Planar and Non Planar Construction of $\boldsymbol{\gamma}$ - Uniquely Colorable Graph

A. Elakkiya ${ }^{1}$, M. Yamuna ${ }^{2}$ *
${ }^{1}$ Vellore Institute of Technology, Vellore
${ }^{2}$ Vellore Institute of Technology, Vellore
*Corresponding author E-mail: myamuna@vit.ac.in

Abstract

A uniquely colorable graph G whose chromatic partition contains atleast one γ - set is termed as a γ - uniquely colorable graph. In this paper, we provide necessary and sufficient condition for \bar{G} and G^{*} to be γ - uniquely colorable whenever $\mathrm{G} \gamma$ - uniquely colorable and also provide constructive characterization to show that whenever G is γ - uniquely colorable such that $|\mathrm{P}| \geq 2, \mathrm{G}$ can be both planarand non planar.

Keywords: Complement; Dual;Non Planar;Planar;Uniquely colorablegraphs.

1. Introduction

In [1] Bing Zhou investigated the dominating $-\chi$-color number, $\mathrm{d}_{\chi}(\mathrm{G})$, of a graph G. In [2],[3], M. Yamuna et al introduced γ uniquely colorable graphs and also provided the constructive characterization of γ-uniquely colorable trees and characterized planarity of complement of γ - uniquely colorable graphs. In [4],[5],M. Yamuna et al introduced Non domination subdivision stable graphs (NDSS) andcharacterized planarity of complement of NDSS graphs

2. Terminology

We consider simple graphs G with n vertices and m edges. K_{n} is a complete graph with n vertices. K_{5} and $\mathrm{K}_{3,3}$ are called Kuratowski's graph. Results related to graph theory we refer to [6].
Chromatic partition of a graph G is partition the vertices into smallest possible umber of disjoint ,independent sets. A graph $G=$ (V, E) is said to be uniquely colorable ifhas a unique chromatic partition.
D is adominating set if every vertex of $\mathrm{V}-\mathrm{D}$ is adjacent to some vertex of D. Minimum cardinality of D, is said to be a minimum dominating set (MDS). The cardinality of any MDS for G is said to be domination number of G, represented by $\gamma(\mathrm{G})$. Results related to domination we refer to [7].

3. Result and Discussion

A uniquely colorable graph G whose chromatic partition contains atleast one γ-set is termed as a γ - uniquely colorable graph. In Fig. $1 \mathrm{G}_{1}$ and G_{2} are γ - uniquely colorable graphs. $\overline{\mathbf{G}_{1}} \mathrm{i}$ 垪uniquely colorable while $\overline{\mathbf{G}_{2}}$ is not γ - uniquely colorable graph. So when G is γ - uniquely colorable, $\overline{\mathbf{G}}$ need not be γ - uniquely colorable. In Fig. $2 \mathrm{G}_{1}$ and G_{2} are γ - uniquely colorable graphs. $\mathrm{G}_{1}{ }^{*}$ is γ - uniquely colorable while $\mathrm{G}_{2}{ }^{*}$ is not γ - uniquely colorable
graph. So when G is γ - uniquely colorable , G^{*} need not be $\gamma-$ uniquely colorable. In this paper, we determine the condition for $\overline{\mathbf{G}}$ and G^{*} to be γ - uniquely colorable whenever G is γ - uniquely colorable. We also provide the constructive characterization to show that whenever G is γ uniquely colorable such that $|P| \geq 2$, G can be both planar and non planar.

Fig. 1

G1

G_{2}

Fig. 2

Theorem 1. Let G be a is $\gamma \mathrm{uniquelycolorable} \mathrm{graph}. \overline{\mathbf{G}}$ is also uniquely colourable if and only if \exists a unique smallestpossible partition $\mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \mathrm{~V}_{\mathrm{k}}\right\}$ of $\mathrm{V}(\mathrm{G})$ э

1. every $\mathrm{V}_{\mathrm{i}}, \mathrm{i}=1$ to k is a clique
2. there exist one V_{i} Э every vertex in $\mathrm{V}-\left\{\mathrm{V}_{\mathrm{i}}\right\}$ is notadjacent to atleast one vertex in V_{i}

3. $\left|V_{j}\right| \geq\left|V_{i}\right|$, for every $i \neq j$

4. V_{i} is the smallest set in G satisfying 2

Proof. Assume that $\overline{\mathbf{G}}$ is a γ - uniquely colourable graph, impliesthere exist a partition $\mathrm{P}_{1}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \mathrm{~V}_{\mathrm{k}}\right\}$ for $\overline{\mathbf{G}}$ such that

