining. In satisfying the constraints on IDENTIFY-PARAMETER (Clerkl, Personl,

?parameter, ?action, ?plan), i.e.

1. PARAMETER(?parameter,?action)
2. STEP(?action,?plan)
3. PARAMETER(?parameter, EQ UA L(?term,?fn(dtrainl)))
4. PARAMETER(?term.EQUAL(?term,?fn(dtrainl)))
S. WANT(Personl,?plan)

a third plan is introduced (constraint (5)) that must have a step (2) that contains a property of

a train (1.3). described via the equality of the INFORMREF (4). An eligible plan is GOTO,

where ?fn(dtrainl) is restricted to be the time or location of the GOTO. As a result of this, ?fn

is restricted to be a time or gate role of dtrainl. Another eligible domain plan is TAKE-

'del

TRAIN-TRIP, where destination is the parameter being identified. These are the only two of ,

the domain and meta-plan schemas satisfying all the constraints, in particular the constraint

that the plan schema contains a location, city or time (i.e. a role value of dtrainl) as a parame-

ter.1 Both the identification of the destination in TAKE-TRAIN-TRIP and the time in GOTO

are eliminated by the plan heuristic that one does not execute plans when its effects are already

true. In this case, the destination and time of dtrainl were specified in the parse and are thus

already known. In other words, since the effect of the IDENTIFY-PARAMETER plan needs

to be achieved, the speaker does not know enough about some property of the train to execute,

for example, GOL. Since the time was known from the utterance, the role name time can be

eliminated as a possibility for the value of ?fn due to the heuristic that one does not need to

execute a plan if the effect is already true. The plan recognition heuristics discussed above thus

eliminate competing interpretations and constrain the object plan to GOTO and ?fn to be the

gate. Figure 4.5 show the three plan structures created so far.

Chaining from PLAN2 produces no higher level goals, so the plan recognition algorithm

is recursively called on that plan's object plan, here PLAN3. Decomposition chaining from

GOI yields both the BOARD and MEET plans. The MEET plan is eliminated due to typing OP

constraint violation; dtrainl is already known to be a departing train from the parse. Also,

since the expected agent of the BOARD plan is the speaker, ?agent is set equal to Person-!.

Finally, chaining proceeds from BOARD to TAKE-TRAIN-TRIP. U

Once the recursive call is completed, plan recognition ends. all postulated plans are

expanded top down to include the rest of their steps, and the stack is constructed. Note that

all three plans are recognized before any is placed on the stack. Furthermore. although GOi 0

for example, is recognized after IDENTIFY-PARAMETER, it is put on the stack first since it

'The reader may be wondering why buying a ticket was not rec'gnived as a possible object plan. This was due
to the simplified treatment of sentence fragments for the purposes of this chapter. For example, noun phrases can in
dicate not only questions about the noun phrase's role las above), but also questions about roles of objects for which*,
the noun phrase itself is a role. Thus. "The 8:50 to Montreal" couid also be used to refer to another role of its associ
ated ticket, for example the cost. Since BUY-IrICKET would eientually be eliminated due to constraint violauon i e.

N 'N

.U,

AD-Rl?@ 71 PLAN RECOGNITION AND DISCOURSE ANALYSIS:
N INTEGRATED 2/3

F APPROACH FOR UNDERSTANDING DIALOGUES(U) ROCHESTER UNIV
I NY DEPT OF COMPUTER SCIENCE D J LITMAN 1995 TR-17S
UNCLASSIFIED N98814-92-K-0193 F/G 5/7 N

jag%

.2.0.

414h 8

"'14
8

V'YES

9 S
4

, 10A.

4 .N
' - o ,

.

or. 5 A

. .%%

?%~~ ~~ %*~~4
, V '

80

PLAN1

INTRODUCE-PLAN(Personl, Clerkl, 1, PLAN2)

REQUEST(Personl, Clerkl, I1)

SURFACE-REQU ES(Personl, Clerkll.1)
.o.o...... o..o......... . , ,ooo o..........

PLAN2

IDENTIFY-PARAMETER(Clerkl, Personi. gate(dtraini). GOI, PLAN3)

11: INFORMREF(Clerkl, Personl, ?term. EQUAL(?term, gate(dtrainl)))

ooooo..

GOI: GOTO(?agent, gate(dtrainl), ?time)

.'

Figure 4.5: Constraint Satisfaction Creates PLAN2 and PLAN3

is suspended for the IDENTIFY-PARAMETER clarification. The state of the stack after the

plan recognition process just discussed is shown in Figure 4.6. which should be viewed as one

* stack with three elements: PLANI is at the top of the stack, PLAN2 in the middle. and

PLAN3 at the bottom. The changes from the previous figure are italicized: the dotted lines

indicate the information known from the top down expansions. As desired, we have con-

structed an entire plan stack based on the original domain-specific expectations that the

speaker (although more generally it could be someone besides the speaker) will take or meet a

train.

Once the task structure is recognized the focus (the executing step) in each plan structure

is noted, as shown in square brackets in the figures. Thus the SURFACE-REQUEST in

PLANI is marked as the LAST (the executed) step of PLANI. which is now completed. From

the effects of INTRODUCE-PLAN and IDENTIFY-PARAMETER we mark 1 and G01,

respectively, as in focus whenever execution returns to those stacked plans.

the clerk can only give informauon). the omission is insignificant with respect to the points being illustrated.

..

81

PLAN 1 [completed]

INTRODUCE- PLA N(Person 1 Clerk 1. 11, PLAN2)

REQUEST(Pe'ton1, ClerkI. [1)

SURFACE-REQUES1'(Personl, Clerkl, 11) [LAST]PI

PLAN2

IDENTIFY-PARAMErER(Clerkl,Personl,gate(dtrainl),GOI,PLAN3)

11: INFORMREF(Clerk1,Person1. term.EQUAL(?teffmgate(dtrain1)))
[NEXT]

PLAN3

TAKE- TRA IN-TRJP(Personl1. diraini. Montreal)

SELECt fk4&N *1
(Person!. diraini, depart TrainS etl)

BUY-TICKET- BOARD
(Personl. Clerk!. dficket) (Person I. diraini)

GOl: GTO GtON
(Person!. gatedirin I). time(dt rain!)) (Person!. dtrainl)

[NEXT]

* Figure 4.6: The Plan Stack after the First Utterance

The clerk's planning of the response is not specified in this theory. Here what the system

should do will be described. The system responds with the expected continuation (and implicit

resumption). namely the INFORMREF in PLAN2, popping the completed PLAN 1 off the

stack. To execute the INFORMREF, the system would plan a SURFACE-INFORM, whichI

might eventually be realized as the utterance "Eight-fifty to Montreal. Gate seven." Using the

assumption that this utterance is correctly recognized by the passenger. the system updates the

focus in PLAN2. marking the new SURFACE-INFORM step as [LAST) and the plan as [corn-

pletedl. This anticipates the passenger's correct interpretation of the Utterance, since the stack

is assumed to be shared between the speakers. Although all the steps of PLAN2 are completed.

82

its success cannot be confirmed until the next utterance. Thus it is not popped off the stack.

This allows the possibility of a clarification plan being introduced concerning PLAN2. Thus, at

the stage just before Personl speaks again, the stack would contain PLAN3 and PLAN2, as

shown in Figure 4.7.

PLAN2 [completed]

IDENTIFY-PARAMETER(Clerkl.Personlgate(dtrainl).GO 1.PLAN3)

ll :INFORMREF(Clerkl,Personl,loc(Gate7),QUAL(loc(Gate7).gate(dtrainl)))[NEXT,

12: SURFACE-INFORM(Clerk1,Person1,E UAL(loc(Gate7),gate(dtrain1))) [LAST]12:AN flC"'

PLAN3 TAKE-TRAIN-TRIP(Personl. dtrainl, Montreal)

SELE - AIN
(Personl, dtrainl, departTrainSetl)

BUY-TICKET BOARD

(Personl, ClerkI. dticket) (Personl. dtrainl)

GOl: OTO trN

(Personl. gate(dtrainl), time(dtrainl)) (Personl. dtrainl)

[NEXT]

Figure 4.7: The Plan Stack after the Clerk's Response

The system is now in a state to recognize a continuation of PLAN3 (preference (1)) or a

meta-discussion of PLAN2 or PLAN3 (preference (2)). Preference (3) would involve abandon-

ing the current stack, so is very unlikely. Meta-discussion of PLANI is also very unlikely since

it has been popped from the stack, and in fact would require explicit markers for its recogni-

tion (for example. "Oops. I meant to say...").

The passenger then asks "Where is it?". which would be parsed into the action:

SURFACE-REQUEST (Person1. Clerkl
INFORMREF (Clerk 1.Person l.?term 1. EQU AL (?term l,loc(Gate7))))

* This analysis assumes the appropriate resolution of "it" to Gate7 by an immediate focus

w I,

I

83

mechanism suc .s Sidner's [881. This makes the example simpler. In this case the plan recog-

nition would work even if the "it" were not resolved and left as an unknown constant, as dis-

cussed below.

Although the clerk thought the SURFACE-INFORM of PLAN2 achieved the desired
N"

passenger KNOWREF, in actuality it did not provide a description enabling the passenger to .

execute the GOTO of PLAN3. Instead we have another request for clarification. The plan

recognizer attempts to incorporate this utterance based on the coherence heuristics. The first

preference fails since the SURFACE-REQUEST does not match (directly or by chaining) any

of the steps in PLAN3, which should have been resumed if the previous clarification was

understood. This preference, then, involving popping the completed PLAN2, is not possible

because the utterance cannot be seen as any step of the TAKE-TRAIN-TRIP plan. The second

preference succeeds, and the utterance is recognized as part of an introduction of a new

IDENTIFY-PARAMETER referring to the old one. This process is basically analogous to the

process discussed in detail above, except that the plan to which the IDENTIFY-PARAMETER

refers is found in the stack rather than constructed. The final results of the analysis are pushed

onto the stack after popping to the appropriate object plan (which is here already on top), as

shown in Figure 4.8. Again, the fact that an interruption occurred, as well as how the interrup-

tion is related to the interrupted topic, is eventually recognized without the use of any explicit

discourse markers.

As mentioned above, if in the input "it" was originally unresolved (i.e. Gate7 in 13 is

replaced with ?pronoun), "it" will be correctly resolved later as a side-effect of the plan recog-

nition. In particular, the appropriate binding will be made during the constraint propagation .

process connecting PLAN5 to PLAN2.

Using the actual clerk's reply. "Down this way to the left -- second one on the left" as a

guide, the clerk's response is simulated as a pop of the completed PLAN4. followed by execu-
a.

84

. I

PLAN4 [completed]

INTRODUCE-PLAN(Personl, Clerkl, 13, PLAN5)

(SURFACE) REQUEST(Personl, Clerkl, 13) [LAST]

PLAN5
IDENTIFY-PARAMETER(Clerkl, Personl, loc(Gate7), 11, PLAN2)

13: INFORMREF(Clerkl. Personi. ?terml, EQUAL(?terml, loc(Gate7))) [NEXT]

PLAN2 [completed]

IDENTIFY-PARAMETER(Clerkl.,Personl,gate(dtrain 1),GO 1.PLAN3)

ll:INFORMREF(ClerklPersonl,loc(Gate7),3QUAL(loc(Gate7),gate(dtrainl)))[NEXT]

12: SURFACE-INFORM(Clerk,Personl,E UAL(loc(Gate7),gate(dtrainl))) [LAST]

PLAN3 -PLAN3 TAKE-TRAIN-TRIP(Personl, dtrainl, Montreal)

SELEM -TRAIN
(Personl, dtrainl. departTrainSetl)

BUY-TICKET BOARD
(Personl. Clerkl, dticket) (Personl, dtrainl)

GOI: GT"O ¢ON
(Personi. gate(dtrainl), time(dtrainl)) (Personl, dtrainl)

[NEXT]

Figure 4.8: The Plan Stack after the Passenger's Second Utterance

tion of the [NFORMREF [3 and thus completion of PLAN5. The system is now ready to

recognize the passenger's next plan, likely a pop of all completed plans, leading back to

TAKE-TRAIN-TRIP (preference 1). Or, less likely, there are several options corresponding to

the second preference class. For example, the passenger could execute a meta-plan to the top

IDENTIFY-PARAMETER (e.g., "Second what?") or a pop. The pop allows a meta-plan to the

stacked IDENTIFY-PARAMETER of PLAN2 ("What's a gate?") or a pop, which allows a

meta-plan to the original domain plan ("It's from Toronto?") or a pop. Each of these possible

stacks is shown in Figure 4.9. Finally, a totally new topic could be pushed onto the stack. in

9,

. , .. , i. , , • 0" '

85

P: The eight-fifty to Montreal? k

C: Eight-fifty to Montreal. 'Gate seven.
P: Where is it?
C: Down this way to the left Seeoiid one on the left.

?meta-plan ...

[completed]
IDENTIFY-PARAMETER

INFORMREF ?meta-plan

[completedl :completedl J.
IDENTIFY-PARAMETER IDENTIFY-PARAMETER

INFORMREF ... INFORMREF ...

TAKE-TRAIN-TRIP TAKE-TRAIN-TRIP

"Second what?" "What's a gate?"

?meta-plan ...
34

TAKE-TRAIN-TRIP

"It's from Toronto?"

Figure 4.9: Coherent Dialogue Continuations of Preference Two

accordance with preference (3).

The dialogue actually concludes with the first preference, resumption and continuation of

TAKE-TRAIN-TRIP. This can be immediately recognized due to the passenger's use of the

two discourse clues in "OK. Thank you." Recall that "OK" is an example of a clue word 4.

marking CONTINUE-PLAN. possibly after a pop off the stack. This analysis is further rein- ',e

forced by "Thank you," a discourse convention also indicating some level of plan or subplan

completion. as well as termination of the dialogue if not followed by further utterances. Note

.'p

'. .-

mop

86

that the original domain plan involves no communication, i.e. there are no further utterances

that can execute the domain plan. Also note that unlike the previous utterance, what is going

on with respect to the plan recognizer is. determined solely by the discourse analysis (i.e.,

intentionally, the utterance is vacuous).

3. Correction Subdialogues

This section presents a hand trace of the processing of Dialogue 2 (repeated below), illus-

trating not only an interrupting clarification, but also an interruption corresponding to a debug-

ging as well as the resumption and continuation of the original plan.

User: Show me the generic concept called "employee."

System: OK. <system displays network>

User: I can't fit a new ic below it. Can you move it up?
J4

System: Yes. <system displays network>

User: OK. now make an individual employee concept whose first name is "Sam" and
whose last name is "Jones." The Social Security number is 234-56-7899.

System: OK.

The section also illustrates the treatment of indirect speech acts, and shows how multiple utter-

ances within a single user turn are understood. Finally, the example shows the domain

independence of the approach; although new domain plans must be introduced, the recogni-

tion procedure and the meta-plans remain unchanged. Furthermore, since the model applies

equally well to task-oriented and information-seeking domains, a bit of genre independence

can also be claimed.

Recall that in the above dialogue the user interacts with a KL-ONE database system that

is capable of graphically displaying KL-ONE concepts (KL-ONE [111 is a knowledge represen-

tation language). Figure 4.10 presents the relevant domain plan schemas for this example. They

are taken from Sidner and Israel (861, with minor modifications and consist of plans to add new

data into the network and to examine parts of the network. Both of these have a subplan

% °*

,,,'," ".'-., k" i_-. ", ;.;.o":,; " " " " " " "'" " ' " "'" """ """ " "- ' I

C-0 %7NV'7,.

p'.J

87'.

involving the plan CONSIDER-ASPECT, in which the user considers some aspect of a net-

work. for example by looking at it (the decomposition shown), listening to a description, or

thinking about it. Again, the representation of action and time is greatly simplified. The sub-

set of the meta-plan library matched in thit examiple is repeated in Figure 4.11. (As will be

seen by referring to Figure 2.5 during the matching attempts. MODIFY-PLAN will not be a

viable candidate plan for any utterance).

HEADER: ADD-DATA(user, netpiece, data screenLocation)

DECOMPOSITION: CONSIDER-ASPECT(user, netpiece)
PUT(system, data, screenLocation)

.....°. °...

HEADER: EXAMINE(user, netpiece)

DECOMPOSITION: CONSIDER-ASPECT(user, netpiece)

...-

HEADER: CONSIDER-ASPECT(user. netpiece)

DECOMPOSITION: DISPLAY(system, user, netpiece)

Figure 4.10: Graphic Editor Domain Plans

The processing begins with the analysis of "Show me the generic concept called

'employee'."

SURFACE-REQUEST (user. system. DISPLAY (system, user. El))

where El stands for "the generic concept called 'employee."' The discourse analysis provides

no input. Since there is no stack, the plan recognizer tries to introduce a plan (or plans)

according to preference (3). Through forward chaining, the system finds that the utterance is a

REQUEST that introduces some plan. From constraint satisfaction we know that the plan

introduced must contain the display action. Since INTRODUCE-PLAN is not a step in any

other plan chaining stops; since it is a mecta-plan. recognition from the DISPLAY now occurs. "4

Since the display action could be a step of the CONSIDER-ASPECT plan. which itself could

.

-. %..'9 %*. j

88

HEADER: INTRODUCE-PLAN(speaker. hearer, action, plan)

DECOMPOSITION: REQUEST(speaker. hearer, action)

EFFECTS: WANT(hearer, plan) NEXT(action, plan)

CONSTRAINTS: STEP(action. plan) - AGENT(action. hearer)

HEADER: CONTINUE-PLAN(speaker, hearer, step, nextstep, plan)

PREREQUISITES: LAST(step, plan)
WANT(hearer. plan)

DECOMPOSITION: REQUEST(speaker, hearer, nextstep)

EFFECT: NEXT(nextstep, plan)

CONSTRAINTS: STEP(step, plan) AGENT(nextstep, hearer) U

STEP(nextstep. plan) CANDO(hearer. nextstep, plan)
AFT7ER(step, nextstep)

HEADER: IDENTIFY-PA RAM ETER(speaker, hearer, parameter, action, plan)

DECOMPOSITION: INFORMREF(speaker, hearer, term, proposition)

EFFECTS: NEXT(action, plan)
KNOW-PA RAM ETER(hearer, parameter, action.plan)

CONSTRA INTS: PARAME7ER(parameter. action)
STEP(action. plan)
PARAMETER(parameter. proposition)
PARAM ETER(term. proposition)
WANT(hearer, plan)

HEADER: CORRECT-PLAN(speaker, hearer, Iaststep. newstep, nextstep. plan)

PREREQUISITES: WANT(hearer. plan)
LAST(laststep. plan)

DECOMPOSITION-I1: achieve WA NT(hearer. newstep)
DECOMPOS ITION-2: achieve WANT(hearer, nextstep)

EFFIETTS: STEP(newstep, plan)
AFTER(laststep, newstep)

AFTER(newstep, nextstep)
NEXT(newstep, plan)

-'CONSTRAINTS: STEP(laststep, plan)
STEP(nexrtstep, plan)
AFTER(Iaststep. nextstep)
AGENT(newstep, hearer)

* 'CANDO(speaker. nextStEp. plan)
MODIFIFS(ncwstep. laststcp)
ENABLES(newstep. ncxtstep)

Figure 4.11: Meta-plan Schemas used for IDialoguc 2 (Repeated from Chapter 2)

89

be a step of either the ADD-DATA or EXAMINE plans, the domain plan remains ambiguous.

Note that heuristics can not eliminate either possibility, since at the beginning of the dialogue

any domain plan is a reasonable expectation. Chaining halts at this branch point and all plans

are expanded (again shown by dotted lines).-

PLANI [completed] PLAN la [completed]
INTRODUCE-PLAN INTRODUCE-PLAN

(usersystem,D1,PLAN2) (user,system.Dl,PLAN3)I II.
REQUEST(usersystem.D1) REQUEST(user,system, Di)

SURFACE-REQUESf(usersystem,DI) SURFACE-REQUkST(usersystem,D 1)
[LAST] [LAST]

PLAN2 PLAN3
ADD-DATA(user, El, ?daa, ?loc) EXAMINE(user, El)-.....................

CONSIDEI-ASPECr PT
(userEl) (system. ?data. CONSIDER-ASPECT (user.El)

D1: DiSPLAY(systemuserEl) D1: DISPLAY system,user,El)
[NEXT] [NEXT]

Figure 4.12: The Two Plan Stacks after the First Utterance

When the executed plan structures are recognized, their effects can also be asserted. In partic-

ular. the focus can be noted. Since the discourse structure follows the task structure the exe-

cuted SURFACE-REQUEST is marked as focused and the introduction meta-plans as com-

. pleted. Since among the effects of any meta-plan is an updating of the focus in the plan

referred to. the DISPLAYs of plans 2 and 3 are marked as focused. Finally. two stacks are con-

structed as shown in Figure 4.12. As desired, we have constructed a plan stack for each

interpretation based on domain-specific expectations.

The system, assumed cooperative and a planner itself, examines the postulated plans and

decides what to do (again. the planning the system performs is actually simulated based on the

dialogue). Since the REQUEST (and thus plan introduction) is completed. in each stack the

t.

-. - 2 ~A ,.% Vn~J~~ YPIV 1JE I ~I J.P~AY.' -. * -*'0j.*., - ~*- ~* *. ... ~.L

',

90 A

stack can be popped and the execution of DISPLAY performed as a coherent next move. The

.
system chooses to perform the display even though the reason for this action is still ambiguous.

Deciding exactly what to do in such cases is an interesting planning issue. For example, in this

case we will see that although the REQUEST "seemed fairly explicit, the system's lack of

higher-level knowledge led to a non-optimal response. The system also chooses to generate

"OK" to explicitly mark the step's completion.

The user's response. "I can't fit a new IC below it," is input as SURFACE-INFORM

(user, system. -CANDO (user, FIT (user, ?ic 2
, belowEl))), where FIT is an instance of PUT

(the terms will be used interchangeably). In other words, the fact that the system decided to

perform the DISPLAY without knowing whether a PUT would follow (and if so what would

be PUT and where) has now caused problems in the user's original plan, viz., the location of

the node for the generic concept did not leave. enough room to fit a new IC node below it. -"-

The resolution of "it" to El is done by the immediate focus and incorporated into the parse as

shown.

The utterance is recognized by the plan recognizer as either an indirect REQUEST for

the system to perform the FIT or a literal INFORM, and since neither is yet connected to any

domain or meta-plan, we pursue both alternatives. (Recall that the incremental plan recogni-

tion process holds for plan branch points, but not for speech act recognition.) For each stack,

recognition of a continuation of its plan (preference 1) fails. In the first stack, CONTINUE's

CANDO(system, FIT(system. ?ic, belowEl, PLAN2) constraint fails. For the stack containing

PLAN3, there are not enough steps in PLAN3 to satisfy the conditions of its continuation.

?This parse assumes that the use of "a new IC' is attributive (Donnellan [281). i.e. the user is stating 'hat an new

ic will not fit below El This is in contrast to a referential use. where the user has a parucular ic in mind. While these
terms were developed for definite descnpuons, similar ideas are useful for indefinite descnpuons as well. For example.
in 'Could you mount a magtape for me? Its tape I" the speaker obviousl., has a particular magtape in mind when "a
magtape" is uttered. In the next chapters we will see how such indefinite expressions are represented as skolem func-
tions rather than vanables. For the current purposes the distinction is irreleNant.

-''

-. -. -. - h~" % , .' -. ". " ' ' 11: ' '' '' ' " ,, It.' 1.

91

Chaining from the indirect REQUEST(user, system, FI: FIT(system, ?ic, belowEl))

(recall Figure 2.8) we may also postulate that either of the two possible plans is being

corrected, i.e., a meta-plan to one of the stacked plans is introduced (preference (2)). Since the

REQUEST matches both decompositions, there aie-two possibilities for CORRECT-PLAN:

COR R ECT- PLA N(user"systemlaststepF 1.?nextstep,?pIan)

CORRECT-PLAN(user.system,?laststep.,?newstepFl,?plan)

where the parameters of each will be bound, or at least further restricted, as a result of con-

straint and precondition satisfaction from application of the heuristics. For example, recall that

candidate plans are only reasonable if their preconditions were true, i.e. (in both stacks and

corrections) WANT(system, ?plan) and LAST(?laststep, ?plan). Assuming the plan was exe-

cuted in the context of PLAN2 or PLAN3 after the DISPLAY was performed, ?plan could

only have been bound to PLAN2 or PLAN3. and ?laststep bound to D1. Then, satisfaction of

the constraints will eliminate the PLAN3 binding, since the constraints indicate at least two

steps must be in the plan, while PLAN3 contains no sequence of steps (just a single step

described at different levels of abstraction). Finally, with respect to the effects not being

already true for each hypothesis, the first effect yields STEP(F1,PLAN2) and STEP(?newstep,

PLAN2), respectively. Since the first is already true, with respect to PLAN2 the first

CORRECT-PLAN is eliminated. Thus only the second correction on the first stack shown in

Figure 4.12 remains plausible, and in fact, using PLAN2 and the latter correction the con-

szraints can be satisfied. In particular, the bindings so far yield:

(1) STEP(D1. PLAN2)
(2) STEP(Fl. PLAN2)
(3) AFTER(DI., Fl)
(4) AGENT(?newstep. system)
(5) "CANDOluser. Fl. PLAN2)
(6) MODIFIES(?newstep. DI)
(7) ENABLES(?newstcep. Fl)

Constraint (1) is already alid. and (2). (3). and (5) made valid, assuming the matching of PUT

and FITI (which was implied in the ahoc discussion). Finall., assuming ?newstep can still not

iS

92

be uniquely determined, it is now further constrained to satisfy (4). (6), and (7).

The effects of this new plan are asserted (?newstep is inserted into PLAN2 and marked as

in focus), and CORRECT-PLAN is pushed on to the stack on top of its object plan. as shown

in Figure 4.13. We have thus recognized not only that an interruption has occurred, but also

how the interruption is related to the interrupted topic. Finally, note that since PLAN4 con-

tains an unbound parameter it is not yet marked as completed.

PLAN4

CORRECT-PLAN(user, system, DI, ?newstep, F1, PLAN2)

REQUEST(user, system, FI)

SURFACE-INFORM(user, system, -CANDO(user. F1)) [LAST]

where AGENT(?newstep, system)

MODIFIES(?newstep, Dl)
ENABLES(?newstep, F1)

PLAN2
- ADD-DATA(user. El, ?ic, belowEl)

CONSIDER-A ECT(user, El) n Fl: FIT(system. .ic, belowEl)

I [NEXT
Dl: DISPLAY(system. user, El))

[LAST]

Figure 4.13: The Plan Stack after the User's Second Utterance

Any other preference (2) possibilities (a REQUEST or INFORM leading to a

modification or a clarification) fail due to constraint violation. Finally, a REQUEST for intro-

duction of a new plan is discarded since it does not tie in with any of the expectations (i.e. a L

preference (2) choice is preferred over a preference (3) choice).

The analysis of the user's continuation, "Can you move it up?" is

SURFACE-REQUEST (user. system. INFORMIF (system. user

(CANDO (system. Ml: MOVE (system. El, up))))).

(with El again from the immediate focus). recognized as either a literal or indirect REQUEST.

.'... - '~ -- 'el

93

The first preference does not apply; PLAN4 has no steps to CONTINUE, but because it is

not complete PLAN2 shouldn't be resumed and continued. Within preference (2), from the *1.

indirect REQUEST we can chain via its effect KNOW(system. WANT(user. M1)) to

INFORMREF(user. system. M1. WANT(user, Ml)')'. From the INFORMREF we can chain to

IDENTIFY-PARAMETER, which can be related to PLAN4 via satisfaction of the constraints

of IDENTIFY-PARAMETER as well as the listed constraints for PLAN4 in Figure 4.13. (The

other possible INFORMREF. INFORMREF(user, system, user, WANT(user, M1)) and its

IDENTIFY-PARAMETER are eliminated since the effect is already true, i.e. the system

already knows the person with the goals is the user.) Note that if El in Ml was not known (i.e. "

the pronoun "it" in "Can you move it up" was not resolved to El), the resolution could now

be made purely intentionally via satisfaction of PLAN4's three constraints on MOVE (although

since the constraints are now less specified. proving their satisfaction is harder than in the ear-

lier case). The effects of the recognized plan are asserted, in particular M1 is bound to ?news-

tep in both PLAN4 and PLAN2. and the plan is then pushed onto the stack, as shown in Fig-

ure 4.14. PLAN4 can now be considered completed since it is fully instantiated by the effects

of PLAN5, and its steps all performed. (Note that if the system had been able to infer ?news-

tep before this utterance, PLAN5 would have seemed somewhat redundant (although in actual-

ity it would involve making distinctions between belief and knowledge) and thus would have

been harder to recognize.)

V..

-o:

94

PLANS [completed]

IDENTIFY-PARAMETER(user. system. MI. Cl, PLAN4)

INFORMREF(user. system. Ml, WANT(user, M1))

REQUEST(user. system, MI)I
SURFACE-REQU EST(user, system,

INFORMIF(system, user. CANDO(system, Ml))) [LAST]

PLAN4 [completed]

Cl: CORRECT-PLAN(user. system, D1, M1, F1, PLAN2) [NEXT]

REQUEST(user, system, Fl)

SURFACE-INFORM(user, system, "CANDO(user, Fl)) [LAST]

PLAN2
ADD-DATA(user, El, ?ic, belowEl)

CONSIDER-ASPECT(user, El) Fl: FIT(system, ?ic. belowEl)

M1: MOVE(system, El, up)

D1: DISPLA (system, user, El) [NEXT] ..
[LAST]

Figure 4.14: The Plan Stack after the User's Elaboration

The other IDENTIFY-PARAMETER act, obtained by chaining from the literal

REQUEST, cannot tie into PLAN4 so is eliminated. Since CORRECT-PLAN specifically had

a parameter to be identified, any other possible preference (2) meta-plans to PLAN4 would

only be considered if IDENTIFY-PARAMETER couldn't be recognized.

This latter point illustrates some perspectives suggested by this theory on recognition of

narrative text. sequences of utterances by a single speaker. For example. in cases where a plan

is incompletely recognized although all of its steps have been executed, there is a strong expec-

tation for a completion of the details b the same speaker. Furthermore, such "elaborations"

(to use a term commonly seen as a coherence relation) are seen as yet another topic

.'. t

95

suspension, analogously to the cases described above. While perhaps unintuitive (i.e. a plan is

interrupted for, rather than continued by, an elaboration), it enables the recognizer to deal with

narrative using only already existing structures and mechanism.

Back to the stack of Figure 4.14, the system is simulated as follows. Noting that the user's

IDENTIFY-PARAMETER and CORRECT-PLAN are both complete, it pops the stack and

resumes PLAN2 with the new step MI inserted by the meta-plans. Once MI is done, the focus

is updated and the system is now ready to recognize the continuation of the plan with Fl.

Before the parse of the user's next utterance ("OK. now make ...") is even processed. the

system's discourse mechanism would pick up the two initial clue words that explicitly mark this

continuation with the next step, thus reinforcing the coherence preference (1). The rest of the

utterance is then recognized as a continuation meta-plan (analogously to the above detailed

explanation. where MI and PLAN2 are bound- due to precondition satisfaction, and MAKEL

chained through FIT due to constraint satisfaction (recall Figure 2.9)). as shown in Figure 4.15.

At this stage, it would then be appropriate for the system to pop the completed CONTINUE

plan and resume execution of PLAN2 by performing MAKEI.

,' ",'i

7-"

-t -P e~e f -P - e - 17

-iruo Tv -wn rw s'Ur WXkl

'V

96

[completed]

CONTINUE-PLAN(user. system. M1, MAKE1, PLAN2)

REQUEST(user system. MAKE1)

SURFACE-REQUESI(user, system. MAKE1) [LAST]

PLAN2

ADD-DATA(user, El, SamJones, belowEl)

_'S

CONSIDE-ASPECT(user, El Fl: FlT(system, SamJones, belowEl)'I'

DI:DISPLAY(system, user El) MAKEl: MAKE(system. user, Sam Jones)
[NEX7T]

Figure 4.15: Continuation of the Original Domain Plan

Note how the framework would still prove useful if the user's "Can you move it up?"
was preceded by the system's "What do you want me to do?". In other words, assuming the

user did not provide the expected elaboration the system could plan to ask for it. The analysis

is shown in Figure 4.16. Comparing this with the situation in Figure 4.14. note that after intro-

duction by PLAN6 the analysis will be the same as for the non-prompted case.

It is also interesting to note what kind of analysis could result if the user's second and

third utterances were reversed. Assume the user says "Can you move it up?" in the plan

recognizer's context of Figure 4.12 (although after the display has been executed). As before.

the utterance can not be recognized as a continuation, expected since the system believes it

acted correctly. CORRECT-PLAN (user. system, Di. M1. FIT, PLAN2) is recognized and this

plan is put above its object plan. PLAN2. on the stack (as shown by looking at only the bottom

two elements of Figure 4.17. with the FIT not yet fully instantiated). Notice that the system

knows both what to do and why, since from the constraints the system can infer both that

-a

SY *V .y' .- 9.-.-" . W ~ 1; 4 - .d O_ ' --. . -

97

[completed]

INTRODUCE- PLAN(system, user. 14, PLAN6)

L.
REQUEST(system, user, 14)

SURFACE-REQU~Tsystem. user. 14) [LAST]

PLAN6

IDENTIFY-PARAMETER(user, system, ?newstep. Cl, PLAN4)

14: INFORMREF(user. system, ?newstep, WANT(user. ?newstep))

with AGENT(system. ?newstep) [NEXT]

PLAN4

Cl: CORREC1'-PLAN(user. system. DI, ?newstep, Fl, PLAN2)

REQUEST(user. system, Fl)

SURFACE- INFOR M(user, system, -ANDO(user, F71)) [LAST]

PLAN2
ADD-DATA(user, El. ?ic, belowEl)

CONSIDER-A ECT(user, El) ?newstep Fl: FIT(system. ?ic, belowEl)

I [NEXT]
DI: DISPLAY(system. user, El)

[LAST]

Figure 4.16: If the System had Prompted

?newstep is bound to M1 and that the user can't do the FIT. i.e. that the interaction between

DISPLAY (?Iaststep) and FIT (?nextstep) is the problem. This was not true when CORRECT-

PLAN was first recognized in the original dialogue (Figure 4.13), where the problem (FL) was

explicitly given, but the solution (?newstEP) could only be partially restricted (as opposed to

uniquely identified). The user explicitly confirms this with the next utterance, "I can't fit a new

ic below it." recognized as an IDENTIFICA [ION of the FIT parameter in CORRECT-PLAN.

which fills in the previously unknown parameters of the FIT. As above, since there were

98

4 unknown parameters such an elaboration would be expected (and note that the dialogue

sounds somewhat incomplete without it, although as has been pointed out to me one would

not expect to have to explain motivations in a dialogue with a real machine). The clarification

is then pushed on the stack: the state of the'staclk after the two utterances would be as shown

in Figure 4.17. Comparison of Figures 4.14 and 4.17 illustrate how the same utterances are

analyzed differently depending on the discourse context. In particular, although in each case

the system recognizes an interruption of the CORRECT-PLAN, the particular relationship

between the interruption and the CORRECT-PLAN is different.

[completed]

IDENTIFY-PARAMETER(user, system, F1, C1, PLAN7)

INFORMREF(user, system, Fl. WANT(user. Fl))

REQUEST(user. system, Fl)
.I

SURFACE-INFORM(user. system, "CANDO(user, F1)) [LAST]

PLAN7

Cl: CORRECT-PLAN(user. system. D1. Ml, Fl, PLAN2)
I r

" REQUEST(user, system. Ml)

I .J,
SURFACE-REQUEST(user, system.

INFORMIF(system, user, CANDO(system. Ml))) [LAST]

PLAN2
ADD-DATA(user. El, ?ic, belowEl)

CONSIDER-A IECT(user El) Fl: FIT(system. ?ic, belowEl)

MI: MOVE(system, El. up)
I [NEXT]

DI: DISPLAY(system, user, El) [LAST]

Figure 4.17: If the User's Utterances were Reversed

%%

a.

I' 4

, '4.. - , , . ' - .

.4 -, l'e.:' -d:. ,,*- *'*t¢t _@ P ,*. .'. . X ,2._'% ." " " , ." " " '_.. • _

99

4. Summary

This chapter has illustrated how the theory developed in the last two chapters is actually

used to process specific dialogues, using dialogues from different domains and genres to sup-

port the generality of the theory. By tracing through the plan recognition algorithm in detail.

we can see exactly how and when the results of the discourse analysis as well as the structures

in the plan libraries are used to create and update a stack (or stacks) of postulated plan struc-

tures. We can also see exactly how the various heuristics can be used to effectively prune

many of these possibilities, and how meta-plans are connected to object plans (as well as how

the appropriate object plan is found). At the beginning of a dialogue the process of constraint

satisfaction will cause the actual construction of an object plan satisfying the meta plan's

requirements. During a dialogue, the constraint satisfaction process will be used to connect

new meta-plans to existing plan structures on the stack.

This chapter has thus shown how the theory handles a range of discourse phenomena.

The interpretation of an utterance depends on the previous discourse context, and the exam-

ples illustrate several ways in which this can occur. Topics are not only directly continued, but

also interrupted for things such as clarifications or corrections. The interruptions themselves
I'.

are also subject to similar interruptions. This chapter has also shown how various surface r

linguistic phenomena (for example, clue words) can be used to recognize particular relation-

ships with the previous context as well as how the system can proceed without such clues.

Thus, the implicit information regarding whether an utterance continues or interrupts a topic.

as well as how, is made explicit. Finally, we have seen how the theory can be used to process

consecutive utterances and indirect speech acts.

If

'17 K _3 -1JW,7|72 77 7 .

- -.

Chapter 5

Sentence Fragments, Ellipsis, and Plan Ellipsis

1. Introduction

This chapter continues the last by tracing through two more dialogues, this time concen-

trating on the processing of utterances with missing words or phrases, e.g. sentence fragments

and elliptical utterances. The first section will be in the context of a new domain and will illus-

trate how the system, using the MODIFY-PLAN meta-plan, handles a type of ellipsis some-

what like the type typically processed by current natural language understandil.g systems.

First, the example will be traced to show how much of the missing semantic information of the

input can be recovered as a side effect of the plan recognition process. The same example will

then be repeated, beginning the recognition procedure with the elliptical input assumed already

filled in by some other means. As with other phenomena governed by a local discourse con-

text, we will again see that while having the results makes the plan recognition task much

. casier, if such results are not available the plan recognizer will typically be able to reach the

same interpretation, although by perhaps a more circuitous path.

The second example (another train dialogue) will illustrate the processing of sentence '4

fragments as well as plan ellipsis phrases that replace entities implied by rather than entities

mentioned in a preceding utterance. As in the first example, the filling in of the ellipsis will be

done via recognition of MODIFY-PLAN. Both examples will also reiterate many of the points

100 "

101

made in the last chapter. In particular, exactly the same plan recognition algorithm, stack

manipulations, meta-plan schemas, and discourse analysis will be used for all the examples.

Only the domain plan schemas ever change.

2. Ellipsis

This section simulates the system's processing of a version of Dialogue 3, simplified' as

shown:

User: Could you mount a magtape for me? It's tapel.

Operator: We are not allowed to mount that magtape. You will have to talk to operator
about iL After nine a.m. Monday through Friday.

User: How about tape tape2?

This example will show how the system, taking the role of the operator, understands the

speaker's utterances, in particular the elliptical last utterance. Figure 5.1 shows the meta-plans

that- will be used in this example. The meta-plans were presented in Chapter 2, repeated

without change in Chapter 4. and are again repeated without change for the convenience of the

reader. Also, recall from Chapter 2 that the speech act decompositions shown in Figure 2.8

were supplemented with the following decompositions and associated constraints (the prere-

quisites, etc. of Figure 2.8 remain unchanged):

HEADER: REQUEST(speaker, hearer, action) ,J.
DECOMPOSITION-5: SURFACE-NP(speaker, hearer, noun-phrase)
CONSTRAINT: CONTAINS (action, noun-phrase)

HEADER: INFORM(speaker, hearer, proposition)
DECOMPOSITION-2: SURFACE-NP(speaker, hearer, noun-phrase)
CONSTRAINT: CONTAINS (proposition. noun-phrase)

The plan recognition algorithm begins with the parse of the user's first utterance:

SURFACE- REQU EST(user.system.
INFORM IF(system.user.CAN DO(system.MOUNT(systemskolemMagtape)))).

."
tRecall from Chapter 1 that the user's initial turn consisted of two more utterances. With respect to this exam-

pie. the utterances are superfluous and can be eliminated. enabling the example to focus on the processing of the user's
next utterance.

.

i ".
,r € " "- '."".' ",' .'. ,# " €2. ", ,"""'"".""," "" "'". .'2 " "",-"-".".. "''"." '." " '"" " " ",".".'" '",'.Q '".),.

~~7.TW'~~~~.~~5'~~- 17- F.- q_ 77JZVJ' 'a i77 '~ I*'~W~-

102

HEADER: INTRODUCE- PLA N(speaker, hearer, action, plan)

*DECOMPOSITION: REQUEST(speaker, hearer, action)

EFFECTS: WANT(hearer, plan)

NEXT(action. plan)

CONSTRAINTS: STEP(action, plan)

AG ENT(action. hearer)%

HEADER: IDENTIFY-PARAMETER(speaker,hearer~parazneter.action.plan)

DECOMPOSITION: INFORM REF(speaker, hearer, term proposition)

EFFECTS: NEXT(action. plan)
KNOW- PA RAM ETER(hearer. parameter, action, plan)

CONSTRAINTS: PARAMETER(parameter, action)
STEP(action. plan)
PARAMETER(parameter. proposition)
PARAMETER(terrn, proposition)
WANT(hearer, plan)

HEADER: MODIFY-PLAN(speaker, hearer, change, changee.

* newAction, oldAction, oldPlan. newPlan)

PREREQUISITE: WANT(hearer, oldPlan)

DECOMPOSITION: REQUEST(speaker. hearer, newAction)

EFFECTS: POP(CLOSURE(oldPlan))
NEXT(newAction)

CONSTRAINTS: PARAM ETER(oldAction. changee)
STEP(oldAction. oldPlan)
STEP(newAction. newPlan)
EQU AL(newAction. SU BST(change, changee, oldAction))

* EQUAL(TYPE(change), TYPE(changee))
-EQUA L(change,changee)
REPLACE(stack, oldStack)

Figure 5.1: The Meta-Plans Needed for the Tape Example (Repeated from Chapter 2)

Because the user has a particular tape in mind (as "It's tapel" later verifies). skolemMagtape

will be used to refer to this as yet unknown constant of type magtape.2 The name skolem-

Magtape was chosen to reflect the similarity between unknown constants and first order predi-

2Since at this point in the dialogue the operator reallv doesn t know if the user has a particular tape in mind.

technicallv another parse should be produced with "a maitape" represented as a sanable, However, since any plans
from iuch a parse will be eliminated with It s tapel" the omivsion is not important.

7 k 'r..r

.. . .- ., . .. = .. €:, _ . U Y. X',.,,,.-1Wb %.= V, .' J': ' ,.= -. ,X . ,,, .). ,,,C .2 ' , h b ':\ : , L'. .
-

103"

cate calculus skolem functions [681, i.e. functions which explicitly define the dependence of an

°4"a* existential variable on universal variables. The actual implementation of items such as skolem-

Magtape as skolem functions will be explained in Chapter 6.

Since at the beginning of a dialogue there is no stack, the system will try to recognize an

introduction of some user domain plan. From the SURFACE-REQUEST the system can per-

form forward chaining to an indirect REQUEST for the MOUNT (recall the speech act

definitions of Figure 2.8). and from that to an introduction of a plan containing the MOUNT.

A stack is constructed from the recognized meta-plan and its object plan as shown in Figure

5.2.

PLAN1 [completed]

INTRODUCE-PLAN(user; system, M 1,PLAN2)

REQUEST(user.systemM 1)

SURFACE-REQUEST(user. system
INFORMIF(system, user, CANDO(system, Ml))) [LAST]

-.

PLAN2

Ml: MOUNT(system, skolemMagtape) [NEXT]

Figure 5.2: The Plan Stack After the First Utterance

The other possibility, chaining from the SURFACE-REQUEST (via decomposition (1)) to a

literal REQUEST for INFORMIF. and from that to an introduction of a plan containing the

INFORMIF. is eliminated by the heuristics since the effect of such an INFORMIF is already

true, i.e. the user knows if the operator can mount tapes.

The parse of the user's next utterance. SURFACE-INFORM (user. system. EQUAL '

(skolemMagtape, tape1)) is then received (assuming the resolution of "it" by local means, as in

the last chapter). From the SURFACE-INFORM chaining can proceed through INFORM to

9'?

- a ~n

104

an INFORMREF of skolemMagtape or of tapel, or through an INFORMIF. Chaining from

the INFORMREF of skolemMagtape leads to recognition of an IDENTITY-PARAMETER of

skolemMagtape in M1. The other possibilities, chaining from an INFORMREF of tapel, or

from an INFORMIF, are eliminated. The Tormrlis eliminated via the heuristics, since saying

tapel is equal to an unknown constant of type tape provides no new information and thus the

KNOWREF effect is already true; the latter is eliminated since it does not connect with anyN meta-plans. As in the last chapter, the INFORMREF is a preference (2) user elaboration of a

stacked plan and is expected (since the plan introduced by the first utterance contained an unk-

nown parameter, i.e. skolemMagtape), and will be preferred to any other meta-plans. The stack

constructed after this phase of recognition is shown in Figure 5.3.

•PLAN3 [completed]

IDENTIFY-PARAMETER(user,system,skolemMagtape. M 1.PLAN2)

INFO R MREF(user,system,skolemMagtape.EQU A L(skolemMagtapetape 1)) .,.