- P_{1} is unique and smallest possible set.
- every $\mathrm{V}_{\mathrm{i}}, \mathrm{i}=1$ to k , is independent in $\overline{\mathbf{G}}$ implies every V_{i} is a clique in G .
- there exist one V_{i} such that V_{i} is a γ - set for $\overline{\mathbf{G}}$. Also $\left|V_{i}\right| \geq 1$ $V_{j} \mid$, for every $\mathrm{i} \neq \mathrm{j}$ implies there exist one V_{i} in G such that every vertex in $V-\left\{V_{i}\right\}$ not adjacent to atleast onevertex in every V_{i}.
implies $P_{1}=\left\{V_{1}, V_{2}, \ldots V_{k}\right\}$ is a γ - chromatic partition for V (G). P_{1} is not unique implies \exists one $P_{2}=\left\{W_{1}, W_{2}, \ldots W_{k}\right\}$ in G such that $\left\{W_{1}, W_{2}, \ldots W_{k}\right\}$ is a clique, implies P_{2} is also a γ chromatic partition in $\overline{\mathbf{G}}$ such that every W_{i} is independent and $\mid \mathrm{P}_{1}$
 not smallest, implies one $P_{3}=\left\{V_{1}, V_{2}, \ldots V_{k}\right\}, q<k$ such that P_{3} isa γ chromatic partition in $\mathrm{G} \ni \mathrm{U}_{\mathrm{i}}, \mathrm{i}=1$ to q is clique implies P_{3} isa γ chromatic partition in $\bar{G} \ni$ every U_{i} is independent and $\left|P_{3}\right|<\left|P_{1}\right|$, a contradiction. P_{1} is a γ uniquely colorable partition for $\overline{\mathbf{G}}$ implies there exist one V_{i} such that V_{i} is a γ-set for $\overline{\mathbf{G}}$, implies every vertex in $\mathrm{V}-\left\{\mathrm{V}_{\mathrm{i}}\right\}$ is adjacent to atleast one vertex in V_{i}, implies P_{1} is a γ-chromatic partition in G эevery vertex in $\mathrm{V}-\left\{\mathrm{V}_{\mathrm{i}}\right\}$ is not adjacent to atleast one vertex in V_{i}. Also, we know that $\left|\mathrm{V}_{\mathrm{i}}\right| \leq\left|\mathrm{V}_{\mathrm{j}}\right|$ for every $\mathrm{i} \neq \mathrm{j}$ in $\overline{\mathbf{G}}$, implies it is true in G also. If V_{i} is not the smallest set \ni every vertex in $V-\left\{V_{i}\right\}$ is \perp to atleast one vertex in V_{i} in $\overline{\mathbf{G}}$, implies there exist one W contained in $\mathrm{V}(\overline{\mathbf{G}})$ such that | $\mathrm{W}\left|<\left|\mathrm{V}_{\mathrm{i}}\right|\right.$ and every vertex in $\mathrm{W}-\mathrm{V}(\overline{\mathbf{G}})$ is \perp to atleast one vertexin W , a contradiction $\Rightarrow \mathrm{V}_{\mathrm{i}}$ is the smallest set satisfying the property. Hence P_{1} is a γ - chromatic partition in $G \ni$ the conditions of the theorem are satisfied.
Conversely assume that the conditions of the theorem are satisfied. P is a partition such that it is unique and smallest such that every V_{i} is a clique, implies P_{1} is a partition in $\overline{\mathbf{G}}$ such that every V_{i} is independent. If P is not a smallest possible partition in $\overline{\mathbf{G}}$ then there exist one partition $P_{4}=\left\{R_{1}, R_{2}, \ldots R_{q}\right\}, q<k$ in $\overline{\mathbf{G}}$ such that each R_{i} is independent, implies P_{4} is a partition in G such that every R_{i} is a clique such that $\left|\mathrm{P}_{4}\right|<|\mathrm{P}|$, a contradiction. P is not unique in $\overline{\mathbf{G}}$, implies there exist a partition $\mathrm{P}_{5}=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots \mathrm{~S}_{\mathrm{k}}\right\}$ such that each S_{i} is independent in $\overline{\mathbf{G}}$, implies $\mathrm{P}, \mathrm{P}_{5}$ are two possible partition with the same cardinality in G , a contradiction. P is a partition \ni there exist one V_{i}, every vertex in $V-\left\{V_{i}\right\}$ is not \perp to atleast one $V_{i},\left|V_{j}\right| \geq\left|V_{i}\right|$ for any $i \neq j$ implies P is a partitionin $\overline{\mathbf{G}}$ эevery vertex in $\mathrm{V}-\left\{\mathrm{V}_{\mathrm{i}}\right\}$ isadjacent toatleast one $\mathrm{V}_{\mathrm{i}},\left|\mathrm{V}_{\mathrm{i}}\right| \leq\left|\mathrm{V}_{\mathrm{j}}\right|, \mathrm{i} \neq \mathrm{j}$, implies V_{i} is a dominating set for $\overline{\mathbf{G}}$. Since V_{i} is the smallest set satisfying this property, implies V_{i} is the γ - set for $\overline{\mathbf{G}}$
Let $P=\left\{R_{1}, R_{2}, \ldots R_{q}\right\}$, betheset ofregions of G. Let $T=\left\{r_{1}\right.$, $r_{2}, \ldots r_{q}$, betheset of vertices in the regions $R_{1}, R_{2}, \ldots, R_{q}$ respectively, that is r_{1} is the vertex in the region R_{1}, r_{2} is the vertexin the region R_{2}, \ldots, r_{q} is the vertex in the region R_{q} respectively.
We observe that
- There is a 1-1 mapping between S and T, i.e $\forall \mathrm{R}_{\mathrm{i}} \in \mathrm{S} \exists \mathrm{r}_{\mathrm{i}}$ in T , $\mathrm{i}=1, \ldots, \mathrm{q}$.
- $\forall X \subseteq S \exists$ a corresponding set in $T\left(\text { say } X^{*}\right)^{*}$, i.e if $X \subseteq S$ $=\left\{R_{i}, R_{p}, R_{j}\right\}$, then $X \subseteq T=\left\{r_{i}, r_{p}, r_{j}\right\}$.
- If a is any edge in G there is a corresponding edge in G^{*} (say a^{*}).
- Let $\mathrm{D} \subseteq \mathrm{S}$ э every region in $\mathrm{S}-\mathrm{D}$ is \perp to atleast one region in $\mathrm{D} \Rightarrow \exists \mathrm{D}^{*} \subseteq \mathrm{~T}$ э any vertex in $T-\mathrm{D}^{*}$ is \perp to atleast vertex inD**.
- $\quad D$ is a smallest cardinality satisfying this property $\Rightarrow D^{*}$ is a γ - set for G^{*}.

Theorem 2. Let G be a γ - uniquely colourable graph. G^{*} isalso γ - uniquely colourable graph if and only if there exist a unique smallest partition $P=\left\{R_{1}, R_{2}, \ldots, R_{k}\right\}$ of $R(G)$ such that

1. every $\mathrm{R}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{k}$ is independent.
2. there exist one R_{i} such that every region in $R-\left\{R_{i}\right\}$ is adjacent to atleast one region in R_{i}.
3. $\left|R_{j}\right| \geq\left|R_{i}\right|$.

Proof. Assume that G^{*} is γ uniquelycolourable graph. If G^{*} is γ uniquely colourable graph, then there exist a partition $\mathrm{P}=\left\{\mathrm{V}_{1}\right.$, $\left.\mathrm{V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ such that P is a γ - chromatic partition, \Rightarrow

1. every V_{i} is independent.
2. V_{1} is a γ - set for G^{*}.

1 implies, there exist a set of regions $R_{1}, R_{2}, \ldots, R_{k}$ in G such that every R_{i} is independent.
2 implies, there exist $R_{1} \ni$ every region in $R-\left\{R_{1}\right\}$ is adjacent to atleast one region in R_{1} and R_{1} is the smallest set satisfying this property implies the conditions of the theorem are satisfied.
Conversely, assume that the conditions of the theorem are satisfied. $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ is a partition of $R(G)$, implies there exist a partition $\mathrm{P}_{1}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ of $\mathrm{V}\left(\mathrm{G}^{*}\right)$.
1 implies, every $\mathrm{V}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{k}$ is independent.
2 implies, there exist one $\mathrm{V}_{\mathrm{i}} \ni$ every vertex in $\mathrm{V}-\left\{\mathrm{V}_{\mathrm{i}}\right\}$ is \perp to atleast one region in V_{i}.
3 implies $\left|V_{j}\right| \geqslant\left|V_{i}\right|$ for all $i \neq j$
Since P is a unique partition there exist no other partition of V
$\left(\mathrm{G}^{*}\right)$ that satisfies all these conditions implies, P_{1} is a γ-chromaticpartition for G^{*}.