FA p
"INFORM(user, system,EQU A AL(skolemMagtape,Lape l))

SURFACE- INFORM(user~system,EQUAL(skolemMagape,tape 1)) [AT"'

[LAST!

PLAN2

Ml: MOUNT(system, tapel) [NEXT

Figure 5.3: The Plan Stack after the User's Elaboration

Note how PLANL is first popped. in order to place the new meta-plan, PLAN3, above its

object plan. While such a popping was expected since PLAN1 was believed completed, it was

left on the stack until its popping was implicitly confirmed by recognition of PLAN3, just in

case a clarification of the introduction, rather than the MOUNT. had unexpectedly followed.

Finally. note the effects of the IDENTIFY-P.\RAMETFR. binding skolemMagtape to tapel in
,a.. .

.1d

Ml-

J; -_

Sd%.

oJ.

105

Simulating the system's response, the system examines the plan stack, pops the completed

PLAN3, and resumes execution of MI. the next step in PLAN2. The system, however, is
.5.

unable to actually perform the MOUNT and generates a response indicating this fact. as well e%

as a suggested user debugging action.

The user reply "How about tape tape2?" is parsed as a clue word "how about" followed

by a SURFACE-NP(user. system, tape2). As discussed in Chapter 2, various surface clues can

be used to help decide whether such a fragment is part of an underlying REQUEST or an

INFORM. For example, in this case, interrogative mood connects the SURFACE-NP to a

REQUEST, and then using the appropriate decomposition we have

REQUEST(user, system, ?action)

where CONTAINS(?action. tape2)

AGENT(?action, system)

At this point, the clue word can be used to constrain the search procedure normally performed

without the clue, i.e. looking for a continuation of PLAN2, then any meta-plan referring to

PLAN2, is constrained to directly trying a MODIFY-PLAN of PLAN2. While "how about"

can also be used to introduce a plan (e.g. "How about a bite to eat?), such an interpretation

corresponds to a total topic change (the least preferred coherence heuristic) and is thus not yet

pursued. The search yields the hypothesis MODIFY-PLAN (user, system, ?change, ?changee,

?action. ?oldAction, ?oldPlan, ?newPlan) where

(1) CONTAINS(?action, tape2)
(2) AGENT(?action, system)

Application of the heuristics then verifies that this plan is plausible. The system checks that the

prerequisite, WANT(system, ?oldPlan), was true. This can be satisfied if ?oldPlan is bound to

PLAN2 or PLAN3 in the stack in Figure 5.3. The constraints explicitly specify use of this old

stack, since otherwise the user would be viewed as modifying the system's reply, rather than

IU

, " '. l .. .5--.5.5 i Ii

106

the user's request 3 PLAN2 is preferred via the coherence heuristics, since PLAN3 is completed

and can be popped. Then, the system checks that there are no violations of the constraints,

now instantiated to:

(3) PARAMETER(?oldAction,?changee)
(4) STEP(?ohdAction,PLAN2)
(5) STEP(?action,?newPlan)
(6) EQUAL(?actionSUBST(?change,?changee,?oldAction)
(7) EQUAL(TYPE(?change),TYPE(?changee))
(8) "EQUAL(?change,?changee)

Satisfaction of constraint (4) binds ?oldAction to M1, and satisfaction of (3) then binds

?changee to either system or tapel. However, to satisfy (6), i.e. to have ?action be a

modification of MI, where either system or tapel is modified, given constraints (1),(2) (the fact

that system and tape2 are two parameters of ?action), (7) and (8) (the fact that the

modifications are made by type compatible, but not equal, entities) only tapel can be bound to

?changee. Finally, these bindings, along with satisfaction of constraint (5), results in the crea-

tion of a new plan, PLAN5, with step M2:MOUNT(system, tape2).

The effects of the recognized MODIFY-PLAN are asserted, in particular PLAN2 and any

of its object plans (in this case, none) are popped from the stack, and M2 is marked as in

focus. Finally, the recognized MODIFY meta-plan and its associated object plan PLAN5 are

pushed on the (now empty) stack, as shown in Figure 5.4. Note how the unknown action in

the user's original elliptical utterance has now been determined as a result of constraint satis-

- faction in the plan recognition process.

The interruption in this example is slightly different from those of the previous examples.

In the last chapter we had topics that were interrupted but later resumed. Here we have topics

that are interrupted but will not be resumed. Instead, the interrupted topic (in the above exam-

pie. PLAN2) is replaced by a modified topic (PLAN5). Since this is a violation of the default

3Although it is not clear how many of the previous stacks need to be remembered. it is clear that some sort of
history will have to be maintained. For example. Chapter 6 will show that plan recognizers are non-monotonic and
can maintain previous contexts to retract incorrect assumptions

a,

107

PLAN4 [completed]

MODIFY-PLAN(user,systemtape2.tapel,M2,MI,PLAN2.PLAN5)

REQUEST(user,system,M2)

SURFACE-NP(usersystem,tape2)

[LAST]

PLAN5

M2: MOUNT(system, tape2) [NEXT]

Figure 5.4: The Modified Plan Stack

stack behavior, one of the effects of the MODIFY-PLAN meta-plan is the explicit pop (and

removal) of the interrupted topic.

As discussed in Chapter 3, the type of ellipsis illustrated in this dialogue is similar to that

already handled by many existing systems in that the noun phrase "tape2" replaces the previ-
4,

ous lexical item "tapel" (although it is not clear that systems based on a syntactic and semantic
reformulation of the local context would actually be able to handle this utterance, due to the

lack of a previous lexical item for the clue word "how about" to replace).

What would happen if a complete parse, i.e. SURFACE-REQUEST(user system,

M3:MOUNT(system, tape2)) was input to the plan recognition system instead of just the

SURFACE-NP? From the SURFACE-REQUEST, one could directly chain to a literal

REQUEST, and using the clue "how about" to MODIFY-PLAN(user, system, ?change,

?changee, M3. ?oldAction. ?oldPlan. ?newPlan). This is similar to the previous intermediate

result, except that the binding of ?newAction to M3 is already known, and in fact the con-

straint satisfaction process will eventually result in the same bindings in both cases. However,

the process this time will be much quicker since much of the work will involve verifying

(rather than constructing interpretations to satisfy) the constraints. Thus. as with other

• .o
• .. • , , -.. ..,,-. .-. • -.. -.. -,. .-.,- .,-, .-. .-. ,- .- , -, -., -..- ,,- -,. ... --., .. '

108

phenomena governed by local discourse context, plan recognition provides a back-up method

of analysis if needed. Perhaps more importantly, however, the next section will show how

exactly the same mechanism can handle a.type of ellipsis not so similar to those normally

covered by natural language systems. "

3. Plan Ellipsis and Initial Sentence Fragments

This section simulates the system's processing of the beginning of the following train

dialogue:

Passenger Trains going from here to Ottawa?

Clerk: Ottawa. Next one is at four-thirty.

Passenger: How about Wednesday?

Clerk: One at nine thirty, nine thirty in the morning, four thirty in the
afternoon...yeah, that's it.

We will see how the system's plan recognition process enables effective processing of the

passenger's initial noun phrase, as well as how the MODIFY-PLAN meta-plan enables process-

ing of a class of difficult elliptical utterances. The train domain plan schemas necessary for the

example are repeated in Figure 5.5. The meta-plan schemas needed are the same as presented

in Figure 5.1. ;.:

The parser's output for the first utterance is simply SURFACE-NP (personl, clerkl,

departTrainSetl) where EQUAL (station(departTrainSetl), Ottawa). Furthermore, since the

mood is interrogative and in this particular domain the clerk's role is to provide information

via speech acts. we know this is very likely a REQUEST to perform either an INFORMIF or

INFORMREF (as in Allen and Perrault [31).

As with "The eight-fifty to Montreal?" of the last chapter, the passenger could be asking

for some role value of the train set. The processing would be analogous to that of the earlier

utterance, and an introduction of a clarification would be postulated. However. in this case no

A]

109

HEADER: GOTO(agent. location, time)

EFFECT: AT(agent, Ioc~tion,.time)
°. °............ .°°..° . °. °° , ° , °.... ,I. 4.
HEADER: MEET(agent, amveTrain)

DECOMPOSITION: GOTO(agent gate(arriveTrain), time(arriveTrain))
.... °... ° ° q

HEADER: BOARD(agent, departTrain)

DECOMPOSITION: GOTO(agent, gate(departTrain), time(departTrain))
GETON(agent, departTrain)

•.. °. °°.......

HEADER: TAKE-TRAIN-TRIP(agent, departTrain, destination)

DECOMPOSITION: SELECT-TRAIN(agent. departTrain, departTrainSet)
BUY-TICKET(agent, clerk, ticket)
BOARD(agent. departTrain)

CONSTRAINTS: EQUAL(destination, station(departTrain))
EQUAL(destination, station(departTrainSet))
EQUAL(departTfain, object(ticket))

Figure 5.5: The Train Domain Plan Schemas (Repeated from Chapter 2)

domain plan has parameters corresponding to the unknown roles of departTrainSetl, i.e. to sets

of gates or times, so the hypothesis ultimately fails. Alternatively, since in this dialogue we are

inquiring about a train set rather than a single train, the passenger might instead be interested

in knowing the elements of the set. From an introduction of this INFORMREF an

identification of the last parameter in the SELECT-TRAIN plan can be postulated. The stack

constructed from this interpretation is shown in Figure 5.6. Finally, no stack will be con-

structed from the INFORMIF, since no chain of meta-plans to a domain plan can be con-

structed.

Simulating the system, one possible explanation for the response could be as follows.

The system pops the completed PLANI off the stack, and wants to resume PLAN2 by generat-

ing a response to achieve the INFORMREF I. Suppose for some reason, the system decides

.4

,.

110

PLANI [compleied]

INTRODUCE-PLAN(personl. clerkl. 11. PLAN2)

REQUEST(peonl. clerkl, I1)

SURFACE-NP(personl, clerkl, departTrainSetl) [LAST]

with EQUAL(station(departTrainSetl), Ottawa))

PLAN2

IDENTIFY-PARAMETER(clerklperson l.departTrainSetl,S 1,PLAN3)

11: INFORMREF(clerkl.personl,?departTrainSet,

El: EQUAL(?departTrainSet-departTrainSetl)) [NEXT]

PLAN3

TAKE-TRAIN-TRIP(personl. ?departTrain, Ottawa)

BUY-TICKET

Sl: SELECT- AIN (personl. clerkl. ?departTicket) BO RD
(personl,?departTrain,departTrainSetl) (person 1.?departTrain)

[NEXT]

GOTO(personl.gate(?depairTrain),time(?departTrain) .

GETON(person 1,?departTrain) %

Figure 5.6: The Stack after the Initial Fragment
Nl,

not to perform the intended response, but instead to perform a fancier one. Looking at

PLAN1. the system realizes that the passenger's ultimate goal is to BOARD a specific train.

and since the passenger is already in the train station, assumes that the next train is the most

desirable. The system thus identifies only the next train, rather than all the trains, going to

Ottawa.

Unfortunately, although the passenger is currently in the train station, the train to be

boarded leaves on a later date. Thus. the passenger tries to acquire the needed information

with "How about Wednesday?" This utterance is parsed as the clue word "How about" and a

SURFACE-NP (personl. clerki, Wednesday). which as above, is likely a REQUEST to

~:. ~k~&& :.x ~ #.. ~ ****~ *.[]

111 4,S

perform some type of system INFORM involving Wednesday. "How about" signals not only

that an interruption has occurred, but also how the interruption may be related to the inter-

rupted topic. In particular "how about'. signals that either an INTRODUCE-PLAN or ,
'-i

MODIFY-PLAN is probably being executed. Stnce the latter is preferred by the coherence

heuristics that hypothesis is tried first, overruling the default expectation to pop the completed

PLAN2 and resume PLAN3. In other words, if "how about" was not present, recognition of a

continuation of PLAN3 would have been attempted first. Chaining to MODIFY-PLAN yields

MODIFY-PLAN (personl, clerkl, ?change, ?changee, ?action, ?oldAction. ?oldPlan, ?newPlan)

where (1) ?action is some sort of system INFORM involving Wednesday. The heuristics are

then applied to check the various instantiations as candidate plans. Since the constraints indi-

cate MODIFY-PLAN uses the context of the oldStack (here the stack of Figure 5.6 rather than

the stack after the system's response), the prerequisite WANT(clerkl, ?oldPlan) can be satisfied

by PLANI. PLAN2 or PLAN3. Since PLAN2 is preferred via the coherence heuristics,

PLAN1 is popped and the PLAN2 binding is tried first. The rest of the parameters are bound

via satisfaction of the following constraints: %

(2) PARAMETER(?oldAction. ?changee)

(3) STEP(?oldAction. PLAN2)
(4) STEP(?action, ?newPlan)
(5) EQUAL(?action, SUBST(?change, ?changee, ?oldAction)) e

(6) EQUAL(TYPE(?change), TYPE(?changee))

(7) "EQUAL(?change,?changee))

Constraint (3) can be satisfied by binding loldAction to 11 or IDENTIFY-PARAMETER, but

with constraints (1) and (5) we know it must be bound to 11. Then, with (1), (2), (5), (6), and

(7) ?action gets further specified to an INFORMREF -with departTrainSet2, where

EQUAL(time(departTrainSet2). Wednesday). Finally, satisfaction of constraint (4) results in

the creation of a new plan, PLAN4. containing the new INFORMREF. %

Now that MODIFY-PLAN (personl. clerkl. E2: EQUAL (?departTrainSet. departTrain-

Set2). El: EQUAL (?departTrainSet. departTrainSetl). 12: INFORMREF (clerkl. personl.

'p

" ''" ".'''' ' "%' " ' " " "" "" ' """ " ' 'o" " " "" ."."." " " . -'.' t .'.'.', """. " ""."". . "..

112 "

?departTrainSet, E2), 11: INFORMREF (clerkl, personi, ?departTrainSet, El), PLAN2,

PLAN4) has been instantiated to satisfy the heuristics, chaining can continue. MODIFY-PLAN

is not a step in any other plans. but since it has introduced PLAN4 a recursive recognition is

performed. As with the initial INFORMftEF I11, from 12 the recognizer can chain to an

IDENTIFY-PARAMETER of SELECT-TRAIN. PLAN5 is introduced to contain this

SELECT-TRAIN, and another recursive recognition procedure chains from SELECT-TRAIN

to the higher level plan to take a train. Finally, since TAKE-TRAIN-TRIP is a domain plan,

the recursive recognition procedure halts. Note how once the modified step was found, the

rest of the plan stack had to be re-recognized in order to propagate the modification. The vari-

ous effects of all the plans can now be asserted. In particular, the effect of MODIFY-PLAN

pops PLAN2 and its object plan PLAN3 off the stack.. The new MODIFY-PLAN. its object

Olan PLAN4, and PLAN4's object plan PLANS, can then be pushed on the now empty stack,

as shown in Figure 5.7.. This time the system responds with the INFORMREF explicitly

requested; the fact that the set contains trains with times during Wednesday blocks the reason-

ing behind the last response (when the unspecified time range was given a default by the sys-

tern).

4. Summary %

This chapter extends the last chapter by tracing through two more dialogues, one of

which is in yet another domain. While some of the meta-plans illustrated in the last chapter

are used in these examples, this chapter concentrates on the use of the MODIFY-PLAN meta

plan. We have seen how the clue word "how about" is used to explicitly mark not only that

an unexpected interruption, but also what kind of interruption, has occurred. As with the

other interrupting meta-plans. execution of MODIFY-PLAN suspends execution of its object

plan. However, MODIFY-PLAN modifies the plan stack so that execution is resumed with a

modification (and replacement) of the goals of the interrupted object plan and its chain of
-p"

".

113 *

[COMPLETED]

MODIFY-PLAN(personl,clerkl.E2,E,12,I1,PLAN2,PLAN4)

REQUEST(personl.clerkl,12)

SURFACE-NP(person 1,clerk 1, Wednesday) [LAST]

PLAN4 ,,

IDENTIFY- PARAMETER(clerkl.personl,departTrainSet2,S2,PLA N5)

12:INFORMREF(clerklpersonl.?departTrainSet,
E2: EQUAL(?departTrainSet, departTrainSet2)) [NEXT]

PLAN5

TAKE-TRAIN-TRIP(personl. ?departTrain, Ottawa)

BUY-TICKET ...

$2: (person l,clerk 1.?departTicket) BOARD

(personl,?departTrain.departTrainSet2) (personl.?departTrain)
[NEXT]

GOTO(personl,gate(?depaii'frain),time(?departTrain))

GETON(personl,?departTrain)

with EQUAL(time(departTrainSet2),Wednesday)
EQUAL(station(departTrainSet2),Ottawa))

Figure 5.7: The Modified Plan Stack
'a

object plans. This is in contrast to IDENTIFY-PARAMETER and CORRECT-PLAN, where

further changes to the object plan are only constructive, i.e. new information may be present,

but old information is left unchanged.

The type of processing captured by MODIFY-PLAN handles various types of elliptical

processing as a special case. In particular, the reasoning implicit in the recognition of this

meta-plan can explain intentionally the type of linguistic ellipsis typically processed using a

local discourse context for reformulation. As with other linguistic phenomena dependent on a

local discourse context, the plan recognizer can proceed with or without such results as input.

a',

a'
a"

%.. ..'. ". , , - ,. , , . ., - , , .. . , .._, . . - . ,...,. .,, , ' ,. -. -. ' .°

- -- -. . -,-" : -, -' 2" ,. - . ' h .. , 't; ; . ; .L . . . r . . .- • F' -

114 P

either using such linguistic input to speed the recognition process, or using the recognition pro- -

cess to explain the linguistic phenomena on an intentional basis, respectively. Furthermore, the i

same plan mechanism can be used to handle other, more difficult cases of elliptical utterances,.

for example omissions that cannot be filled using just the form of the preceding utterance.

.5

* C..,.

'S.

f,.
-aaa' ° V.

gf..

Chapter 6

Knowledge Representation for Plan Recognition:

Issues and their Implementation

1. Introduction

Any system that draws on a body of general intentional knowledge to explain observed.*1

behavior has fundamental requirements that tax the capabilities of existing knowledge

representation systems. This chapter will discuss two such issues, both related to equality rea-

soning. The next section will show why the concept of unification must be extended to meet

the requirements of the plan recognition task. A later section will show why a context depen-

dent reasoning (and thus equality) system is needed. Each section will begin by illustrating %,

why such a knowledge representation capability is necessary, and how such issues have been

addressed by others (although unfortunately the issues raised are as yet largely unsolved). The

solutions implemented in this particular system will then be presented, and illustrated via

actual program transcripts. In general, the implemented solutions are straightforward rather

than elegant, designed to meet the criteria of simply enabling the implementation given the

available tools rather than making fundamental contributions in the area of knowledge

representation.

115 ,

- ~ ~~ ' -- ' p

°.

116

To understand the transcripts, it will first be necessary to digress and explain HORNE I.

terminology, notational conventions, and the various axioms used to represent the initial

knowledge of the plan recognizer. i.e. the type hierarchies, plan schemas, and parser output.

Section 3 will present this information, as-well is detail the important constraint satisfaction

mechanism of the plan recognition algorithm. (With the knowledge representation issues out

of the way, the transcripts can finally be used to illustrate the implementation of the plan

recognition algorithm.) The last section will then elaborate on the implementation's relation to

the theory and simulations of the previous chapters.
N)

*d

2. Consistency Unification

2.1. The Problem

Consider the following true story:

One day Diane suggests to Susan that Susan become the new editor of YUM-YUM, the
departmental guide to eating out. Several weeks later Diane reads a message from Nemo. the
current YUM-YUM editor, soliciting new reviews since a new editor will be taking over short-
ly. When Diane sees Susan again Diane comments on Susan's new role as editor. Unfortunate-
ly. Susan replies with bewilderment since Susan doesn't know anything about it.

The process Diane used to set "Susan" equal to "the new editor of YUM-YUM" is an example e

of consistency unification. While unification [681 typically results in the assertion of an equality

between a constant (or a variable) and a type compatible variable, and, if extended with equal- ."

ity, between a constant and another constant if they can be proven equal, consistency

unification allows an unknown constant such as "the new editor of YUM-YUM" to be set

* equal to a known constant (such as "Susan"), as long as the new equality is consistent with

information already known (here. that Susan is a possible future editor of YUM-YUM). This

* example also shows that since such equality assertions are not logically sound, when faced with

new information such equalities may later need to be retracted. This occurs when Diane finds

out that Susan doesn't think she was the person Nemo was referring to.

IV'

7S".

,,-%'2 ..',.' -, '.,' #..' - .r# -.;-'.',€,.. ,.j.-, ,,,t.. -, .- -, -y. ',-. ,'.'.r, . ,,,<: ,, - -., ., ,'- ./; -.A

-J1-J,-:-Jrr.F ,i,.

117

In the context of the plan recognition system described in the previous chapters, the need

for consistency unification arises at several points. The level of description given in the previ-

ous chapters glossed over one of the reasons such unification is needed. Recall the representa-

tion of a typical plan schema, as repeated in'Figure 6.1.

HEADER: INTRODUCE-PLAN(speaker, hearer, action, plan)

DECOMPOSITION: REQUEST(speaker, hearer, action)

EFFECTS: WANT(hearer, plan)
NEXT(action, plan)

CONSTRAINTS: STEP(action, plan)
AGENT(action, hearer)

, Figure 6.1: A Typical Plan Schema (Repeated from Chapter 2)

Since this schema applies" to any INTRODUCE-PLAN abstract action (where the

INTRODUCE-PLAN type has four roles), in the header speaker, hearer, action, and plan are

actually variables. However. in the decomposition speaker. hearer, action, and plan are actually

functions of the INTRODUCE-PLAN variable, since the decomposition means that any instan-

tiation of the schema will be executed via a REQUEST, with the value of the first role of the

REQUEST equal to the value of the first role of the INTRODUCE-PLAN, and so on. In

other words, for all INTRODUCE-PLANS, there will exist an agent such that the agent is also

the agent of the decomposition, and so on. The various roles of the REQUEST (and of the

* predicate in the effects and constraints) are thus analogous to first order predicate calculus

skolem functions, functions that explicitly define the dependence of an existential variable on

universals [681. With this background we can now understand why the actual implementation

of the schema looks more like that shown in Figure 6.2 (where ?I is a variable of type

INTRODUCE-PI AN). Now we have come to the crux of the problem. As in many of the

examples in the previous chapters. suppose a dialogue started with SI: REQUEST (userl.

I

118

HEADER: ?I:INTRODUCE-PLAN .4',

DECOMPOSITION: REQUEST(speaker(?I), hearer(?). action(?l))

EFFECTS: WANT(hearer(?t, plaft(?I))
NEXT(action(?[), plan(?[))

CONSTRAINTS: STEP(action(?I), plan(?I))
AGENT(action(?I), hearer(?I))

Figure 6.2: The Implementation of a Typical Plan Schema

. system, action). The system/plan recognizer would query the HORNE reasoning system to

find plan schemas that could have such a REQUEST as a decomposition. The INTRODUCE-

PLAN schema of Figure 6.2 would provide one such candidate, but only if S1 could unify with

the REQUEST of the decomposition. For this to happen, userl must unify with speaker(?l),

and so on. i.e. constants must unify with skolem functions. Unfortunately, unless these are

already known to be equal, normal unification will not allow such a match to be made.