Planar and Non planar Construction

In this section, we provide constructive characterization to showthat whenever G is γ uniquelycolorable such that $|\mathrm{P}| \geq 2$, G canbe both planarand nonplanar.
Planar Construction when $|\mathrm{P}|=2$.
Let $\gamma(\mathrm{G})=\mathrm{k}_{1}$. Let $\mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$, where $\mathrm{V}_{1}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k} 1}\right\} \mathrm{V}_{2}$ $=\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{k} 2}\right\}, \mathrm{k}_{2} \geq \mathrm{k}_{1}, \mathrm{k}_{1} \geq 3, \mathrm{k}_{2} \geq 4$.
Constructagraph G_{1} as follows

1. $\mathrm{V}\left(\mathrm{G}_{1}\right)=\mathrm{V}(\mathrm{G})$
2.Considerk ${ }_{1}$ vertices in V_{1} and V_{2} say $\left\{a_{1}, a_{2}, \ldots, a_{k 1}\right\}$ and $\left\{b_{1}\right.$, $\left.\mathrm{b}_{2}, \ldots, \mathrm{~b}_{\mathrm{k} 2}\right\}$.
Construct a comb graph with $2 \mathrm{k}_{1}$ vertices. Label the vertices of this comb as seen in Fig. 3

G
Fig. 3
Include the remaining $k_{2}-k_{1}$ vertices of V_{2} as pendant vertices with $a_{k 1}$ as the support vertex. The general structure of graph G_{1} is as seen in the Fig. 4 .

Fig. 4

Since we have atleast k_{1} pendant vertices, $\gamma\left(G_{1}\right) \geq k_{1},\left\{a_{1}\right.$, $\left.\mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k} 1}\right\}$ is a dominating set for G_{1}, implies $\gamma\left(\mathrm{G}_{1}\right)=\mathrm{k}_{1}$. Since \langle $\left.a_{1}, a_{2}, \ldots, a_{k 1}, b_{1}, b_{2}, \ldots, b_{k 2}\right\rangle$ isacomb, the only possible maximal independent sets are $\left\{a_{1}, a_{2}, \ldots, a_{k 1}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{k 2}\right\} . P=\left\{V_{1}\right.$, $\left.\mathrm{V}_{2}\right\}$ is a partition for G_{1} suchthat

1. V_{1} is $a \gamma$ - set for G_{1}
2. P is the only possible partition for $G_{1}, \Rightarrow G_{1}$ is a γ - uniquely colorable graph.
Non Planar Construction when $|\mathrm{P}|=2$.
Let $\gamma(\mathrm{G}) \geq \mathrm{k}_{1} . \mathrm{k}_{1} \geq 6, \mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\} \mathrm{V}_{1}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k} 1}\right\} ; \mathrm{V}_{2}=\left\{\mathrm{b}_{1}\right.$, $\left.\mathrm{b}_{2}, \ldots, \mathrm{~b}_{\mathrm{k} 2}\right\}, \mathrm{k}_{2} \geq 6$
Construct a graph G_{1} as follows
1.V $\left(\mathrm{G}_{1}\right)=\mathrm{V}(\mathrm{G})$
2.Considerk ${ }_{1}$ vertices in V_{1} and k_{1} vertices in V_{2} say $\left\{a_{1}, a_{2}, a_{3}\right.$, $\left.a_{4}, a_{5}, a_{6}\right\},\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{k 2}\right\}$. Let $\left\langle a_{1}, a_{2}, a_{3}, b_{1} b_{2}, b_{3}\right\rangle$ is $K_{3,3}$. Include the remaining $a_{i}, b_{i}, i=1,2,3$. Include the remaining b_{i}, i $=6,7, \ldots, k_{2}$ as arbitrary pendant vertices adjacent to any $a_{i}, i=1,2$,
3. Graph G_{1} is as seen in Fig.5.