While at first glance it might appear that the problem is due to the particular implemen-

tation of this thesis, Chamiak and McDermott [211 demonstrate that the need to match skolem

functions in predefined schematic knowledge structures with constants in observations will

occur in any similar task (such as story understanding) independently of the particular imple-

mentation chosen. This is true whether the skolem functions are literally skolem functions of

first order predicate calculus or only conceptually so. Recognition of any instance of a schema

implies the existence of a schema instantiation and of its roles. In predicate calculus terms

we have existential variables ard thus skolem functions, analogous to those described above.

A similar need to allow unification of skolems and constants occurs when skolems intro-

duced by the parse are updated via the incorporation of new information. For example, recall

Dialogue 2:

OV..

". , . , " ''''''""""'"..-2 ' ,.- , ' .""''''''""""-p- - . , . - - - - """ "- -*"" - - "" - . "- - """""""-

119

(1) User: Show me the generic concept called "employee."

(2) System:OK. <system displays network>

(3) User: [can't fit a new ic below it. Can you move it up?

(4) System:Yes. <system displays network> _ .

(5) User: OK. now make an individual employee concept whose first name is "Sam"...

In utterance (3), the user is using "a new ic" referentially, i.e. the user has in mind a particular

ic. The parser should have represented this entity as a skolem (which, as will be seen in the

next section. will be a function of the plan context). Then, when processing utterance (5), in

order to fit (5) into the existing plan context the skolem function has to be unified with a con-

stant representing the concept Sam Jones.

Finally, when pronoun resolution is done intentionally (as opposed to basically linguisti-

cally), consistency unification will again be needed. Recall the discussion in Chapter 4 regard-

ing the intentional resolution of "it" in "Can you move it up?" The skolem function for "it" is

set equal to the constant representing the generic concept, in order to achieve constraint satis-

faction during plan recognition. Charniak and McDermott [21] have similarly pointed out that
%'4

representing pronouns with a skolem rather than a variable correctly captures the fact that the

speaker has a particular entity in mind.

2.2. Solutions

2.2.1. Theoretical

Pople [74] was concerned with the mechanization of abduction, a more general version of

the type of reasoning discussed above. Abduction is one of the three fundamental modes of

logical reasoning tasks, along with deduction and induction. Abduction takes general rules and

specific observations and hypothesizes an explanation for the observations. For example, given

(1) For all x. P(x) implies Q(x)
(2) P(a)
(3) Q(a)

'p ',. 'a

120

abduction would take (1) and (3) and hypothesize (2). This is in contrast to deductive infer-

ence (e.g. from (1) and (2), (3)), and induction (e.g. from (2) and (3), (1)). Although deduction

underlies most current knowledge representation work, it does not support the type of syn-

thetic reasoning needed for many "intelligent" problem solving activities, in Pople's case medi-

cal diagnosis. While induction does allow the synthesis of hypotheses, such hypotheses are

limited to generalizations. To allow abduction, Pople embedded deduction in an interactive

hypothesize and test procedure guided by the principle of Occam's razor. In particular, abduc-

tion allowed the assumption of additional axioms that then enabled typical deductive processes

to succeed. In the much more specific case of consistency unification, abductive reasoning

would thus correspond to the assumption of equality axioms between constants and skolem

functions.

As discussed in the last section, Charniak and McDermott [211 are also concerned with

tasks requiring the matching of constants and skolem functions. They argue that performing

what they call abductive matching unifying two things if they are non-monotonically equal,

enables exactly the reasoning needed for plan recognition and story comprehension as well as

for pronoun resolution. In turn, a skolem function and constant are non-monotonically equal if

asserting the equality is consistent (in the sense used with respect to default logics (Reiter [781))

with everything else in the knowledge base. Thus unification can occur between skolem func-

tions and constants even if the necessary equality relation cannot be proved.

2.2.2. Practical -'

While the preceding idea is conceptually simple, it presupposes a system capable of prov- I

ing consistency. Since such a capability is not a part of HORNE (or of most systems), for the

purposes of this thesis an alternative mechanism had to built on top of the existing HORNE

typed unification facilities. This section will describe what was done. using the transcript of the

processing of "The eight-fifty to Montreal" as an illustration.

......

I •.

121

Recall that at the beginning of the dialogue the plan recognizer tries to chain from the

input to a higher level goal by matching the input with a step in a decomposition in one of the

expected plan schemas. For example, assuming an initial utterance such as

R1:REQUEST(person2. system, action7) -

a query such as

(prove (DECOMPOSITION ?plan R1))

would be made with respect to the plan schema library. As discussed above, such a match will

not succeed since skolem functions of the plan schemas cannot unify with constants of the

input. Using the INTRODUCE-PLAN schema of Figure 6.2 we can see that speaker(?l) can-

not unify with person2, hearer(?I) cannot unify with system, and action(?[) cannot unify with

4ction7. Thus since we cannot eliminate the skolem functions of the plan schema, in order to

find a relevant plan schema from the input a modified query has to be made. Since only vari-

ables can unify with skolems (assuming type consistency), the only query that will retrieve the

appropriate plan schemas is one with all the constants in the input replaced by appropriately

typed variables. In our example, the above query would be replaced by

(prove (DECOMPOSITION ?plan ?r: REQUEST))

which would return

(DECOMPOSITION ?plan: INTRODUCE-PLAN
REQUEST(speaker(?plan), hearer(?plan), action(?plan)))

Note that it was the restriction on the introduced variable (here via typing knowledge) that

made such a mechanism useful. i.e. without any restriction on ?r every plan would have been

retrieved. Once retrieved, an instantiation of the schema can then be created with all skolem

functions set equal to the appropriate constants replaced in the query. Thus a specific instance,

say 15. of type INTRODUCE-PLAN is asserted into the type hierarchy, with

EQUAL(speaker(15). person2)

X.""

o-

0%0

122

EQUAL(hearer(15), system)

EQUAL(action(15). action7).

At this point such assertions are consistent, since all that is known about each skolem function

is its equality with the typed variables of the plan. header. If later a contradiction arises due to

any such equality (i.e. if a constraint, prerequisite. or effect of the plan schema involving a

skolem function cannot pass the heuristic tests), the plan and the the equality are discarded.

For example, if when satisfying the second constraint of 15 (recall Figure 6.2) we find that the

system is not also the agent of action7, the plan 15 will be eliminated.

Thus, at the end of the plan recognition process a plan instantiation will have been con-

structed, partly by unifying skolems and constants when such equality assertions respect all the

information contained in the plan schema and the parse. The important point to note is that r

in finding plan instantiations to explain observed input, equality assertions are made between

skolem function and constants. However, only plans recognized via assertions that are con-

sistent with typing information, the schematic definitions, and the parser information will sur-

4 vive. (As mentioned above, such equality assertions are non-monotonic and may need to be

retracted. In a later section we will see how using a context-dependent equality system

replaces the need for retractions).

The next section will illustrate this algorithm using the transcript of the processing of

"The eight-fifty to Montreal." While probably not of interest to the casual reader, the section

will illustrate details of the implementation (and will also show the direct correspondence

between the implementation and the earlier high level traces).

3. The Implementation

3.1. The Axioms

Recall that the implementation uses the HORNE reasoning system [61 and thus stores its

knowledge as horn clause axioms. As discussed earlier, the system starts its recognition task

V

123

with a predefined type hierarchy and a library of domain and meta-plan schemas. Figure 6.3

shows a fragment of the type hierarchy. 'S

(ISUBTYPE T#Human T#Anything)

(define-subtype T#Action T#Anything
(R#agent T#Human)
(R#object T#Anything))

(define-functional-subtype T#SurfaceRequest T#Action
(R#object T#Action)
(R#hearer-SR T#Human))

(define-subtype T#MetaAction T#Action
(R#hearer-MA T#Human)
(R#plan T#Action))

(define-functional-subtype T#Ask T#tetaAction)

Figure 6.3: Part of the System's Type Hierarchy

The type hierarchy is built using primitive HORNE predicates and is similar to semantic net-

works. For example, the predicate ISUBTYPE asserts that the first argument is an (immedi-

ate) subtype of the second. By convention, all types begin with "T#", and the predefined type

T*Anything is at the top of every hierarchy. The predicate define-subtype is used to define

complex types. e.g types with various roles. Its syntax is

(define-subtype T # subtype T # supertype
(R # rolename- I T # roletype- 1)

(R #rolename-n T#roletype-n))

where by convention all rolenames are prefixed with "R#." Thus, T#Action is a complex

* subtype of T#Anything, with two roles corresponding to the agent and object of the action. .

(Perhaps more intuitively, T#Action corresponds to transitive verbs). TtSurfaceRequest is one

subtype of T* Action: besides iriaeriting the two roles of T# Action, the type of the second

role is further constrained, and a third role is added. Define-functional-subtype is similar to
, '5%

P .'-S

kI

124

define-subtype. except that if the roles of any two objects are equal the objects are also equal.'

T#MetaAction is also a subtype of T#Action: besides inheriting the two roles of T#Action.

instances of T#MetaAction also have two more roles corresponding to the hearer (recall all

meta-plans are done by speech acts), and te object plan. T#MetaAction in turn has subtype

T# Ask

As in semantic nets there are also predicates that assert that a particular constant is of a

given type (these will be illustrated below). For complex types the syntactic variant

(C#T#type rolevalue-1 ... rolevalue-n)

will often be used to refer to such a constant, making its role information explicit. The "C#"

stands for constructor function. Such constructor functions display a complex instance as the

rame of the type, followed by the fillers of the roles (as ordered in the type's definition). For

example. (C#T#SurfaceRequest person2 action7 system) would be equal to the constant RI,

where Ri is SURFACE-REQUEST(person2. action7, system) using the more informal notation

of previous chapters. Particular role values of such instantiations can be accessed using the

function "(f#rolename constant)." For example, (f# agent RI) will be equal to person2.

Figure 6.4 presents the meta-plan schema ASK, first at the level of description used in

the earlier chapters, then as implemented as a HORNE axiom. (ASK is a simplified version of

IDENTIFY-PARAMETER with the fact that it is INTRODUCED by a SURFACE-

REQUEST, ignoring issues of indirect speech acts, compiled in). All axioms asserting plan

schemas are of the form:

(planType (header (prerequisites) (decomposition) (effects) (constraints))).

i.e. a planType followed by a plan structure consisting of its name and lists of prerequisites,

steps, effects and constraints. Thus, the type of the ASK plan schema is a mecta-plan. The

t
As currently implemented, the axiom is technicall incorrect This is because without a role for ume the s~stem

would be unable to distinguish between different instances of SURFACE-REQLEST involving the same speakers and

", -- ,- ,' .

.- -1 nn -I - N -n IVA , , - . I ,. .

125

HEADER: ASK (agent, term, agent2, plan)

DECOMPOSITION: SURFACE-REQUEST (
agent ..
INFORMREF(agent2. term. agent, plan),
agent2)

INFORMREF(agent2, term, agent. plan)

EFFECT: KNOWREF(agent term, plan)

CONSTRAINT: PARAMETER(plan, term)

(metaPlan (?a:T# Ask

nil

((C#T#SurfaceRequest (f#agent ?a:T#Ask)
(C#T#Informref (f#hearer-MA ?a:T#Ask)

(f#object ?a:T# Ask)
(f#agent ?a:T# Ask)
(f# plan ?a T#Ask))

(f#hearer-MA ?a:T#Ask))
(C#T#Informref (f#hearer-MA ?a:T#Ask)

(f#object ?a:T#Ask)
(f# agent ?a:T # Ask)
(f# plan ?a T#Ask)))

((knowref (f# agent ?a:T# Ask) (f# object ?a:T #Ask) (f# plan ?a:T #Ask)))

((parameter (f#plan ?a:T#Ask) (f#object ?a:T# Ask)))))

Figure 6.4: The Meta-Plan Schema ASK and its Implementation

header of the schema is ?a:T#Ask where ?a is a variable of type T#Ask. This schema thus
4.

holds for all instances of ASK. which is what a schema should say. The axiom also indicates

that while there are no prerequisites, there is a decomposition (consisting of two steps impli-

citly time ordered), one effect. and one constraint. The first step of the decomposition is aS.

SURFACE-REQUEST. with its agent role filled by the value of the agent role of the ASK, its

action role filled by an INFORMREF defined in terms of the role values of the ASK. and its

hearer role filled by the filler of the hearer role of the ASK. In other words, the various roles

of the SURFACE-REQUEST (and recursively, the roles of its role fillers) have been filled by

utterances.

II

126

skolem functions.

1

J1

a.

4.

4.

4.

4..

q

a.

'a

p.

p.

a.

p

1

a :4/ ~ 5 ~ . ~

127

* Mare Type Hierarchy Axioms:

(ISUBTYPE T#Time r#Anything)
(ISUBTYPE T#Place T#Anything)
(ISUBTYE T#Thing T#Anything)

* (ISUBTYPE T#Location T#Place)
(ISUBTYPE T#City T#Place)

* (define-functional-subtype T#Train T#Thing
(R#departLocation T#Location)
(R#departrime T#Time)
(R#departStation T#City)
(R#arriveLocation T#Location)
(R#arriveTime T#Time)
(R#arriveStation T#City))

(define-functional-subtype T#GoTo T#Action
(R#object T#Location) (R#time T#Time))

(define-functional-subtype T#Informref T#MetaAction)
(ITYPE eightFifty T#Time)
(ITYPE Montreal T#City)
(ITYPE personi T#Human) (ITYPE clerkI T#Human)

- -

Axioms Representing the Parse of "The eight-fifty to Montreal:"

(define-instance (-f#informrefl context) T#Informref
(R#agent clerki)
(R#object (f#SK0881 context))
(R#hearer-MA personi)
(R#plan (f#SK0883 context)))

* (ITYPE (f#SK0883 context) T#Action)
(define-instance (f#surfaceRequestl context) T#SurfaceRequest

(R#agent personi)
(R#object (f#informrefl context))Il
(R#hearer-SR clerki)) -

(ITYPE (f#trainl context) T#Train)
(ROLE (f#trainl context) (R#SKOOO2 context) (f#SKO081 context))
(ROLE (f#trainl context) R#departTime eightFifty)
(ROLE (f#trainl context) R#arriveStation Montreal)

Another Plan Axiom

(domainPlan (?g:T#GoTo
nil
nil

* ((at (f#agent ?g:T#GoTo) (f#object ?g:T#GoTo) (f#time ?g:T#GoTo)))
nil))

Figure 6.5: Other Axioms Needed for the Example *~

.4T -- -- .. .a , W. -%-.

4

4',

128

Figure 6.5 presents the rest of the axioms needed to understand the example transcript.

First, some more type axioms are given to supplement those of Figure 6.3. (As mentioned

above, to make the implementation a bit simpler some of the types are slightly different than

described earlier. Conceptually, any such differences are irrelevant). The axioms representing

the parse of "The eight-fifty to Montreal" are of more interest. (Recall that while an imple-

mented parser producing these axioms does exist, it is currently not hooked up to the plan ",,

recognition system). In particular, the second define-instance asserts that an instance of type

T#SurfaceRequest (defined in Figure 6.3) was observed, with person1 filling the agent role,

(f#informrefl context) as the action requested, and clerkl filling the hearer role, where

(f#informrefl context) is a specific instance of type T#Informref as defined by the first

define-instance. (The various functions such as (f#informrefl context) represent skolem func-

tions of the current plan context and will be fully explained in the next section.) Two of the

role fillers of the INFORMREF are not specified in the utterance and are filled in by skolem

functions (thus making the INFORMREF and embedding SURFACE-REQUEST skolem

functions). Skolem functions are used instead of variables because it is assumed that the

speaker has particular role fillers in mind (as when skolems are used instead of variables for
4','

pronouns and indefinite noun phrases used referentially). (f#SKO001 context), the object of

description asked for. is some role value of trainl (recall the discussion of the parse in Chapter

4). This fact is captured by the first role assertion, where

(ROLE object rolename rolevalue)

is a HORNE axiom that asserts that rolevalue fills the role rolename of object. Hence, the first

ROLE assertion states that the object of the INFORMEF, (f#SKO001 context), fills some role

(ROSKO002 context) of (f#trainl context), where the information known about train is

asserted via the last two ROLE assertions. Finally, (fOSKO003 context) refers to the object

plan. which at this point is also unknown except for its type (known via the definition of

T#Ilnformref a subtype of type T#O.eiaAction). The last axiom encodes the primitive action

.!,.

~,-. wU~ u,. ~~,u~'~Jww WVWWZWdWJW~ ~WV~.E~ V'IWWrW WVW ~'V L 4 *3* Pd j- ~. -MTV - r ..- 7 WW- M

129

GoTo as a plan schema (with only an effect explicitly listed).
|'

3.2. Meta-Planning Requirements

Ignoring consistency unification and xontext- dependent equality reasoning, the imple-

mentation of the plan recognition algorithm is also noteworthy for its representation and use of

meta-plans. For example, recall that to allow such plans about plans, a vocabulary for refer-

ring to and describing plans is needed. Figure 6.6 presents some of the axioms used to imple-

ment a preliminary vocabulary, based on the representation of plan schemas described above

(i.e. (planType (header (prerequisites) (decomposition) (effects) (constraints)))). Thus, the first

two axioms state that something is a plan if it is either a domainPlan or metaPlan. For exam-

pie, (plan ?p) can be proved by proving (metaPlan ?p). which can be proved by unification

*. with a meta-plan schema axiom, for example the ASK axiom of Figure 6.4. To talk about the

structure of plans we have the predicates defined by the rest of the axioms. Thus, ?term is a

parameter of ?action if- ,.

(plan ?p) < (domainPlan ?p)
(plan ?p) < (metaPlan ?p)

(parameter ?action ?term) <
(plan (?action . ?rest))
(ROLE ?action ?name ?term) r
(BOUND ?action)

(domainParameter ?action ?term) <
(domainPlan (action . ?rest))
(ROLE ?action ?name ?term)
(BOUND ?action)

(step ?action ?step) <
(plan (?action ?prerequisites ?body ?rest))
(MEMBER ?step ?body)

(constraint ?action ?constraint) <
(plan (?action ?prerequisites ?body ?effects ?constraints))
(MEMBER ?constraint ?constraints))

Figure 6.6: Sample of the Vocabulary Supporting Meta-Plans

e... 4

130

1) ?action is the header of a plan schema
2) the role ?name of ?action is filled by ?term
3) ?action must be bound to something other than a variable.

(The last condition is because we want our predicates to be satisfied by either existing or con-

structed plan instantiations). For example, suppose we have an axiom for a metaPlan with

header Al, where Al is equal to (C#T#Ask personl terml system planl). Then,

(prove (parameter ?action personl))

succeeds with

(parameter Al personl).

Similarly. ?step is a step of ?action if

1) ?action is the header of a plan

2) ?step is a member of the list of steps in the plan's decomposition.

The constraint axiom is analogous. Thus,

(prove (step Al ?step))

succeeds with both

(step Al (C#T#SurfaceRequest
personl
(C#T# lnformref system term personl planl)
system))

(step Al (C#T#Informref system term personl planl))

The constraints of a meta-plan use this vocabulary to specify explicitly how the meta-plan

and any object plan must be related. By specifying such conditions as constraints, the process

of constraint satisfaction can be used to either verify a meta-plan / object-plan relationship

with an existing plan. or to construct a new pbject plan satisfying the relationships. For exam-

ple. suppose that chaining from "When does the train leave?" leads to the recognition of the

clarification meta-plan

(C #T # Ask user time(train) system ?objectPlan).

4." :-"-:.-","- .'r: :.-'-:- -:':" -;-c-.:' ''..:': -'' :-':-- ,', (:':*g: ', " " ?' ..,:.-' .,' -",-; - -.;--I

131

Recall that before pursuing this hypothesis, the system has to first make sure that the plan's

constraints can be satisfied (using the constraint axiom of Figure 6.6 to access the constraint of

the meta-plan, as defined in Figure 6.4), i.e.

(prove (parameter ?objectPlan time(train))).

In other words, the system must make sure that at least one existing or expected plan has a

parameter that could be filled in by the time of a train. Using the GOTO domain plan schema

,. (recall Figure 6.5), one proof of the query would be

(parameter (C#T#GoTo ?agent ?location time(train)) time(train)).

In other words, the first subgoal of the parameter proof retrieved a variable of type GoTo (the

header of the GoTo plan schema). The second goal made sure that some role of this action

could have time(train) as a filler. The third goal then guaranteed that an instantiation of the

variable (which satisfied the preceding but no other requirements) would be returned by the

query. Thus, from a recognized meta-plan, general knowledge about likely plans, and require-

ments that any object plan would have to meet, the system can introduce an object plan

specified only as necessary to satisfy the constraint. Furthermore, if there were previous utter-

ances and the system had already expected a specific GoTo, say (C#GoTo user locationl

timel), the query would also return N1

(parameter (C#GoTo user locationI time) Lime),

assuming the consistent unification of the skolem function time(trainl) and the constant timel.

In this case the system finds an existing plan that satisfies the constraints, which is the interpre-

tation preferred by the coherence heuristics. In both cases, however, note that from a single

utterance the system not only recognizes a plan but also explicitly relates it to a context of

other plans.

. . .

132"

3.3. The Transcript

With the above background, the transcript illustrating the implementation of consistency

unification, and of course of the plan recognition algorithm, can now be presented. The com-

ments have been inserted for the purposes of this section and appear in italics. A few format-

ting changes have also been made for greater readability.

Script started on Tue Dec 4 18:45:16 1984
$ savedlisp

Load reasoning system, plan recognition algorithm, axioms for type hierarchy, plan Ii-
brary, and parser output

7. (converse)

User utterance: (f#surfaceRequestl context)
The utterance parse is input to the plan recognizer (currently by me)

Recognizing from:

Tree with root 4f#surfaceRequestl context)
Chaining begins from the observed utterance act (which if an abstract action is also the
root of a tree of subactions)

((C#T#SurfaceRequest personi (f#informrefl context) clerkl))
The constructor function printout of (f#surfaceRequestl context)

Current context is (f#surfaceRequestl context)
Contexts will be explained in the next section

Checking
(step ?planAct:T#Action (f#surfaceRequestl context))

Chaining begins by trying to find any plan (with ?planAct as header) that contains the
observation as a step (where step is an axiom appropriately defined on the plan data
structure)

Querying:
', (step ?planAct:T#Action (f#surfaceRequestl context))

First, the query is tried with regular unification. This is because once there is a stack.
the coherence heuristics will try to first match with existing plan instantiations. which do
not necessarily contain skolem functions

,* Querying:
* (step ?planAct:T#Action ?yeO123:T#SurfaceRequest)

Since at the beginning of a dialogue matching is done with plan schemas constants in
the input could not be unified with skolem functions ti the schemas. The query is adjust-
ed by replacing all constants (including skolem functions) with appropriately typed vart-
ables. Vow the skolem fuinctions in the schemas can be matched with the quer'.

.%

133 N

Query Result is:
(step ?planAct:T#Ask

(C#T#SurfaceRequest
(f#agent ?planAct:T#Ask)
(C#T#Informref (f~hearer-MA ?planAct:T#Ask)

Cf#obioct ?planAct:T#Ask)
(f#agent ?planAct:T#Ask)
(f#plan ?planAct:T#Ask))

(f#hearer-MA ?planAct: T#Ask)))
The plan schema with an action of type T#Ask as a header is found Any SurfaceRe-
quest which is its step must be a skolem function of the Ask, as shown. In other words
the agent role of any SurfaceRequest which is a step of an Ask plan is filled by the agent
of the Ask-.

Asserting: (ITYPE (f#y0124 context) T#Ask)
Now that the schematic knowledge suggests a candidate plan, an instantiation of such a-
plan is created (and believed to be the plan being executed by the speaker)

Current Context is (f#y@6124 context) O

Asserting:
(EQ (C#T#SurfaceRequest

(f#agent (f#yO6124 context))
(C#T#Informref (t#hearer-MA (f#yOBI24 context))

(f#object (f#yBB124 context))
(f#agent (f#y88 124 context))
(f#plan (f#y88124 context)))

(f#hearer-MA (f#yO8124 context)))
(f#surt'aceRequestl context))

The step of the candidate plan is "unified" with the step observed If the constant and
skolem are already equal fine. If not, they are asserted equal.

Asserting:
(EQ (f#agent (f#yB6l24 context))

(f#agent (f#surfaceRequestl context)))
Since the step is a complex type, every role of the candidate step is set equal to every role
of the observed step (and so on recursively, if the role itself is also a complex type)

Asserting:
(EQ (C#T#Inforniref (f'hearer-MA (f#y68124 context))

(f~object (f#yO6124 context))
(f#agent (f#y68124 context))
(f#plan (f~y86124 context)))

(f#object (f#surfaceRequestl context)))

Asserting:
(EQ (f#hearer-MA (f#y88124 context))

(f#agent (f#object (f#surfaceRequestl context))))

Asserting:
(EQ (f#object (f~y@0124 context))

(f#object (f#object (f#surfaceRequesti context))))

~. --. ~.- ~ TWN ~ W~ JU JW W~YxW ~ % ~.~ * . * ~. '2 * - . - _ -

1 "".

134

The hearer of the candidate Informref (the agent of the ASK) can already be proved

equal to the hearer of the observed Informef using the HORNE equality system. This is

because in each !nformref the hearer role is equal to the agent of the embedding Sur-
faceRequest. and the two agents were already set equal by the second equality assertion

above. Thus the equality assertion would be redundant and does not appear.

Asserting:
(EQ (f#plan (f#y80124 context))

(f#plan (f#object (f#surfaceRequestl context))))

Abductive unification has now been partially simulated Skolem functions in the query
were set equal to constants in the input, consistent with the typing information. The

heuristics now check the consistency of the equality assertions with the other information

known about the skolems (Le. whether the prerequisites. effects, and constraints involving

these skolem functions are consistent).

Checking the constraints of:
(f#y068124 context)

To be plausible, the constraints of any postulated plan must be satisfied

Checking
(domainParameter (f#plan (f#y80124 context)).

(f#object (f#y88124 context)))
The constraint of the plan instantiation (recall the Ask schema of Figure 6.4). Parameter
is further constrained to domainParameter, since desiring simplicity the recognizer first

tries to find a domain plan as object plan. This is just another heuristic controlling the

search.

Querying:
(domainParameter (f#plan (f#y08124 context))

(f#object (f#y88124 coitext)))
As above the query is first made using regular unification (and fails).

Querying:
(domainParameter ?y80175:T#Action ?y88176)

As above, the query is thus adjusted to enable matching with the schemas. However.
since the object of any Ask is equal to the object of the Informref of its SURFACE-

REQUEST (recall Figure 6.4), which in this case is equal to (f#SKO001 context) (re-

call Figure 6.5). the query will be more involved

and
((ROLE ?y88t77:T#Train ?y80180:T#U ?y88176))

Substituting an appropriate variable for the skolem function (f#object (ftyOO124 con-

text)) does not capture all the information known, since it's also equal to (f#SKO001

context), which is a role value of traini (recall the first role assertion of Figure 6.5). The

query must thus be adjusted to include this information. Vote how the added query also

has to be modified by replacing constants and skolems with 'variables (and possibly recur-

sively more queries).

and
(BOUND ?ye8176)

135

Another heuristic guiding the search: prefer the most constrained match for a skolem
function

Query Result is:
(domainParameter (C#T#GoTo ?x80387:T#Human

(f#departLocation ?y88177:T#Train)
?x9@d327:T#Time)

(f#departLocation ?y88177:T#Train))
As above an appropriate plan schema for the object plan is found An inslantiation will

be created and the ,ppropriate equalities asserted (This will be explained fully in the

next section).
Asserting: (ITYPE (f#y88181 context) T#GoTo)

Current Context is (f#y8e181 context)

Asserting: (EQ (f#y88181 context) (f#plan (f#y88124 context)))

Asserting: (EQ R#departLocation (R#SK0802 context))
(q- 1)(RETRACT (skolem (R#SK082 context) ?rest))

*. (r- 1)(RETRACT (skolem (R#SK0882 context) ?rest))

*. Asserting:
(EQ (f#departLocation (f#trainl context)) %

(f#object (f#y88124 context)))

Asserting:
(EQ (f#departLocation (f#trainl context))

(f#object (f#y86181 context)))

Checking the effects-false heuristic on -'

(f#y88124 context)
Now that the constraints are satisfled try another heuristic.

Checking
(knowref (f#agent (f#y68124 context))

(f#object (f#y8e124 context)) -

(f#plan (f#y98124 context)))

Querying:
(knowref (f#agent (f#y8 6 12 4 context))

(f#object (f#yS8124 context))
(f#plan (f#y@8124 context)))

Querying:
(knowref ?y88206:T#Human ?y09287 ?y00210:T#GoTo)

and
((ROLE ?y@0288:T#Train ?yO@209:T#U ?y@0207)) %

and
(BOUND ?y88 287)

136

Both the original and modified queries fail. The effect is thus false and the plan still rea-
sonable. Since there are no more heuristics to check, resume chaining (now from the
just recognized candidate plan)

Recognizing from:

Tree with root (f#yB6124 context) -

The candidate plan. followed by the constructor function notation of it (with its step) and

its object plan
((C#T#Ask personl (f#SKO8OI context) clerkl (f#yBO181 context))
((C#T#SurfaceRequest personi (f#informrefl context) clerki)))

Tree with root (f#plan (f#yO8124 context))
((C#T#GoTo (f#agent (f#y88181 context))

(f#SK0881 context)
(f#time (f#yB@181 context))))

4. Context-Dependent Reasoning

4.1. The Problem

Recall the analysis of the KLONE-ED dialogue as discussed in Chapter 4. After the

user's first utterance ("Show me the generic concept called 'employee'") the recognizer could ..

not determine whether an ADD-DATA or EXAMINE plan was being INTRODUCED. A

separate stack representing each hypothesis was thus created, each embodying its own set of

assumptions. For example, in one stack the object plan of INTRODUCE-PLAN contained

ADD-DATA. while in the other stack the object plan of INTRODUCE-PLAN contained

EXAMINE. Consequently, in each stack the observed SURFACE-REQUEST is equal to the

step of a different INTRODUCE-PLAN. The set of assertions maintained by a plan recogni-

tion system must thus vary with each stack postulated.

A context-dependent reasoning system e.g. a system that can remember multiple sets of

assertions at a time, is absolutely essential for any incremental plan recognizer since by

definition such recognizers maintain multiple hypotheses. As shown above, the processing of

"Show me the generic concept called 'employee" requires two sets of assertions. Subsequent

utterances will be processed with respect to each set (unless new information eliminates one of

4l

gL

137

the hypotheses).

A context-dependent system will also prove useful for certain types of non-incremental

plan recognition as well as for other types of hypothetical reasoning. Recall that in a non-

incremental algorithm a plan recognizer is still allowed to investigate several hypotheses,

although ultimately a best one will be chosen. If a reasoning system could only remember one

set of assertions at a time, every time a hypothesis was reconsidered its axioms would have to

be reasserted (and any other set of axioms retracted). Such a process would be very inefficient

if the recognizer needed to frequently switch between the hypotheses. •

4.2. Solutions

4.2.1. Theoretical

Hendrix [451 expanded the expressive powers of typical representation networks by allow-

ing networks to be partitioned. Among the capabilities such partitions provided was a natural

way of representing disjunction, since the information encoded by each disjunct could be

placed (and reasoned about) in a different partition. Such a system would therefore support

multiple sets of hypotheses.

Barton [101 has designed a reasoning system which, besides being a design variant of ear-

tier systems that record justifications for conclusions, also supports fast hypothetical reasoning

by remembering the consequences of several assumption sets at once. As in the RUP system

(Reasoning Utility Package (McAllester [61])). Barton's system (called XRUP) uses expression

grammars (McAllester [621) to compactly represent the consequences of equalities. Unlike

RUP, XRUP makes this representation primary, i.e. all statements are treated as equalities.

The grammatical formalism is then extended to provide the capabilities of RUP, as well as to

allow fast hypothetical reasoning. To do the latter XRUP distinguishes between permanent

facts and temporary assumptions, and allows sets of such assumptions to be associated with a

% .01 %t %-

16, -11a , - . ' , . - * - . - . . . - . - - , , , , - , h • ", . - , -,s !i]

p

138

data structure called a context-.

Since XRUP expresses all statements as equalities, the system is most suited for situations

that have a lot of equalities to begin with. Similarly, since the consequences of several assump-

tion sets are remembered rather than recomputed, the XRUP context mechanism is primarily

useful for systems that switch repeatedly among a small number of assumption sets (although

the tradeoff is a need for more memory, as well as a much slower addition time for new facts

since a new fact now has to be asserted in every context).

Currently Allen is investigating how to add an equality context mechanism to HORNE

161. He proposes building a hierarchical context tree allowing the inheritance (as in type

hierarchies) of equalities from less specific to more specific contexts. The mechanism HORNE

uses to implement equality reasoning is not grammar based, but instead manipulates disjoint

sets of equivalence relations using a union-find algorithm [1]. Since a context tree structure also

allows for disjoint sets the plan is to use an appropriately modified union-find algorithm.

Thus, although implemented very differently such a context mechanism would also allow

several sets of equalities to be remembered at once (and ultimately would be extended to all

assertions).

Recall the analysis of "Show me the generic concept called 'employee%" where the stacks

i.e. PLAN1 above PLAN2. or PLANI above PLAN3) are shown again in Figure 6.7.

Although the system realizes the user is INTRODUCING a plan involving DI, when querying

the plan libraries to see what the higher level plan is, two solutions are ultimately found. The

system thus needs to assert

EXCLUSIVE-OR (EQUAL(plan(Il),PLAN2). EQUAL(plan(Il),PLAN3)),

but HORNE does not allow disjunction. Making the equality context-dependent would solve

this problem since a context could be used for each hypothesis. Consider a representation of

the necessary equalities using the context tree shown in Figure 6.8. where CONTEXT-I and

PALp
"lb /A

D 6'U

vMWuWvWxVWhv jWTVrWU-v.i1W'R vT 7WbkTUV - k' - pWVVK-

139

PLAN 1 [completed]

11: INTRODUCE-PLAN
(user~systemD1,PLAN2 or PLAN3)

Ri: REQUEST(usersystem.DL)

Si: SUR FACE- REQ JEST(user~systemD 1)
[LAST]

PLAN2 PLAN3
Al: ADD-DATA(user, El. ?dama ?Ioc) El: EXAMINE(user, El)

Cl: CONSI1Y ASPECr P**'LIT
(user,EI) (system. ?data, ?1oc) Cl:- CONSIDER-ASPECI~user,El)

D1: DISPLAY(system,userEl) DI.: DISPLAYjsystem~user.El)
[NEXT] [NEXT]

Figure 6.7: The Need for Multiple Sets of Assertions

CONTEXT-O

RI = step(1l)

action (sl)= action(R1)=action(I1)
action =Dl=step(CI)

CONTEXT-i CONTEXT-2

Cl 1 step(AL1) Cl =step(EI)

plan(II) = PLAN2 plan(I1) = PLAN3

Figure 6.8: An Example Equality Context Tree with Inheritance

CONTEXT-2 consist of the equalities shown plus those inherited from CONTEXT-O.

-2171

140

4.2.2. Practical
.

Since contexts are currently not a part of HORNE such a mechanism had to be simu-

lated. This section will describe what was done and illustrate the algorithm with the transcript

of the processing of "The eight-fifty to Montreal."

In the plan recognition system described in this work, a new set of assertions will be

needed every time a HORNE query has multiple proofs. (Subsequent steps of the plan recog-

nition algorithm are then repeated for each result). Thus every time a query is made we want

to allow a hook for the creation of new contexts, where a context is just a subset of assertions

in the knowledge base. This can be done by creating a new context for every query result.

The assertions made as a result of the query are added to the new context and the assertions

from the parent context inherited. Thus, the plan recognizer will need to make assertions

using a new predicate with an explicit context parameter. The obvious solution would seem to

be a predicate that calls the HORNE assertion predicate, then associates the assertion with the

specific context. While all assertions explicitly added to the knowledge base by the recognizer

thus get indexed by a context, assertions internally added by HORNE do not (for example

equivalence class axioms created adding a HORNE equality axiom). Instead the existence of

the contexts must be compiled into the content of the. assertions, for example by making any

objects returned by a query a function of a context name.

For example, suppose the plan recognizer had partially recognized metaplanl but still

needed to find out what current plans would satisfy the requirements of the metaplan's object

plan (as in the KLONE-ED dialogue). A query such as

(prove (OBJECT-PLAN ?plan metaplanl))

might be made, which returns the two answers

((OBJECT-PLAN PLAN2 metaplanl)

(OBJECT-PLAN PLAN3 metaplanl)).

r , - .• i .

141

Assuming neither plan could be eliminated by the heuristics, the system would want to record

both hypotheses. i.e.

(assert (EQUAL PLAN -ROLE(metaplanl) PLAN2) context2)
(assert (EQUAL PLAN-ROLE(metaplanl) PLAN3) context3).

Each assertion is now associated with a different context. Unfortunately, the HORNE equality

system knows nothing about contexts and will create an equivalence class of (PLAN-

ROLE(metaplanl), PLAN2, PLAN3), losing the relevant context information. To solve this

problem, assertions such as the following are made instead:

(assert (EQUAL PLAN-ROLE(metaplanl) PLAN2(context2)))
(assert (EQUAL PLAN-ROLE(metaplanl) PLAN3(context3))).

From the point of view of HORNE this is still semantically incorrect since we now have the

equivalence class (PLAN-ROLE(metaplanl) PLAN2(context2) PLAN3(context3)). However,

the recognizer implementing such a context mechanism will know not to reason with assertions

involving different contexts. Thus, the system would be able to use the information that

PLAN-ROLE(metaplanl) equals PLAN2(context2) (if operating in context2) and PLAN-

ROLE(metaplanl) equals PLAN3(context3) (if operating in context3), but not the information

that PLAN2(context2) equals PLAN3(contexE3).

A side effect of this representation is that functions of contexts can also be used to

represent unknown (i.e. skolem) constants in the parse, for example pronouns. Each possible

resolution for the pronoun corresponds to an assumption made in a different hypothesis.

With respect to a few more details, as mentioned above a new context is a superset of the

parent context and will explicitly list the inherited, as well as new, assertions. By allowing new

assertions in a first query result to contain functions of the old context name, inherited asser-

tions can just be copied. However for the context of subsequent disjunctive results, functions

of a new context name will be needed and thus all inherited assertions re-asserted with func-

tions dependent on this new context. Finally, in the current implementation contexts are never

-C.,

Al

.N

142

actually deleted (a costly retraction process of all assertions containing functions of the

retracted context). Although such assertions are still in the knowledge base, since the recog-

nizer will no longer pursue the context the assertions will be ignored if retrieved.

4.2.3. The Transcript

This section will reiterate the above points using another train transcript. To avoid con-

texts in the last section, the previous transcript had the search constrained so that only one

query result was returned. In this transcript the queries will return two results. (Other tran-

scripts with more query results exist but are not shown since they are more cumbersome to fol-

low and do not illustrate any new points with respect to contexts). The trace will show how

from one initial hypothesis he system will create four (two from the original and within each

of these two more), although ultimately two will be eliminated by the heuristics.

Script started on Mon Dec 18 20:84:29 1984
S savedlisp

Axioms and algorithms loaded

6. (converse)

User utterance: (f#surfaceRequestl context)
All skolem functions in the parse are functions of the context "context r

Recognizing from:
Chaining begins from the utterance

Tree with root (f#surfaceRequestl context)
((C#T#SurfaceRequest personi (f#informrefl context) clerkl))
Current context is (f#surfaceRequestl context)

This statement means that the plan recognizer just created a context, reusing the name

"context. " associated with its initial hypothesis (the action observed by the parser). The

new hypothesis contains pointers to all the assertions of its context. Le.

(f#surfaceRequestl context) contains pointers to the seven parser axioms of Figure 6.5.

Since by using the name of the parent the functions do not need to be rewritten, the
pointers reuse the axioms of the parent context. Since no. new assertions are added in
this case. the new context contains only those inherited

Chaining is performed (using consistency unification as described in the last section).
Checking
(step ?planAct:T#Action (f#surfaceRequestl context))

5%

.'..'
; - ,.'..;;.-;.-..-,-:.':. -:., .v€.4- ,'-.';.-:'..,''.." ". .4 ." ." .';'.. ..-'.'."-., . .,,' r ,,.. ,. ,,:,.. ,:./,.;..,. d . ;:,,--,"7 ;" '

= = =' * 'F • ' | " - I 11I - - " 5

IF 7W-W'VFWF~~I 7

143

Querying:
(step ?planAct:T#Action (f#surfaceRequestl context))

Querying:
(step ?planAct:T#Action ?y88123:T#SurfaceRequest)

Query Result is:
(step ?planAct:T#Ask

(C#T#SurfaceRequest
(f#agent ?pl1anAct: T#Ask)
(C#T#Informref (f#hearer-MA ?planAct:T#Ask)

(f#object?planAct: T#Ask)
(f#agent ?planAct:TPAsk)
(f#plan ?planAct:T#Ask))

(f#hearer-14A ?planAct: T#Ask)))
Asserting: (ITYPE (f#y66124 context) T#Ask)

Since this query could have multiple results, a new context will be created for each. As
above~ the first context is again called "context" and will be a superset of the parent. The
ASK created from the retrieved schematic knowledge is then asserted into this new con-
text (simulated by making Ike ASK a fuenction of "context '2

Current Context is (f#yB8124 context)
Again, an explicit message indicating that a new context "context" has now been created
(i.e. appropriate axioms inherited) for the current hypothesis, the ASK meta-plan
(f~y00124 context):

* All new assertions are added to "context'
Asserting: '

* (EQ (C#T#SurfaceRequest
* (f#agent (f#yOB124 context))

(C#T#Informref (f#hearer-MA (f#yBB124 context))
(f#object (f#y80124 context))
(f#agent (f#y68 24 context))
(l'#plan (f#yBB124 context)))

(f#hearer-t4A (f#y@0124 context)))
(f#surfaceRequestl context))

Assert ing:
(EQ (f#agent (f#yBB124 context))

(f#agent (f#surfaceRequestl context)))

Asserting:
(EQ (C#T#Informref (f#hearer-MA (f#yB8124 context))

(f'#abject (f'#yOB124 context))
(f#agent (f#y88124 context))
(f#plan (f#y88124 context)))

(f~object (f#surfaceRequestl context)))

Asserting:
(EQ (f~hearer-MA (fffyO8124 context))

(f#agent (f#object (f#surfaceRequestl context))))

144

Asserting:
(EQ (f#object (f#y98124 context))

(f#object (f#object (f#surfaceRequestl context))))

Asserting:
(EQ (f#plan (f#y88124 context))

(f#plan (f#object (fosurfac-iReq;Wstl context))))
Only one solution for the query was found The plan heuristics evaluate the hypothesit

Checking the constraints of:
(f#y88124 context)

Check ing
(domainParameter (f#plan (f#y88124 context))

(f#object (f#yO@124 context)))

Querying:
(domainParameter (f#plan (fi~y88l24 context))

(f#object (f#y08124 context)))

Querying:
(domainParameter ?y8175:T#Action ?y08176)

* and
((ROLE ?y68177:T#Train ?y88188:T#U ?yO88176))

and
* (BOUND ?y99176)

Query Result is:

(domainParameter (C#T#GoTo ?xG80307:T7#Human
(f#depar-tLocation ?y80177:T#Train)
?x888327:T7#Time)

(f#departLocation ?y88177:T#Train))
Constraint satisfaction finds that the ASK postulated from the observed SUR FACE-
REQUEST could refer to the departLocation role of a domain plan GOTO

Asserting: (ITYPE (f#y88181 context) T#GoTo)

Current Context is (f#y88181 context)
As before, since the query could yield several hypothesis a new context gets created for
each. .

Asserting: (EQ (f#yGB181 context) (f#plan (f#y88124 context)))

Asserting: (EQ R#departLocation (R#SK0082 context))
(q- 1)(RETRACT (skolem (R#SKOGG2 context) ?rest))
(r- 1)(RETRACT (skolem (R#SKOGG2 context) ?rest))

Asserting:

(EQ (f#departLocation (f#trainl context))

145

(f#object (f#y88181 context)))

Query Result is:
(domainParameter (C#T#GoTo ?x8883B7:T#Human

(f#arriveLocation ?yOB177:T#Train)
?x888327:T#Time)

(f#arriveLocatton ?-y'8177:T#Train))
A second way to safisfr the constraint - ASK about the arrveLocahion role of a GOTO

* plan
Asserting: (ITYPE c80206 T#Context)

We now have a second query result. Le. our first branch in the context tree. Since this
context will not be a superset of all previous contexts (it is a sibling rather than descen-
dant of the context for the first query result), a new con text name is needed

Asserting: (ITYPE (f#p88208 c88296) T#GoTo)
As above an instantiation of the returned plan schema is created this time functional on
the new context "c00206."

Since the new context has a different name from its parent we can no longer inherit the
parent's assertions (expressed as functions of "context") verbatim. Instead we need to
reassert all such assertions with respect to "c00206. " Note that instead of sharing a
parent's context, each child explicitly list the parent's assertions in its own.

Asserting: (ITYPE (f#yBB124 c90206) T#Ask)
The previously recognized ASK meta-plan is postulated in this context.