Fig. 5.
Since G_{1} has atleast k_{1} pendant vertices $\left\{a_{4}, a_{5}, \ldots, a_{k 1}, b_{4}, b_{5}, \ldots\right.$, $\left.\mathrm{b}_{\mathrm{k} 1}\right\}, \gamma\left(\mathrm{G}_{1}\right) \geq \mathrm{k}_{1},\left\{\mathrm{~V}_{1}\right\}$ dominates G_{1}. Also $\left|\mathrm{V}_{1}\right|=\mathrm{k}_{1}$, implies that V_{1} isa γ - setfor G_{1}, since G_{1} isabipartite graph $P=\left\{V_{1}, V_{2}\right\}$ is the onlychromatic partition for G_{1} such that V_{1} is a γ - set for G_{1}, implies G_{1} is γ - uniquely colorable and non planar.
$\gamma(\mathrm{G})=3, \mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}, \mathrm{V}_{1}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\}, \mathrm{V}_{2}=\left\{\mathrm{b}_{1}\right.$, $\left.\mathrm{b}_{2}, \ldots, \mathrm{~b}_{\mathrm{x} 1}\right\}, \mathrm{k}_{1} \geq 6$,
$\gamma(\mathrm{G})=4, \mathrm{P}=|\mathrm{P}|=3 \mathrm{~V}_{1}=\mathrm{V}_{1}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\}, \mathrm{V}_{2}=\left\{\mathrm{b}_{1}\right.$, $\left.\mathrm{b}_{2}, \ldots, \mathrm{~b}_{\mathrm{x} 1}\right\}, \mathrm{k}_{1} \geq 6$,
$\gamma(\mathrm{G})=5, \mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}, \mathrm{V}_{1}=\mathrm{V}_{1}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}\right\}, \mathrm{V}_{2}=\left\{\mathrm{b}_{1}\right.$, $\left.\mathrm{b}_{2}, \ldots, \mathrm{~b}_{\mathrm{k} 1}\right\}, \mathrm{k}_{1} \geq 6$, are analogus to the above discussion.
$|\mathrm{P}|=3=\mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right\},=\mathrm{K}_{1} .\left|\mathrm{V}_{2}\right|=\mathrm{k}_{2},\left|\mathrm{~V}_{3}\right|=\mathrm{k}_{3}, \mathrm{k}_{2}, \mathrm{k}_{3} \geq \mathrm{k}_{1}$. Planar Construction when $|\mathrm{P}|=3$.
$|\mathrm{P}|=3=\mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right\},=\mathrm{K}_{1} .\left|\mathrm{V}_{2}\right|=\mathrm{k}_{2},\left|\mathrm{~V}_{3}\right|=\mathrm{k}_{3}, \mathrm{k}_{2}, \mathrm{k}_{3} \geq \mathrm{k}_{1}$.
Consider a wheel graph with k vertices where $k=k_{1}+2 \mathrm{k}_{\mathrm{i}}$, where $\mathrm{k}_{\mathrm{i}}=\min \left(\mathrm{k}_{2}, \mathrm{k}_{3}\right)$. Label the vertices of the wheel in the followingfashion as seen in Fig.6.

Fig. 6
If $\mathrm{k}_{2} \neq \mathrm{k}_{3}$, then we include the remaining vertices as follows. Let $k_{2}>k_{3}$. Let $k_{2}=k_{3}+m$. Label the additional vertices as $\left\{b_{k 3+1}\right.$, $\left.\mathrm{b}_{\mathrm{k} 3+2}, \ldots, \mathrm{~b}_{\mathrm{k} 2}\right\}$. Include these vertices as seen in Fig.7.

Fig. 7
Since $\left\langle b_{1}, a_{j}, c_{i}\right\rangle, i=1$ to $k_{1-1}, j=2$ to $a_{k 1}$ is P_{3} eithea a_{j} or b_{i} or c_{i} should be included in every possible γ - set for G. $\left\{a_{1}, a_{2}, \ldots, a_{k 1}\right\}$ is a γ - set for G . Also $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right\}$ is the only possible chromatic partition for G implies γ - uniquely colorable graph G is planar.

4. Conclusion

In this paper, we provide necessary and sufficient condition for $\overline{\mathrm{G}}$ and G^{*} to be γ uniquely colorable and also provide constructive characterization to show that whenever G is γ - uniquely colorable such that $|P| \geq 2, G$ can be both planar and non planar.

References

[1] Bing Zhou, "On the maximum number of dominating classes in graph coloring", Open Journal of Discrete Mathematics,Vol 6,(2016).pp.70-73.
[2] M. Yamuna, A. Elakkiya, " γ - Uniquely colorable graphs", IOPConf. Series: Materials Science and Engineering , Vol. 263 , (2017).
[3] M. Yamuna, A. Elakkiya," Planar graph characterization of γ Uniquely colorable graphs", IOP Conf. Series: Materials Sci-ence and Engineering ,Vol263, (2017).
[4] Yamuna, M., Elakkiya, A., "Non domination subdivision stable graphs", IOP Conf. Series: Materials Science and Engineering. Vol 263, (2017).
[5] Yamuna, M., Elakkiya, A, "Planar graph characterization of NDSS graphs", IOP Conf. Series: Materials Science and Engineering ,Vol 263,(2017).
[6] Harary, F,Graph Theory, Addison Wesley, Narosa Publishing House, (2001).
[7] Haynes, T.W., Hedetniemi, S. T \& Slater, P. J. Fundamentals of domination in graphs, New York, Marcel Dekker, (1998).