The parser's axioms are re-asserted.
* Asserting:
*(ITYPE (f#SKO881 c88286) T#Anything)%N1

Asserting:
(skolem

(f#SKOBB1 c88286)
(ROLE (f#trainl c6806) (R#SK0002 c9@206) (1'#SKOBBI c89206)))

Asserting:
(define-instance (f#informrefl c88286) T#Informref

(R#agent clerki)
(R#object (f#SK0801 c00206))
(R#hearer-MA personi)
(R#plan (f#SK0003 c88206)))

Asserting:
(ROLE (f#trainl c88206) R#arriveStation Montreal)

The axioms of the parent context (of the ASK) are re-asserted
Asserting:
(EQ (C#T#SurfaceRequest

(f#agent (f#y09124 c80206))

V.p

4 -W

146

(C#T#Informref (f#hearer-MA (f#yO9124 c00206))
(f#object (f#yOB124 c80286))
(f#agent (f#yOO124 c86206))
(f#plan (f#yO6124 c86206)))

(f#hearer-MA (f#yO0124 c68286))) I'
(f#surfaceRequestl c88286))_

Asserting:
(EQ (f#agent (f#y08124 c88206))

(f#agent (f#surfaceRequestl c88286)))

Current context is (f#pB0288 c80206)
Now that all the axioms are inherited (ie. asserted into context "cO206"). we have
created an appropriate context for the new hypothesis and the new axioms can be assert-

* ed

Asserting: (EQ (f#pOB288 c88206) (f#plan (f#yBB124 c88206)))

Asserting: (EQ R#arriveLocation (R#SK082 c8286))
(q- 1)(RETRACT (skolem (R#SK002 c86826) ?rest
(r- 1)(RETRACT (skolem (R#SK0082 c8286) ?rest))

Asserting:
(EQ (f#arriveLocation (f#trainl c88286))

(f#object (f#yB8124 c80286)))

Asserting:
(EQ (f#arriveLocation (f#trainl c88206))

(f#object (f#pOB288 c88206)))

The query is complete and the recognizer now has two hypotheses (an ASK regarding an
arriveLocation and an ASK regarding a depart Location). All subsequent steps of the
plan recognition algorithm are repeated for each context.

Checking the effects-false heuristic on
(f#yOO124 context)

The heuristics are applied to thefirst ASK
Checking
(knowref (f#agent (f#yO8124 context))

(f#object (f#yB@124 context))
(f#plan (f#yBB124 context)))

Querying:
(knowref (f#agent (f#yOB124 context))

(f#object (f#yO8124 context))
(f#plan (f#yO8124 context)))

Querying:

. 'U

* ,. - ..

'Z r9 '%%V OIL &- Wn I- Z: K

147

(knowref ?y88259:T#Human ?y08268 ?yBB263:T#GoTo)

and
((ROLE ?y88261:T#Train ?yBB262:T#U ?y08260))

and
(BOUND ?y88268)

The query fails (i e. the effect is false)

Checking the effects-false heuristic on
* (f#y88124 c0086) -

The heuristics are applied to the second ASK (Le. in the second con text). As above, the
plan's effect wil.l be false and the hypothesis still viable. Since chaining has reached a
branch point we stop. However since the hypotheses involve meta-plans we recursively
recognize from each object plan (from each GO TO).

Recognizing from:
(From the object plan in the first context)

f ree with root (f#plan (f#y88124 context))
((C#rl#GoTo (f#agent (f#y88181 context))

(f#SK0881 context)
(f#titne (f#y80181 context))))

* Current context is (f#y8818l contex't)
Recall (f#y00181 context) is equal to (ft plan (ft y00124 context))

* Checking
(step ?planAct:T#Action (f#plan (f#y88124 context)))

* Querying:
* (step ?planAct:T#Action (f#plan (f#y08124 context)))

* Querying:
(step ?planAct:T#Action ?y00271:T#GoTo)

Query Result is:
* (step ?planAct:T#Board

(C#T#GoTo (f~agent ?planAct:T#Board)
(f#departLocation (f#object ?planAct:T#Board))
(f#departTime (f#object ?planAct:T#Board))))

The GOTO could be a step of a BOARD plan
Asserting: (ITYPE (f#y80272 context) T#Board) "

Current Context is (fffy80272 context)

Asserting:
(EQ (C#T#GoTo (f#agent (f~y00272 context))

(f#departLocation (f~object (f#y00272 context)))

148

(f#departTime (f#object (f#y88272 context))))
a4 (f#plan (f#y88124 context)))

P

Asserting: (EQ (f#trainl contex t) (t#.pbject (f#y08272 context)))

Query Result is:
(step ?planAct:T#Meet

(C#T#GoTo (f#agent ?planAct:T#Meet)
(f#arriveLocation (f#object ?planACt:T#Meet))
(f#arrivelime (f#object ?planAct:T#Meet))))

The GOTO could also be part of a MEET plan
Asserting: (ITYPE c8@297 T#Context)

With respect to our first ASK meta-plan hypothesis and its GO TO. we now have two
ways to chain in the object plan. Thus the parent context "context" splits into the chil-
dren contexts '"cnet (for the previous query result) and "c00297" (for this query
result).

Asserting: (ITYPE (f#p98299 c88297) T#Meet)
The second possible higher-level object plan is asserted into "c00297"

The assertions of the parent context are inherited i.e. reasserted into the new context
Asserting: (ITYPE (f#yO0181 c00297j T#GoTo)

Asserting: (ITYPE (f#y08l24 c00297) T#Ask)

4 Current context is (f#p80299 c00297)
Now that c00297 has inherited the appropriate axioms. the axioms related to the MEET
hypothesis can be asserted

The query chaining from GOTO returns no more results. Heuristics now evaluate each
result.

Checking the constraints of:
(f#y88272 context)

Heuristic processing proceeds in the first context. The heuristics verify' the constraints of
the object plan hypothesis BOARD.

Checking
(EQ (f#departStation (f#object (f#y00272 context))) Toronto)

The departStation of the train being boarded can be abductively made equal to Toronto.

Checking the constraints of:
(f#p88299 c00297)

Aa.JV

149

The constraints of the second object plan hypothesis (Le. of MEET) are checked

Checking
(EQ (f#arriveStation (f#object (f#p08299 c88297))) Toronto)

The arriveStation of all trains being met is Toronto.

Querying:
(EQ (f#arriveStation (f#object (f#p88299 c88297))) Toronto)

Querying:
(EQ ?yG8364:T#City ?y88365:T#City)

Query Result is:
(EQ ?y88365:T#City ?y8e365:T#City)
Asserting: (ITYPE (f#y88366 c88297) T#City)

Asserting:
(EQ (f#ye8366 c86297) (f#arriveStation (f#object (f#p86299 c88297))))

Assertion Fails: (EQ (f#y98366 c88297) Toronto)
The only way this can be proved is by asserting that the arriveStation (Montreal, from
the parse) equals Toronto. Only constants that are really skolem functions can be ab-
ductively unified with other constants. Thus, the constraint cannot be satisfied and the
context "c00297" no longer pursued

Itrapped - type "go" to continuel
I type "reset" to get to toplevel I
g~o

The next heuristic is applied in each context

Checking the effects-false heuristic on
(f#y@8272 context)

The heuristic is tried in the BOARD context. (The BOARD axiom has no effect
currently specified so this is trivially true).

Checking the effects-false heuristic on
nil

Since MEET has been eliminated there are no more hypotheses to check. We have now
concluded our first step of chaining from the GOTO object plan of our first ASK hy-
pothesis.

We now initiate chaining from a different GOTO. the object plan of the second ASK hy-

pothesis (context "c00206")

Recognizing from:

Tree with root (f#plan (f#y68124 c88286))
((C#T#GoTo (f#agent (f#p88288 c00206))

(f#SKO801 c88296) %
(f#time (f#p88288 c88286))))

%V1

|p

150

As abov, chaining from the second GOTO will lead to appropriately related BOARD

and MEET plans, with the latter again eliminated via constraint satisfaction.

The algorithm concludes with two hypothesis and creates a stack for each consisting of

the meta-plan pushed on top of its object plan.

Stack: ((f#y88124 context) (f#plan (f#y86124 context)) . s88479)
Stack: ((f#y@8124 c88286) (f#plan (f#y88124 c88286)) . s88480)(V
(((f#y88124 context) (f#plan (f#ye8t24 context)) . s@0479)
((f#y88124 c88286) (f#plan (f#y88124 c68286)) . s88488))

7. (...

18.1tDBye
S t,
script done on Mon Dec 18 22:26:13 1984

dd

5. The Implementation and the Plan Recognition Algorithm

-,%4

Although some of the details are different than in the analysis of "The eight-fifty to

Montreal" given in Chapter 4, the implementation still illustrates the necessary points with

respect to the plan recognition algorithm. For example, the implementation shows how the

system performs forward chaining via HORNE queries. At the beginning of a dialogue the

system has only schematic knowledge regarding expectations and thus all queries are made to

the plan libraries. Because any plan recognizer initially must chain using schematic knowledge,

an implementation of consistency unification could not be avoided. Furthermore, to consider

multiple chains through the search space the context mechanism was also necessary. Each

hypothesis constructed from the query is then evaluated by heuristic processing. In particular.

the implemented heuristics eliminate plans with unsatisfiable constraints and already satisfied

effects, and assert more equalities between constants and skolem functions. The implementa-

tion of constraint satisfaction was particularly important since it illustrated how at the begin-

ning of a dialogue object plans are created from schematic knowledge via satisfaction of a

meta-plan's constraints. The chaining process is repeated until the search produces either no

more, or more than one, hypothesis. At this point, if any hypothesis is a meta-plan the incre-

4.:

4': , . , . . -. . ., - - . .-.. ., .'

MUTT M -77 TI TAb T rx 7- _. W1t- -k .

151

mental recognition algorithm is recursively called on the object plan. Once all such recursive

calls are completed a stack is constructed for each hypothesis.

Currently multiple sentences are not processed. With respect to the plan recognizer the

only difference would be the implementation of more heuristics, i.e. the coherence heuristics

that use the stack. With one sentence there is no previous stack and only the heuristic prefer-

ring the schemas needed to be implemented. Implementing the stack heuristics would just

mean that more specific HORNE queries would be constructed, i.e. a query would specify

4 whether the search is made with respect to the plan stack or the plan library and whether the

plan being searched for can be type constrained (as when by the first coherence heuristic we

want to search for only CONTINUE-PLAN meta-plans). Implementation of the discourse

processing (i.e. focus of attention and clue words) would also involve only the formulation of a

more constrained query. For example, if via the coherence heuristics the query were already

constrained to search using the stack, the focus information encoded in the predicates LAST

and NEXT suggests where in the stack to search. If a clue word is noted, the plan being

searched for by the query would be type constrained to be the type of plan correlated with the

clue word (a simple table look-up).

Finally, as noted above the structures used in the implementation are simpler than those

used in previous chapters. For example, INTRODUCE-PLAN and IDENTIFY- ,. !

PARAMETER were combined and implemented as ASK so that only one (as opposed to two)

recursive recognition process was needed. However, even with this simplification the imple-

mentation still illustrates the interruption of a domain plan. Also, although the simplified (and

less general) ASK involves the satisfaction of only one (rather than many) constraints, the point

that constraint satisfaction creates object plans is still made.

There were several reasons for making such simplifications, as well as for using simula-

tions rather than implementations of existing technology (as done with the parser). While in

['

• " "" """ """ " "" "' •"" " "'"-' .",r ,' "''" . ". ". ", ","," ":,-'" '" .. 2..,,. . ", '."",'','',r .' .'

152

theory HORNE was an ideal reasoning system, in practice HORNE was not. The role (i.e.

complex typing) mechanisms of HORNE were still rather experimental and contained many

bugs. Also, the reasoning system (particularly the equality reasoning) was fairly slow, and the

implementation of the extra knowledge repiesentaiion mechanisms added even more overhead.

For example, a single plan recognition run from a single utterance, unintegrated with any other
I.I

system components and limited to only single query results, took approximately one and a half

hours on a Vax 750.

6. Summary

The purpose of this chapter was two-fold. At one level the desire was to show how work

in plan recognition can influence work in knowledge representation, since any plan recognizer

will need to perform types of reasoning not generally supported by current knowledge

representation systems. In particular, consistency unification and context dependent equality

reasoning were discussed and'shown to be required by in *any plan recognition system. At a

more practical level, the chapter illustrated how such issues could be dealt with (i.e. imple-

mented) using the existing capabilities of a typical reasoning system such as HORNE. Algo-

rithms simulating such capabilities were described and illustrated via sample plan recognition

transcripts from the train domain. Furthermore, with the knowledge representation aspects of

the transcript explained, the plan recognition points illustrated by the implementation could be

summarized. In particular. the implementation supported the claim that from a single utter-

ance multiple plans and their relationships (i.e. meta-plans and associated object plans as

related by the constraints) could be incrementally recognized and heuristically pruned.

The first part of the chapter showed how in the course of plan recognition objects that

were represented as skolem functions would need to be set equal to constants. Three cases

where skolem functions arose in the representation (schematic knowledge, pronouns, and

referential uses of indefinite descriptions) were illustrated using the examples of the previous

-15'--..-

153

chapters. A method of matching such skolem functions with constants in HORNE (similar to

making non-monotonic equality assertions) was then presented, using standard unification but %

modifying the associated query and result.,.

The latter half of the chapter concentrated on context-dependent reasoning systems

(including equality). Such systems are useful for tasks involving hypothetical as well as dis-

junctive assertions. A method for simulating the existence of multiple sets of assertions using a

context tree was discussed.

.5.

, .i

".l',' % ' % -'- % % % '' ". - " "' " % ' " "b % " ". ,, "."- '- - ." " "- "- ". "-,
' , -

"" "''- " '- " ' "'°".".-" "'° '-5

I"%-
dA

Chapter 7

Comparisons to Related Work

1. Plan-Based Approaches to Natural Language Processing

1.1. The Early Work
SJ ,

1.1.1. Planning and Recognizing Speech Acts

Recall that Allen, Cohen, and Perrault developed a framework for the understanding [31

and generation [221 of single utterances based on the idea that acts of communication were ,

planned in order to achieve specific goals. Their approach combined the insights of speech act

theory (Austin [91, Grice [351, Searle [841) (where utterances were viewed as actions achieving
.,.

intended effects) with the computational formalisms of artificial intelligence work in robot
-.4'

problem solving. In other words, Allen, Cohen, and Perrault argued that linguistic actions (i.e. .-

utterances) were planned in order to change the beliefs of a hearer just as physical actions

(such as stacking blocks) were planned in order to change the state of the physical world.

For the purposes of this section. Allen and Perrault's work [31 on speech act recognition

will be illustrative. Allen and Perrault showed how recognition of a speaker's goals in the

domain of discourse could explain the generation of helpfl responses (responses providing

more information than requested) as well as the understanding of indirect speech acts and sen- f.

tence fragments. Such linguistic behavior had proved problematic for previous approaches.

154 %:

-S..-.

155

For example, Figure 7.1 presents their analysis of the following example of helpful behavior:

P: When does the Montreal train leave?

C: 8:50. Gate 7.

,.'

User BOARD train

prerequisites '"

User AT departure time AT departure location

necessary knowledge for necessary knowledge for .:

User KNOWs departure time User KNOWs departure location

effect

System INFORM Uer of departure time

effect

User REQUEST that
System INFORM User of departure time

Figure 7.1: Plan Recognition and Helpful Behavior

From an initial speech act parse of the passenger's utterance (i.e. "User REQUEST that System

INFORM User of departure time"), the clerk uses the representation for the speech act and

domain plans, bottom-up plan representation based and knowledge based rules of inference,

and top-down knowledge of likely domain goals (e.g. boarding or meeting trains) to infer that

the speaker's underlying goal is to board the Montreal train. This plan is then examined for

both explicit and implicit obstacles (here that the hearer believes that the speaker doesn't know A

the train's time or location, respectively), forming the basis for the clerk's response.

The major difference between Allen and Perrault's approach and the approach of this

dissertation (excluding of course differences arising from understanding single utterances as

opposed to dialogues) is that the new model has a hierarchy of plans, whereas all the actions in t

%g

... -. - -. - - -% -. -.:.!%

156 .

Allen and Perrault are contained in a single plan. This has enabled the simplification of the

notion of what a plan is and the solving of a puzzle that arose in the one-plan systems. Recall

Figure 7.1; plans recognized in such systems were networks of action and state descriptions

linked by causality and subpart relationship (i.e. prerequisite, effect, and decomposition rela-

tionships), plus a set of knowledge-based relationships. This latter set was not categorized as

either a causal or a subpart relationship and so needed a special mechanism. Incorporating this

into the action definitions would have required having a knowledge precondition for every

term in every action. The problem was that these relationships were not part of any plan itself,

but a relationship between plans. In the new system this relationship between plans is explicit,

eliminating the need for the plan recognizer's special mechanism. For example, the "knowref,"

"know-pos" and "know-neg" relations of Allen and Perrault are modeled as constraints

ietween a plan and a meta-plan. i.e.. the plan to perform the task and the plan to obtain (i.e.

clarify) the knowledge necessary to perform the task. In other words, the current work argues

for the existence of not only domain intentions, but also higher level intentions indicating how

all the intentions fit into the whole plan execution process. In more traditional communicative

terms, the higher level intentions indicate how an utterance coheres with the previous

discourse.

Regarding the analysis of indirect speech acts (ISA), in the present system a set of

decompositions correspond to the conventional ISA. These are abstractions of inference paths

that could be derived from first principles as in Allen and Perrault. Similar "compilation" of

ISA can be found in Sidner and Israel [861 and Carberry [151. It is not clear in those systems,

however, whether the literal interpretation of such utterances could ever be recognized. In their

systems, the ISA analysis is performed before the plan recognition phase. In the current sys-

tern. the presence of "compiled" ISA allows indirect forms to be considered easily, but hey are

just one more option to the plan recognizer. The literal interpretation is still available and will

be recognized in appropriate contexts. As far as the task is concerned, whether a request was 4,,
• ,',.

157

indirect or direct is irrelevant. For example, if we set up a plan to ask about someone's

knowledge (say, by an initial utterance of "I need to know where the schedule is incomplete"),

then the utterance "Do you know when the Windsor train leaves?" is interpreted literally as a

yes/no question because that is the interpretation explicitly expected from the analysis of the

initial utterance.

1.1.2. Understanding Discourse

Work in story understanding emphasized the importance of knowledge structures such as

scripts [821, frames [661 and plans [821. For example, Cullingford's [271 computer program

SAM (Script Applier Mechanism) used scripts, stereotypical knowledge structures, to efficiently

guide the understanding process. By providing extremely strong predictions the scripts greatly

limited the drawing of inferences, although the tradeoff was that only stories corresponding to

the stereotype could be understood. To understand novel stories, Wilensky [961 developed a

story understanding program that reasoned about the situations of the stories in terms of the

goals and plans of the characters. His computer program PAM (Plan Applier Mechanism)

illustrated an algorithm for detecting and processing various types of goal-based stories, using

knowledge about what goals existed, how goals were fulfilled, and how goals interacted. By

adding bottom-up reasoning capabilities, his system could use small knowledge structures to

construct script-like explanations. While Wilensky illustrated the importance of cognitive

modeling as a way of efficiently inferring story coherence, he omitted most details regarding
4.

how this understanding process was actually done. Also, the work ignored most communica-

tive issues. No connections were made between the underlying intentional structure and sur-

face linguistic phenomena of the stories. Also, the work concentrated on recognition of the

goals of the characters in the story, rather than on recognition of the goals of the "speaker"

(i.e. of the author of the story). Finally, although Wilensky's stories illustrate many interesting

goal interactions, goal suspension and resumption are not among them.

w..

158

As discussed extensively in the previous chapters, Grosz [371 noted that since in task-

oriented dialogues discourse structure followed the task structure, task structure could be used

(along with surface linguistic phenomena) to construct an underlying discourse structure.

Thus, for task-oriented dialogues containinjfsubtsk subdialogues the task structure performed

a function similar to that of the scripts and plans in story understanders. Grosz, however, was

primarily concerned with how the recognized discourse structure could then be used to account
4L

for linguistic phenomena. Explication of the recognition process was not of primary concern.

1.1.3. Plan Recognition for Other Tasks

The assumption that agents rationally achieve goals via plans has also proven to be useful

outside the area of natural language understanding. For example, Genesereth [31] argued for

the use of plan recognition in automatic consulting systems. He proposed a process in which a

.consultant would first reconstruct a user's plan (which the user believed to be correct), then

analyze the plan for.possible errors and thus the user's misconception. Plan recognition was

responsible for the reconstruction phase and was viewed as the process of "parsing" a user's

inputs, using a problem solving algorithm as grammar. A library of partial parses of both

correct and incorrect plans could also be used to heuristically guide the process. Genesereth's

* plan recognizer thus had much in common with previously discussed efforts such as Allen and

Perrault's [31, for example using plan-based rules of inference to search for a plan connecting

goals and actions. However, there were several important differences as well. Allen and Per-

rault were concerned with not only recognizing, but also choosing between, alternative possible.1

.1 goals. In Geneserth's work the user's high level goal was already known. Furthermore. instead

of pruning or rating various partial solutions during the recognition process. Genesereth simul-

.5 taneously explored all possibilities until any solution was found.

A psychological concern with the process of plan recognition led Schmidt et al [831 to

develop BELIEVER, a plan recognition system that inferred a structure of underlying inten-

,2"

5%

-9'

1- '-

i-';-''-, -;" ";-;,.':k ;"-<.';--'',.-;'." .'; ..,,." ".". .",",.-.-.,',.-,-:-',"-.-. %".'-.",.-. '.".', .,.." " ." :: ",,, .5 "

159 0:

tions from (a simple linguistic description of) a sequence of physical actions. Their theory was

based on results of psychological experiments and encoded a hypothesize-and-revise algorithm.

In particular, the plan recognition process consisted of. setting up an expectation structure,

matching observed actions against actions in the expectation structure, and revising the struc-

ture when its expectations are not matched. In turn, the revision process should recognize that
.-.

revisions are needed, decide upon a set of revisions, and determine which revisions are

effective. Since there are typically many ways to explain unexpected input. Schmidt et al.

replaced an active control strategy choosing a revision with a simple wait and see strategy. This

work in "story" understanding revolved around the desire to use and modify a single plan

structure to explain variations of observed actions. The recognition algorithm of BELIEVER

was particularly simple in its bottom-up processing. Recognition typically consisted of directly

matching an observation and an expectation (or upon failure, a single revision). Unlike Allen

and Perrault or the current work, there were no plan inference rules or heuristics controlling a

much more complex search. Like PAM, BELIEVER performed keyhole recognition (as

opposed to the intended recognition performed by the systems of Allen, Cohen, and Perrault).

In other words, since the actions were not performed with the intent of enabling their recogni-
.

tion, assumptions based on the pragmatics of intended communication did not apply. For

example, while BELIEVER's wait and see strategy was similar to the incremental control of.."

dialogue systems, the former lacked the philosophical justification of the latter. Unlike SAM

and PAM, BELIEVER was concerned with the accommodation of plan structures to the input.

as opposed to the assimilation of the input to plan structures. This concern with plan revision

overlaps somewhat with this work's concern with plan interruptions corresponding to correc-

tions. However, as mentioned above the BELIEVER system's top-down "recognition" process

does not address the issues of inference and search that characterize the current endeavor.

160

1.2. Discourse Extensions

Sidner [86, 90] outlined an approach that extended Allen and Perrault in many of the

directions pursued in this work. For example. Sidner was concerned with understanding dialo-

gues both intentionally and through the use of surface linguistic phenomena. She suggested a

solution to a class of subdialogues that corresponded to debugging the plan in the task domain

by allowing utterances to talk about, rather than always be a step in, task plans. Unfortunately, .

although her work allowed for multiple plans to be recognized from a given utterance such

plans did not appear to be related in any systemic way. Also, her plan recognition system was

never actually coordinated with the recognition of linguistic discourse markers.

The meta-planning based model of this dissertation grew out of many of Sidner's sugges-

tions as well as earlier work at Rochester [4.56], and can account for the debugging subdialo-

gues Sidner discussed as well as other forms of clarification and correction. Since Chapter 4

presented an analysis of Dialogue 2, a minor variant of one of Sidner's dialogues, a comparison

with Sidner's analysis will illustrate the advances of the meta-plan system. Consider the utter-

ance " I can't fit a new ic below it." Upon receiving the parser's analysis of this utterance.

Sidner's system uses a default rule that maps "I can't x" to "I want x." Basically this just

retrieves the conventionalized meaning of the indirect speech act, which is then recognized as ?

part of a plan structure in the normal way. However, there is another plan that is also trig-

gered by the original utterance: if a user can't do something he or she wants, the user will exe-

cute a debug plan, temporarily suspending the blocked plan. Unfortunately, the details of how

these two plans are related and how the suspension is managed are left unexplored. The

meta-plan mechanism details the recognition of multiple plans and their relationships and pro-

vides a mechanism for managing topic suspensions and resumptions in the general case. For

example. we saw the use of constraints to explicitly specify meta-plan/object plan relationships,

and the use of constraint satisfaction to initiate recognition of an object plan from a meta-plan.

Finally. although Sidner did not integrate her observations on discourse markers with her plan

?-:

161

recognizer, she did claim that interrupting relationships between multiple plans could not be

recognized without such explicit discourse clues. There was one exception to this, which could

be recognized using (previously unnecessary) conventions based on turn-taking. This is a very

different claim from that made in this disirtation, where totally plan-based mechanisms for

the recognition of multiple plans and their relationships were developed (and which could be

coordinated with linguistic markers when available).

Carberry [15-17] was concerned with building a pragmatic component for a robust

natural language interface. In particular, she developed TRACK, an incremental plan recogni-

tion system that could hypothesize and track task-level goals during information-seeking dialo-

gues [15], then used this system to process pragmatically ill-formed input [161 and intersenten-

tial ellipsis [17]. TRACK extended the work of Allen and Perrault [3] by both processing

dialogues rather than single utterances and manipulating more complex domain plans. In

many ways TRACK was thus similar to the work of Sidner, ignoring issues of plan debugging.

Carberry developed a set of heuristics based on principles for coherently shifting focus, since in

information-seeking dialogues the underlying plan was not executed during the dialogue and

focus shifts were thus not tightly constrained by the task structure. She then used these heuris-

tics to update the context model after a new utterance. The context model was used to process

utterances that violated pragmatic constraints by providing expectations useful in suggesting

revisions to the query. The context model, supplemented with knowledge of discourse goals,

was also used to process examples of intersentential ellipsis that could not be explained using

the explicit information in the preceding utterance.

Carberry's tracking mechanism was solely intentional, i.e. it did not use any linguistic

clues such as mode of reference or discourse markers to aid in its recognition task. Further-

more, information was always gathered with respect to a single plan. so there was no concern

for recognition and suspension of plans. However, her emphasis on moving around in rather

than following a task structure was unique and inolved similar ideas of classes of coherency.

,""

5 .2, kY L ,XC

162

Her use of a plan context to handle violations of pragmatic constraints (i.e. pragmatic

overshoot) was also novel. Unfortunately, for the problem of ellipsis resolution her theory

proved inadequate and had to be supplemented with totally new knowledge and mechanisms

regarding discourse goals that could be acconplislied via elliptical fragments. For example, the

goal to "Obtain-Corroboration" (elaboration and justification) would arise when the

information-seeker was surprised: this goal was sometimes accomplished via an elliptical utter-

ance. Her discourse goals were thus in the spirit of grammars of rhetorical predicates, although

not enough details were provided to indicate if and how the problems with such approaches (as

discussed in Chapter 3) were avoided. This is in contrast to the current work, where
-',I

knowledge about a more general set of discourse goals in the form of meta-plans was incor-

porated into the theory from the beginning, enabling the use of a single framework to both

tiack plans (including interruptions of plans) as well as process elliptical utterances.

Grosz [38], Levy [54], and Appelt [8] also advocated extension of the planning framework

to integrate multiple perspectives, including both discourse and task goals. For example, Levy

developed an initial formulation of communicative goals and strategies for processing narrative

within a larger model involving planning of multiple goals.

Some of these goals (,iled IDEATIONAL goals) are concerned directly with the communica-
tion of these ideas or propositions: some (called TEXTUAL goals) are concerned with the
weaving of these ideas into a coherent text: and still others (called INTERPERSONAL goals)
deal with presentation of self in relation to the hearer, with matters of status and attitude. [54]

(Levy's terms were borrowed from Halliday [42]). Appelt [8] concentrated on developing a

planning formalism that could support the generat.on of utterances satisfying such multiple

goals. For example, consider an utterance such as "Tighten the screw with the long philips

screwdriver."

[This utterance could] realize several illocutionary acts. like a REQUEST to tighten thc screw

and an INFORM that the tool for tightening the screw is the long philips screwdriver. Given
that the speaker knows that the hearer doesn't know that a p rticular screwdriver is a philips
screwdriver, the utterance could in that case also serve to inform the hearer that the long
screwdriver is a philips screwdriver. This is contrasted with the case where "long" is used to
distinguish long versus short. [8]

oP

-,-N

.- -... -. .- .. -- -.--f V.-7 .-. ------ --'.-- .. - . ., ,, -, ., ..,, , -- ' . - -.........-.... ,- " ""'"" """"" "'.. •,-. :"".,.".""""" ,, :

- - -- - .- - - - . ,.,. * . ,w-.

4J

163

If formulated as an indirect speech act social goals such as politeness could also have been

satisfied. Similarly, the choice of referring expressions and syntactic structure reflected goals

regarding the shifting of focus. Although Appelt's work was notable for its formalism based on

a possible-worlds semantics, as well as for integrating the planning of surface syntactic forms

and speech act goals, he did not really address the issues of concern to the current work. For

example, his planner did not generate extended discourse in any general sense. Multiple sen-

tences were only generated when the planner could not satisfy its goals in one sentence. There

were no global discourse goals: only immediate focus (Sidner [88]) was used to facilitate refer-

ence. Appelt himself points out the need to integrate results such as those of McKeown [641

and Reichman (761.

The ARGOT dialogue understanding system (41 included an effort to incorporate global

discourse perspective into the plan-based framework of Allen and Perrault [3]. That early work

has led to the development of much of what has been presented in this dissertation.

Grosz and Sidner [401 are currently integrating work on focusing in discourse and plan

recognition. They argue that to adequately explain the discourse phenomena of clue words,

referring expressions, and interruptions, discourse structure must explicitly be broken down

into at least three distinct (but interacting) components: the structure of the.sequence of utter-

ances (a linguistic structure), the structure of intentions conveyed, and the attentional state at

any given point. For example, Grosz and Sidner carefully differentiate between four classes of

interruptions, showing how their theory can be used to explain aspects previously overlooked.
,1

Although the current work does not attempt a comprehensive investigation of interruptions, t

the theory of this dissertation seems to be consistent with many of Grosz and Sidner's ideas.

For example, the three components of Grosz and Sidner's theory appear to have loose corre-

lates in the current work's dialogues, set of recognized plans, and the stack of such plans

(although Grosz and Sidner do not distinguish between intentions and meta-intentions). The

matter of emphasis is quite different, however. Grosz and Sidner do not yet address the

164

process of actually recognizing their structures of intentions (e.g. identifying the plan algorithm

and the information it uses), or show how the theory could be used to construct a discourse

processing system.

Finally, the work of Goodman [321 demonstrated the use of multiple perspectives in a

robust natural language understanding system. For example, [331 details a system that uses

knowledge about language and the world to detect and repair by relaxation potential misunder-

standings due to reference identification failure during task-oriented dialogues.

1.3. Planning Extensions

Cohen and Levesque (261 as well as Kautz [511 are interested in developing formal foun-

dations for systems (such as the current one) that view language as planned behavior. For

example, Cohen and Levesque use a theory of rational interaction, expressed in a logic based

loosely on possible-worlds semanticl, to derive the basis of a theory of communication. This is

in contrast to the approach typically taken, where speech acts are considered theory primitives

and thus need to be explicitly recognized. Kautz is concerned with formalizing the process of

plan recognition by concentrating on the non-monotonic aspects of such reasoning. He

develops a formal treatment of a simple case of (non-linguistic) plan recognition using the for-

mal techniques of circumscription and minimal entailment. For example, he argues that a

small set of general assumptions underlie the non-monotonic inferences performed in plan

recognition. By characterizing these assumptions in terms of the minimization of certain predi-

cates, Kautz is able to systematically augment the axioms of a theory of planning to yield just

the implications desired for plan recognition. Plan recognition thus becomes the process of

deriving a set of minimal models containing the original observations. Kautz is currently

investigating how to extend his theory to recognize plans with more complex internal structure :"

as well as higher-order plans such as meta-plans. While these rigorous formal treatments are

very important, the trade-off is a return (at least for the near future) to the analysis of

.. ,-

165 1

extremely basic examples.

Pollack [731 is also concerned with improving the foundations of plan inference systems.

She is concentrating on reformulating the underlying plan representations typically used in

order to support more general forms of plan inference. For example, she notes that in ques-

tions to experts people often do not really know how to achieve their goals, and thus may refer

to non-realizable plans. To enable the recognition of such plans, Pollack is formalizing a more

expressive representation of plans based on philosophical accounts of action and intention. My

work has implicitly assumed appropriate inputs and has thus not yet had to address these

issues.

Many researchers in artificial intelligence have found it useful to incorporate meta-

knowledge into their systems, although exactly what this term means as well as how such

knowledge is used varies greatly from system to system (see, for example, the survey paper of

Aiello [2]). Within the area of natural language processing. Woolf and McDonald [99], Car-

* bonell [181 and Wilensky (97] have suggested the use of meta-knowledge. Woolf and %

McDonald are concerned with the generation of tutoring discourses that are grammar-based

and context dependent. Meta-rules implement a context-dependent control strategy allowing

digressions from a default rhetorical grammar. Carbonell noted that any comprehensive theory

of discourse must address issues of meta-language communication as well as integrate the

results with other discourse and domain knowledge, but did not outline a specific framework.

This is in contrast to the computational model of the current work, which addresses many of

these issues for an important class of dialogues. Wilensky has also shown how meta-planning

knowledge (defined to mean general knowledge regarding a planner's goals. used during the

construction process of any plan) can be used by plan-based natural language systems. For

example. an instance of meta-planning knowledge is the fact that one way a planner can

resolve a goal conflict is to abandon the less important goal. Such knowledge is necessary to

explain observations that arise from the interaction of multiple goals. For example, meta-

4 4'- 4 4 -

W-7 -- V----

166

planning knowledge could be used to explain the observation that John is listening to the news

on the radio as John's resolution of his conflicting goals to buy a newspaper and to stay home.

Making meta-planning knowledge explicit also enabled a more general resolution of some trad-

itional planning problems, for example the-use of special purpose mechanisms such as critics

f80] to resolve goal interactions introduced during the process of hierarchical planning. This

was because uniformly representing planning and meta-planning knowledge enabled use of the

same planning and recognition processes for both goals and meta-goals. This was the strategy

taken in the current work as well. Unfortunately, Wilensky's work suffered from the problems

of his earlier work - while his taxonomies were excellent, the particular details of his theory

were never well-specified. His work also differed from the current work in matter of emphasis.

Wilensky's meta-plans were used to handle issues of concurrent goal interactions, while the
,J.

theta-plans of this work were used to handle issues of hierarchies of goals.

2. Linguistic-Based Approaches to Discourse Processing

In addition to the above work, researchers have also addressed issues of discourse by

developing computational models expressed solely in linguistic terms. For example, recall

many of the results presented at length in Chapter 3. This section will briefly review and ela-

borate on the points made at that time.

Many surface linguistic phenomena could be explained in purely linguistic terms. Recall

that viewing a discourse as a hierarchical structure of units of utterances, with units varying in

the attention paid to them during the course of a dialogue, could explain phenomena such as a

mode of reference and tense (Reichman f761), use of clue words (Reichman (761, Polanyi and

Scha [711, Cohen [251). and so on. For example, choice of reference reflected which units of a

discourse were currently being discussed, while clue words signaled shifts and relationships

between the units. Typically linguistic (rhetorical) relationships such as "evidence." "support."

"interrupt." etc. connected the units. as in the theories of Reichman [761, McKeown [641, and

.

5A

167 .*

Cohen [241. As discussed above, Grosz's work [371 used the single relationship "subtask" and

was thus an exception, although the tradeoff was analysis of only a limited class of task-

oriented dialogues. The use of such rhetorical relationships was also supported by other cri-

teria. For example, Hobbs [46] argued tfiat suich relationships were necessary in order to

explain the underlying coherence of a discourse. Furthermore, he noted that as a side-effect

of a hearer's recovery of these implicit relationships, issues of coreference were often resolved. .,

Work in generation by McKeown [641 and Mann [601 showed how predefined structures of

such relationships could be paired with discourse purpose, enabling effective (and coherent)

organizations of text that did not just mirror the structure of the knowledge conveyed.

Reichmans's grammar [76] for well-formed discourse and Woolf and McDonald's [991 rhetori-

cal grammar for tutoring discourse reflected similar ideas.

While such concepts were intuitive they were extremely difficult to computationally for-

malize. Furthermore, the set of primitive relationships varied greatly form researcher to

researcher and were thus a bit too subjective and intuitive. Most seriously, theories based on

such predicates generally presupposed the computational recognition or generation of such

predicates from linguistic input. For example. Cohen used an evidence oracle, Reichman [77]

is waiting for the development of extremely sophisticated semantics modules, and Mann [601

notes that his theory is currendy descriptive rather than constructive. McKeown's imple-

mented system was a notable exception, although her predicates had associated semantics

expressed in terms of the data base system and were thus not particularly general. These

observations have led to the strategy of the current work, i.e. the reformulation of such notions

in terms of (meta) planning and speech acts. This enabled a plan recognition algorithm to pro-

vide the link from the processing of actual input to recognition of underlying theoretical struc-

tures. It also enabled the earlier work on plan recognition to be combined with the associated "

surface phenomena results of the more linguistic works.
'- SP

168

Linguistic analysis of a very local discourse context was also found to be useful for the

explanation of surface phenomena. Sidner [881 (and more recently Grosz et al. [391) showed

how definite anaphora interpretation could be tractably performed using syntactic, semantic,

and inferential knowledge. For example, syntactik constructions and grammatical relationships

could be used to determine the discourse items that a speaker was centering on. These predic-

tions could then be used to interpret anaphors in following sentences, interpretations that could

be confirmed or rejected based on the presence of inferred contradictions. Similarly, many

researchers showed how the syntactic and semantic information typical of most parsing systems

could be used to understand a class of elliptical utterances (Grosz [371, Carbonell and Hayes

[191, Hendrix [441, Waltz and Goodman [941, Weischedel and Sondheimer [95]).

While these results were very nice (and most importantly computationally tractable), the

same phenomena could also be explained with extremely different kinds of theories. For

example, the syntactic work of Sidner [881 and the rhetorical work of Hobbs [46] overlapped

with respect to many issues of coreference. Dyer's work [291 illustrated that affect could even

provide yet another perspective. Similarly, the elliptical utterances processed by the plan and

discourse based approach of Carberry [171 formed a superset of those processed solely linguisti-

cally. Often such observations have resulted in statements that one theory should replace

another. This is in contrast to the view that theories should try to incorporate these multiple

perspectives (as discussed earlier and also as suggested as future directions in many of the

linguistic works), explicidy acknowledging that linguistic behavior can and should be analyzed
4 -

on many levels. For example, the current work has presented a system that coordinates com-

plementary intentional, global linguistic, and local linguistic analyses. From a computational

perspective, such an approach also enables the development of more robust, as well as tract-

able. systems.

A5.

d

169

3. Non-Computational Approaches

Many of the theories discussed above have both been influenced by and influenced non-

computational works. As might be expected, many of the linguistics-based computational

theories have some origins in work in linguistics. For example, Grimes [361 and Longacre [591

claimed that rhetorical predicates were organizing relations used at all levels of discourse.

Within the area of linguistics there are also theories based on the idea that functional con-

siderations must be taken into account when analyzing phenomena typically regarded as totally
,.

syntactic [43.53,69.931. For example, systemic linguistics (Halliday [431) argues that since syn- '"

tactic forms reflect meaningful choices of a speaker, a grammar should be developed that takes ,A-

into account both functional and structural considerations. Some linguists have taken this

functional view to the extreme and concluded that syntactic grammars do not even exist;

phenomena previously regarded as syntactic are. totally controlled by non-syntactic factors such

as discourse function.

In the area of cognitive psychology, researchers such as Van Dijk and Kintsch [52] are

concerned with developing theories of discourse processing that are compatible with more gen-

eral theories of cognitive information processing. Many current computational theories seem

intuitively consistent with general psychological results, for example segmentation, selective

attention, use of expectations, and cues. Guindon [411 does a particularly noteworthy job in

making such a connection. She constructed experiments illustrating relationships between
;.1

psychological work on anaphora resolution (influenced heavily by the theories of Kintsch and

Van Dijk) and computational linguistics work on focusing. 'B'

Work in ethnomethodology and conversational analysis (in the area of sociology) has

shown that structural regularities occurring across many transcripts of spontaneous conversation

can be explained by viewing conversation as an interactional, social process [48,491. In other

words, when producing an utterance a speaker will make particular choices based on their

r'a

170

interactional consequences. The object of study in these paradigms is the methodology used by

a speaker (hence the term ethno-methodology), rather than categories introduced by an analyst. -e

In fact, structural regularities are both the formal conversational analyses and the tools used to

achieve social regularity. For example, Sacks et aT [81] show how a systemics for the organiza-

tion of turn-taking can account for linguistic phenomena. In general, these works have

emphasized sequential (as opposed to hierarchical) aspects of interactions, however.

Finally, as discussed above, plan-based approaches to language are greatly indebted to

the work of Austin [91, Searle [84,851, and Grice [351 in the philosophy of language.

5'.

°I.

is

".4

-A

_1 .ez'7r W..

I le

Chapter 8

Conclusion

1. Summary

This dissertation has presented a computational theory and partial implementation of a

discourse level model of dialogue understanding. The theory extends and integrates plan- .4.

based and linguistic-based approaches to language processing, arguing that such a synthesis is

needed to computationally handle many discourse ',evel phenomena present in naturally occur-

ring dialogues, for example, interruptions, subdialogues, fragmental and elliptical utterances,

and presence (as well as absence) of syntactic discourse clues. The simple, more tractable

results of discourse analysis (for example, explanations of phenomena in terms of very local

discourse contexts as well as correlations between syntactic devices and discourse function)

have been left intact, while the more complex inferential processes relating utterances have

been totally reformulated within a plan-based framework. Such an integration enables the

handling of a wide range of linguistic behavior problematic for previous systems, while main-

raining the computational advantages of the plan-based approach.

In order to handle a variety of subdialogues, including such interrupting subdialogues as

clarifications and corrections. a new model of plan recognition was developed. In addition to

the standard domain-dependent knowledge of task plans. domain-independent knowledge

about the planning process itself was made available. This latter knowledge was formalized

171

7

172

using a set of meta-plans, and explicitly encoded execution relationships (or lack of such rela- IF

tionships) between plans and previous plans. A context dependent, incremental plan recogni-

tion algorithm was then developed, using the planning and meta-planning knowledge to recog-

nize a hierarchy of domain and meta-plans ZnderTying an utterance. In particular, the existing

context was used to constrain initial postulation of (linguistically unmarked) meta-plans by

preferring non-interrupting relationships to semantically related interruptions to totally unre- .

lated interruptions. The formal constraints specifying the meta-plan / object plan relationships

then enabled the use of constraint satisfaction to initiate recognition of an object plan from

recognition of a meta-plan. The plans, along with the relationships between them, were then

used to construct or update a stack representing the context of currently executing and

suspended (i.e. interrupted) plans.

Many of these extensions to the earlier work in plan recognition can be seen as incor-

porating (and computationally fqrmalizing) insights from linguistic-based explanations of com-

munication. For example, implicitly relating subdialogues to one another in various rhetori-

cally constrained ways was given an intentional correlate by incorporating meta-plans and con-

text dependent preferences for their recognition. The observation that one of the possible rhe-

torical relationships was the (non) relationship of topic interruption led to the explicit recogni-

tion and manipulation of a stack of active and suspended plans. At the very least then, the

theory can distinguish between interrupting and non-interrupting relationships.

In contrast, the more tractable linguistic results were left in totally non-intentional terms

and instead coordinated with the process of plan recognition. For example, surface

phenomena signaling otherwise implicit discourse relationships were made available at the start

of plan recognition in order to overrule the default, totally inferential, intentional processing

necessary in their absence. Similarly, linguistic resolutions of elliptical utterances and definite

anaphora were used as inputs constraining the plan recognition process. Otherwise. these reso-

lutions would have again been made totally intentionally via the more complex inferential

.r ,*€"-", ." -'.*'" . * *', - .€"- , ," ""..".."..*" .°- ." .° . -" -") ". (- ""V

'.i

I-_

173

processes. Such interactions led to a system that was efficient as well as robust. By using syn-

tactic results when available, the plan recognizer could improve its efficiency. However, the

plan recognizer could also proceed totally intentionally when such linguistic clues were unavail-

able, and was thus much more robust than one dimensional systems.

The use of this integrated theory of dialogue understanding was demonstrated by detail-

ing the processing of four example dialogues representing three domains. The examples illus-

trated the processing of many difficult discourse phenomena, for example interruptions

corresponding to clarifications and corrections, interruptions of interruptions, resumption of

interrupted topics, indirect speech acts, multi-sentential utterances, use of linguistic phenomena

and analyses if available, and resolution of ellipsis, including plan ellipsis.

Finally, technical issues relating to the implementation were discussed. The implementa-

tion of the plan recognitio" algorithm for single utterances was presented, emphasising the

incorporation of constraint-based meta-planning. The implementation of consistency

unification and context-dependent reasoning, two modes of reasoning typically not supported

by existing knowledge representation systems but necessary for any plan recognition task, was

also illustrated.

2. Limitations and Future Directions

While this research has provided a framework for understanding an important class of

dialogues, the scope of the work has been limited by a set of assumptions restricting both the

theory and the data. Examination and relaxation of these assumptions yields several sugges-

tions for future work. For example, the success of any plan-based theory crucially depends on

the applicability of the assumption that people are rational agents who achieve a set of goals by

generating and executing plans. Like other plan-based endeavors' this research has based its

investigation on a set of dialogues for which this assumption is clearly true. In fact, recall that

the Chinese cooking dialogues were deemed problematic due to the presence of interpersonal

.2]

* -- . .- - . - N.......................... oo

.o

174

exchanges unrelated to furthering goals relating to cooking. Thus, in order to demonstrate the

true generality of a plan-based approach, work must be done on identifying and formalizing p

goals underlying less task-oriented conversations, for example the cooking dialogues and ulti-

mately any informal, spontaneous conversations-(such as found in Reichman's work [761).

Grosz and Sidner argue that such an endeavor will ultimately succeed. For example, with

respect to their recent theory of discourse structure, they claim that

One of the main generalizations of previous work will be to show that discourses generally are
in some sense "task-oriented," but the kinds of "tasks" that can be achieved are quite varied -- .-'
some are physical, others mental, others linguistic. As a result, the term "task" is unfortunate
and we will use the more general terminology of intentions - speaking for example of
discourse purposes - for most of what we say. [401

Wilensky's work makes a start on this endeavor by taxonomizing goals relevant to planning for

everyday situations [971.

Even after limiting the analysis to task-oriented dialogues, the scope of this research was

further constrained by-analyzing only dialogues satisfying several simplifying assumptions. It

was felt that the more complex issues could best be investigated within a well-understood

framework for the simpler cases. For example, in all the domains the "system" had a joint

goal with the user (or the goal of cooperating to achieve the user's goals). Investigation of

dialogues in which the system has goals of its own would involve several extensions to the

theoretical framework. Since the system's goals could potentially interact (both positively and

negatively) with the user's goals, the system would have to be able to recognize user plans that

resulted from these interactions. Incorporation of knowledge regarding goal interactions such

as emphasized in Wilensky's work [971 would thus be necessary. Bruce [131 has also investi-

gated interacting plans, particularly conflicting interactions that resulted in deception between

agents. To support this type of interaction a more powerful belief model allowing non-shared

beliefs would also need to be incorporated.
A"

Another restriction on the dialogues analyzed was that they were (pragmatically) well-

formed in a number of ways. In actuality speakers do make errors, although often these can

175

be recognized and repaired by the hearer, For example, consider the repair of the incorrect

reference to a platform in the following dialogue:

Person: Could you tell me what platform the train from Cornwall comes in?

Clerk: No platform at all. They, they all come in both sides downstairs here. and then, they
come up this ramp here.

Goodman (32] has shown how a system can use multiple sources of knowledge to recognize

and then repair by relaxation reference identification failures. In a similar vein, Carberry [16]

has shown how a system can use a plan context to revise queries that violate pragmatic con-

straints. In other words, when a system is unable to understand an utterance it should be able

to use its violated expectations in order to identify and repair the user's miscommunication.

General mechanisms for handling miscommunication thus need to be integrated with systems

such as presented here. Furthermore, interactions between the two systems would need to be

investigated. For example, a system must be able to decide when a reference failure indicates

a topic switch as opposed to a miscommunication that needs to be repaired. Finally, miscom-

munication again points out the need for more sophisticated models of (non-shared) belief.

Besides incorporating other theoretical mechanisms to enable understanding of a wider

range of dialogues, some further developments and refinements of the basic framework are also

needed. For example, identification and formalization of a full taxonomy of meta-plans is

needed. Also, recall that the analysis of the narrative aspects of the dialogues, e.g. of sequences

of utterances that fill in a plan rather than execute or interrupt it, was fairly preliminary. A

full treatment would require investigation of the many ways that a plan could be filled in

(besides just identifying a plan's parameters as in th- dialogues examined), as well as

identification of both linguistic and non-linguistic clues signaling each type of filling in. A

more complete treatment of surface phencmena is necessary as well. Recall that the current

work concentrated on developing a framework that could incorporate linguistic results, rather

than actually investigating the linguistic issues in their own right. Finally, a more sophisticated

RD-fll?@ 71 PLAN RECOGNITION AND DISCOURSE ANALYSIS:
N INTEGRATED 3/13

APPROACH FOR UNDERSTANDING DIALOGUESCU) ROCHESTER UNIV
NY DEPT OF COMPUTER SCIENCE. D J LITMAN 1985 TR-170

UNCLASSIFIEID N66614-92-K-S193 F/G 5/? NU.

0,0,

C140 ~

V.

%

%*

'.VIP

~*4#,. %
% F

%O 04%

-% 16 %

176

incremental algorithm may be needed. Given that ambiguity is bound to occur in any reason-

ably complex domain (especially given the incomplete knowledge typical of most computa-

tional systems), cases where recognition should proceed beyond branch points (for example, to

high level expectations as in Allen and Perriult [3W)need to be identified. On the other hand.

although recognition of higher level domain plans provides a deeper level of understanding.

not to mention understanding of otherwise problematic utterances, sometimes any plan recog-

nition seems unnecessary. For example, recall that the domain plan analysis did not appear to

be used by the system when responding to "Show me the generic concept called 'employee."'

Thus. further investigation on when to perform plan recognition, as well as when to stop it, is

needed.

Investigation of how the framework developed in this dissertation could be used for tasks

other than dialogue understanding is another interesting direction to pursue. For example,

integration of work in discourse and goal analysis could usefully be applied to the largely unex-

plored area of dialogue dependent generation. (The current discourse work in generation has

emphasized production of multi-sentential, single user utterances. i.e. it has concentrated on

narrative rather than conversational aspects of discourse). McKeown et al [651 are making a

start in this direction by showing how knowledge of a user's inferred goals can provide a per- 4

spective useful for tailoring a system's response. With respect to interruptions, work in genera-

tion typically ignores the issue of generation of interrupting subdialogues. Initiation of such

subdialogues may be needed to enable generation of a response to an ambiguously recognized

plan. Consider the following dialogue:

Person: Going to Stratford, what gate would it be?

Clerk: Which one is that?
Person: Two-fifteen. I think is the ...

Clerk: Yeah. Two-fifteen. Gate number eight.

In order to be able to provide a response. the clerk had to first generate a request for

t 7.4

177

clarification to disambiguate the user's plan and thus the user's question. In the following

dialogue we see that the clerk needs to initiate several subdialogues in order to even achieve

any sort of understanding.

Person: Track eleven?

Perk: Track eleven.

Person: Yeah.

Clerk: Ah. you work around here?

Person: No. ,-

Clerk: What do you want to go to track eleven for?

Person: There's an employment office there. CP.

Clerk: CP employment is behind gate nine back there.

Person: The gate nine.

Clerk: Behind gate nine.

These examples thus show that the typical separation and sequential treatment of the processes

of "understanding" and "generation" is rather artificial. Chapter 4 showed how a system

prompt and user clarification could be handled similarly within the meta-plan framework.

Finally, the ideas developed in this dissertation suggest directions for research outside the

area of natural language. The problem solving concerns of this work are very different than

those typically addressed by blocks world planners. For example, non-linguistic planners typi- %

cally ignore issues of multiple goals, whether concurrent (as in the works of Wilensky [971 and

Appelt [81) or hierarchical (as in this work). Related to this difference in emphasis is a need

for new work in plan representation, for example development of a fully adequate vocabulary

to support concepts such as meta-planning. Chapter 6 also poinled out work in the area of

knowledge representation that was necessary to support systems emphasizing the process of

plan recognition.

i'p

V

M5 IeN

178

3. Conclusion

This dissertation has developed a computational theory of dialogue understanding that

extends and integrates plan-based and linguistic-based approaches to issues of discourse. Such ,

a framework has enabled the handling of difficult discourse level phenomena such as interrupt-

ing subdialogues while maintaining the computational advantages of the plan-based approach.

I

4'd

4' 14

"4

-.o

I,

oII,

-.4 ' . - - - - . , - . , . , - . , ., . , , ' - ' . - - . ' , , £ . - . . , , . . . , , , , , . , . _- _

Bibliography

Conference Abbreviations:

AAAI: Proceedings of the National Conference on Artifcial Intelligence

ACL: Proceedings of the Annual Meeting of the Association for Computational Linguistics A

Coling: Proceedings of the International Conference on Computational Linguistics

IJCAI: Proceedings of the International Joint Conference on Artificial Intelligence

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley Publishing Company. Reading, Massachusetts. 1974.

2. L Aiello and G. Leui, The Uses of Metaknowledge in Al Systems, Proceedings of the

Sixth European Conference on Artificial Intelligence. Pisa, September 5-7. 1984. 705-717.

3. J. F. Allen and C. R. Perrault. Analyzing Intention in Utterances, Artificial Intelligence

15. 3 (1980). 143-178.

4. J. F. Allen, A. M. Frisch and D. J. Litman, ARGOT: The Rochester Dialogue System,
AAAI. Pittsburgh. 1982, 67-70.

5. J. F. Allen and J. A. Koomen, Planning Using a Temporal World Model. IJCA.
Karlsruhe. 1983, 741-747. 4

6. J. F. Allen. M. Giuliano and A. M. Frisch. The HORNE Reasoning System, Tech. Rep.

126 revised. University of Rochester, September 1984.

7. J. F. Allen. Towards a General Theory of Action and Time, Artificial Intelligence 23, 2
(1984). 123-154.

8. D. E. Appelt. Planning Natural Language Utterances to Satisfy Multiple Goals, PhD

Thesis.Stanford University, 1981.

9. J. L. Austin. How To Do Things With Words, Oxford University Press, New York. 1962.

10. G. E. Barton, A Multiple-Context Equality-based Reasoning System. Tech. Rep. 715.
MIT. June 1983.

11. R. J. Brachman. R. 1. Bobrow. P. R. Cohen. J. W. Klovstad. B. V. Webber and W. A.
Woods, Research in Natural Language Understanding: Annual Report. Report 4274,

BBN, 1979.

12. J. Brown and R. Burton. Semantic Grammar: A Technique for Constructing Natural

Language Interfaces to Instructional Systems. Report 3587. BBN. May 1977.

13. B. Bruce. Analysis of Interacting Plans as a Guide to the Understanding of Story

Structure. Poetics Q. (1980). 295-311.

179

180

14. B. Bruce, Belief Systems and Language Understanding. in Trends in Linguistics. Studies
and Monographs 19. Walter de Gruyter and Company, New York, 1983, 113-160.

15. S. Carberry, Tracking User Goals in an Information-Seeking Environment. AAAJ,
Washington. D.C., August 1983, 59-63.

16. M. S. Carberry, Understanding Pragmatically [Il-Formed Input. Coling84, Stanford. 1984.
200-206. -

17. S. Carberry, A Pragmatics-Based Approach to Understanding Intersentential Ellipsis,
ACL, Chicago, July 1985, 188-197.

18. J. G, Carbonell, Meta-Language Ucterances in Purposive Dialogues, CMU-CS-82-125,
CMU, June 19, 1982.

19. J. G. Carbonell and P. J. Hayes, Recovery Strategies for Parsing Extragrammatical
Language, AJCL 9. 3-4 (July-December 1983), 123-146.

20. N. F. Carver, V. R. Lesser and D. L. McCue, Focusing in Plan Recognition. AAA.
Austin, Texas, August 1984, 42-48.

21. E Charniak and D. McDermott, Introduction to Artificial Intelligence, Addison-Wesley,
Reading, MA, 1985.

22. P. R. Cohen and C. R. Perrault. Elements of a Plan-Based Theory of Speech Acts,
Cognitive Science 3. 3 (1979), 177-212.

23. P. R. Cohen. C. R. Perrault and J. F. Allen, Beyond Question Answering, in Strategies

for Natural Language Processing, W. Lehnert and M. Ringle (ed.), Lawrence Erlbaum
Associates, Hillsdale, NJ, 1982, 245-274.

24. R. Cohen. A Computational Model for the Analysis of Arguments, Ph.D. Thesis and
Tech. Rep. 151, University of Toronto, October 1983.

25. R. Cohen, A Computational Theory of the Function of Clue Words in Argument
Understanding, COLING-84. Stanford July 1984. 251-258.

26. P. R. Cohen and H. J. Levesque, Speech Acts and Rationality, ACL, Chicago, July 1985,
49-60.

27. R. E Cullingford, Script Application: Computer Understanding of Newspaper Stories,
Research Report #116, Yale University, 1978.

28. K. Donnellan, Reference and Definite Descriptions, Philosophical Review LXXV (1966),
281-304. "

29. M. G. Dyer, The Role of Affect in Narrative. Cognitive Science 7. 3 (1983). 211-242.

30. R. E. Fikes and N. J. Nilsson, STRIPS: A new Approach to the Application of Theorem
Proving to Problem Solving, Artificial Intelligence 2, 3/4 (1971), 189-208.

31. M. R. Genesereth, The Role of Plans in Automated Consultation, IJCAI. Tokyo, 1979,
311-319.

32. B. A. Goodman. Communication and Miscommunication. PhD Thesis, University of
Illinois. Urbana, 1984.

33. B. A. Goodman. Repairing Reference Identification Failures by Relaxation, ACL,
Chicago. July 1985, 204-217.

34. R. H. Granger. Scruffy Text Understanding: Design and Implementation of 'olerant'
Understanders, ACL. Toronto. June 1982. 157-160.

35. H. P. Grice, Meaning. Philosophical Review LXVI, (1957), 377-388.

181

36. J. E. Grimes. The Thread of Discourse. Mouton. The Hague, 1975.

37. B. J. Grosz. The Representation and Use of Focus in Dialogue Understanding. Technical
Note 151, SRI, July 1977.

38. B. J. Grosz, Utterance and Objective: Issues in Natural Language Communication.
IJCAI, Tokyo, 1979. 1067-1076.

39. B. J. Grosz, A. K. Joshi and S. Weinsiiin, Providing a Unified Account of Definite Noun
Phrases in Discourse, ACL, MIT, June 1983. 44-50.

40. B. J. Grosz and C. L. Sidner, Discourse Structure and the Proper Treatment of
Interruptions. IJCAI, Los Angeles. August 1985, 832-839.

41. R. Guindon, Anaphora Resolution: Short-Term Memory and Focusing, ACL, Chicago,
July 1985, 218-227.

42. M. A. K. Halliday. Language Structure and Language Function, in New Horizons in
Linguistics, J. Lyons (ed.), Penguin, New York, 1970.

43. M. A. K. Halliday. System and Function in Language, Oxford University Press, London.
1976.

44. G. G. Hendrix, Human Engineering for Applied Natural Language Processing, IJCAI-77,
MIT, August 1977, 183-191.

45. G. G. Hendrix, Encoding Knowledge in Partitioned Networks. in Associative Networks.
N. V. Findler (ed.), Academic Press. New York, 1979. 51-92.

46. J. R. Hobbs. Coherence and Coreference, Cognitive Science 3. 1 (1979), 67-90.

47. M. K. Horrigan, Modelling Simple Dialogs, Master's Thesis, Technical Report Number
108, University of Toronto, May 1977.

48. G. Jefferson and J. Schenkein, Some S quential Negotiations in Conversation, in Studies
in the Organization of Conversational Interaction. J. Schenkein (ed.), Academic Press,
New York, 1978.

49. G. Jefferson, Sequential Aspects of Storytelling in Conversation, in Studies in the
Organization of Conversational Interaction, J. Schenkein (ed.), Academic Press, New
York, 1978.

50. M. W. Kahrs. A. R. Haas and D. M. Russell. Transcripts of Task-Oriented Cooking

Dialogues. Unpublished Manuscript. University of Rochester, 1979. ,p
51. H. Kautz. Towards a Theory of Plan Recognition. Tech. Rep. 162, University of

Rochester, July 1985.

52. W. Kintsch and T. A. VanDijk, Toward a Model of Text Comprehension and
Production, Psychological Review 85. (1978). 363-394.

53. S. Kuno. Generative Discourse Analysis in America. in Current Trends in Textlinguistics
W. U. Dresser (ed.), Walter de Gruyter, Berlin. 1977.

54. D. Levy. Communicative Goals and Strategies: Between Discourse and Syntax, in Syntax
and Semantics, vol. 12, T. Givon (ed.), Academic Press, New York. 1979, 183-212.

55. C. Linde. The Organization of Discourse, in The English Language in its Social and
Historical Context, Shopen. Zwicky and Griffen (ed.),.

56. D. J. Litman. Discourse and Problem Problem Solving, Report 5338. Bolt Beranek and
Newman, July 1983.

57. D. J. Litan and J. F. Allen. A Plan Recognition Model for Clarification Subdzalogues.
Coling84. Stanford, July 1984. 302-311.

"p

182

58. D. J. Litman and J. F. Allen. A Plan Recognition Model for Subdialogues in

Conversation, Tech. Rep. 141. University of Rochester. November 1984.

59. R. E. Longacre, An Anatomy of Speech Notions. The Peter de Ridder Press, Lisse, 1976.

60. W. C. Mann, Discourse Structures for Text Generation, Coling84 Stanford. July 1984,
367-375.

61. D. A. McAllester, Reasoning Utility Package User's Manual. AI Memo 667. MIT, 1982.

62. D. A. McAllester, Solving Uninterpreted Equations with Context-Free Expression
Grammars, A[Memo 708, MIT. 1983.

63. J. McCarthy and P. J. Hayes, Some Philosophical Problems from the Standpoint of
Artificial Intelligence, in Machine Intelligence 4, B. Meltzer and D. Michie (ed.),
Edinburgh University Press, Edinburgh. 1969, 463-502. A

,..

64. K. R. McKeown. Generating Natural Language Text in Response to Questions about
Database Structure, PhD Thesis, University of Pennsylvania, Philadelphia. 1982.

65. K. R. McKeown, M. Wish and K. Matthews, Tailoring Explanations for the User. IJCAI,
Los Angeles, August 1985. 794-798.

66. M. Minsky, A Framework for Representing Knowledge, in Psychology of Computer
Vision. P. H. Winston (ed.), McGraw-Hill, New York, 1975.

67. A. Newell and H. A. Simon. GPS. A Program that Simulates Human Thought, in
Computers and Thought, E. Feigenbaum and J. Feldman (ed.), McGraw-Hill, New York,
1963, 279-293.

68. N. J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, CA, 1980.

69. Z. Palkova and B. Palek, Functional Sentence Perspective and Textlinguistics, in Current
Trends in Textlinguistics W. U. Dressier (ed.). Walter de Gruyter, Berlin, 1977.

70. L. Polanyi and R. J. H. Scha. On the Recursive Structure of Discourse, Proceedings of the
Tilsburg Symposium on Connectedness in Sentences Text. and Discourse. Tilsburg
January 1982.

71. L. Polanyi and R. J. H. Scha. The Syntax of Discourse, Text (Special Issue: Formal
Methods of Discourse Analysis) 3, 3 (1983). 261-270.

72. L ,olanyi and R. Scha. A Discourse Model for Natural Language, in The Structure of
Discourse. Ablex, Forthcoming.

73. M. Pollack, Inferring Domain Plans in Question Answering, PhD Dissertation. University

of Pennsylvania, Forthcoming.

74. H. Pople. On the Mechanization of Abductive Logic. IJCAI, Stanford, August 1973,
147-152.

75. R. Reichman. Conversational Coherency. Cognitive Science 2, 4 (1978), 283-328.

76. R. Reichman. Plain Speaking: A Theory and Grammar of Spontaneous Discourse,
Report No. 4681. Bolt, Beranek and Newman. 1981.

77. R. Reichman-Adar. Extended Person-Machine Interfaces, Artificial Intelligence 22. 2

(1984). 157-218.

78. R. Reiter, A Logic for Default Reasoning, Artifcial Intelligence 13. (1980). 81-132.

79. E. D, Sacerdod. Planning in a Hierarchy of Abstraction Spaces. Artificial Intelligence 5. 2

(1974). 115-135.

80. E. D. Sacerdoi. A Structure for Plans and Behavior. Elsevier. New York. 1977.

xIe

Sq.

183

81. H. Sacks. E. A. Schegloff and G. Jefferson. A Simplest Systematics for the Organization
of Turn-Taking for Conversation. Language 50, 4, Part 1 (December 1974). 6%-735.

82. R. C. Schank and R. P. Abelson, Scripts. Plans. Goals. and Understanding, Lawrence
Eribaum Associates. Hillsdale, New Jersey. 1977.

83. C. F. Schmidt. N. S. Sridharan and J. L. Goodson. The Plan Recognition Problem: An
Intersection of Psychology and Artificial Itelligence. Artificial Intelligence 11, (1978).
45-83.

84. J. R. Searle. in Speech Acts. an Essay in the Philosophy of Language. Cambridge

University Press. New York. 1%9.

85. L R. Searle. Indirect Speech Acts. in Speech Acts. vol. 3, P. Cole and Morgan (ed.),
Academic Press. New York. NY. 1975.

86. C. L Sidner and D. J. Israel, Recognizing Intended Meaning and Speakers' Plans.
IJCAI. Vancouver, 1981. 203-208.

87. C. L Sidner, Protocols of Users Manipulating Visually Presented Information with
Natural Language, Report 5128. Bolt Beranek and Newman, September 1982.

88. C. L Sidner, Focusing in the Comprehension of Definite Anaphora. in Computational
Models of Discourse, M. Brady (ed.), MIT Press. Cambridge, 1983, 267-330.

89. C. L Sidner and M. Bates. Requirements of Natural Language Understanding in a
System with Graphic Displays. Report Number 5242, Bolt Beranek and Newman Inc.,
March 1983.

90. C. L Sidner. Plan Parsing for Intended Response Recognition in Discourse,
Computational Intelligence 1. 1 (February 1985). 1-10.

91. M. Stefik. Planning with Constraints (MOLGEN: Part 1), Artificial Intelligence 16.
(1981). 111-140.

92. A. Tate. Generating Project Networks. IJCAI-5. MIT, 1977. 888-893.

93. S. A. Thompson. The Passive in English: A Discourse Perspective, Linguistics Dept.

Working Paper, UCLA. Summer 1983.

94. D. L. Waltz and B. A. Goodman. Writing a Natural Language Data Base System.
IJCAI-77. MIT, August 1977. 144-150.

95. R. M. Weischedel and N. K. Sondheimer. An Improved Heuristic for Ellipsis Processing,
ACL. Toronto. June 1982, 85-88.

96. R. Wilensky. Understanding Goal-Based Stories. Research Report #140, PhD Thesis.
Yale University. September 1978. .

97. R. Wilensky. Planning and Understanding. Addison-Wesley Publishing company,
Reading, Massachusetts. 1983.

98. T. Winograd. Understanding Natural Language. Academic Press, NY. 1972.

99. B. Woolf and D. D. McDonald. Context-Dependent Transitions in Tutoring Discourse.
AAAI. Austin, Texas. August 1984. 355-361.

- , _ . ! - : ,- -, r . k - - ,- , : ,~w-, -. ' W-: '=€ € ' " , :.€-T , r : : ' .

*

4

