
Planar Drawings of Higher-Genus Graphs

Christian A. Duncan1, Michael T. Goodrich2,�, and Stephen G. Kobourov3,��

1 Dept. of Computer Science, Louisiana Tech Univ.
http://www.latech.edu/~duncan/

2 Dept. of Computer Science, Univ. of California, Irvine
http://www.ics.uci.edu/~goodrich/

3 Dept. of Computer Science, University of Arizona
http://www.cs.arizona.edu/~kobourov/

Abstract. In this paper, we give polynomial-time algorithms that can
take a graph G with a given combinatorial embedding on an orientable
surface S of genus g and produce a planar drawing of G in R2, with a
bounding face defined by a polygonal schema P for S . Our drawings are
planar, but they allow for multiple copies of vertices and edges on P ’s
boundary, which is a common way of visualizing higher-genus graphs in
the plane. As a side note, we show that it is NP-complete to determine
whether a given graph embedded in a genus-g surface has a set of 2g fun-
damental cycles with vertex-disjoint interiors, which would be desirable
from a graph-drawing perspective.

1 Introduction

The classic way of drawing a graph G = (V, E) in R2 involves associating
each vertex v in V with a unique point (xv, yv) and associating with each edge
(v, w) ∈ E an open Jordan curve that has (xv, yv) and (xw, yw) as its endpoints.
If the curves associated with the edges in a classic drawing of G intersect only at
their endpoints, then (the embedding of) G is a plane graph. Graphs that admit
plane graph representations are planar graphs, and there has been a voluminous
amount of work on algorithms on classic drawings of planar graphs. Most notably,
planar graphs can be drawn with vertices assigned to integer coordinates in an
O(n) × O(n) grid, which is often a desired type of classic drawing known as a
grid drawing. Moreover, there are planar graph drawings that use only straight
line segments for edges [2].

The beauty of plane graph drawings is that, by avoiding edge crossings, con-
fusion and clutter in the drawing is minimized. Likewise, straight-line drawings
further improve graph visualization by allowing the eye to easily follow con-
nections between adjacent vertices. In addition, grid drawings enforce a natural
separation between vertices, which further improves readability. Thus, a “gold
standard” in classic drawings is to produce planar straight-line grid drawings
� Work partially supported by NSF grants OCI-0724806, IIS-0713046, CCR-0830403,

and ONR MURI N0014-08-1-1015.
�� Work partially supported by NSF CAREER grant CCF-0545743.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 45–56, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

46 C.A. Duncan, M.T. Goodrich, and S.G. Kobourov

and, when that is not easily done, to produce planar grid drawings with edges
drawn as simple polygonal chains.

Unfortunately, not all graphs are planar. So drawing them in the classic way
requires some compromise in the gold standard for plane drawings. In particular,
any classic drawing of a non-planar graph must necessarily have edge crossings,
and minimizing the number of crossings is NP-hard [6]. One point of hope for im-
proved drawings of non-planar graphs is to draw them crossing-free on surfaces
of higher genus, such as toruses, double toruses, or, in general, a surface topo-
logically equivalent to a sphere with g handles, that is, a genus-g surface. Such
drawings are called cellular embeddings or 2-cell embeddings, since they parti-
tion the genus-g surface into a collection of cells that are topologically equivalent
to disks. As in classic drawings of planar graphs, these cells are called faces, and
it is easy to see that such a drawing would avoid edge crossings.

In a fashion analogous to the case with planar graphs, cellular embeddings of
graphs in a genus-g surface can be characterized combinatorially. In particular,
it is enough if we just have a rotational order of the edges incident on each
vertex in a graph G to determine a combinatorial embedding of G on a surface
(which has that ordering of associated curves listed counterclockwise around
each vertex). Such a set of orderings is called a rotation system and, since it
gives us a combinatorial description of the set of faces, F , in the embedding,
it gives us a way to determine the genus of the (orientable) surface that G is
embedded into by using the Euler characteristic, |V |− |E|+ |F | = 2− 2g, which
also implies that |E| is O(|V | + g) [10].

Unfortunately, given a graph G, it is NP-hard to find the smallest g such
that G has a combinatorial cellular embedding on a genus-g surface [11]. This
challenge need not be a deal-breaker in practice, however, for there are heuris-
tic algorithms for producing such combinatorial embeddings (that is, consistent
rotation systems) [1]. Moreover, higher-genus graphs often come together with
combinatorial embeddings in practice, as in many computer graphics and mesh
generation applications.

In this paper, we assume that we are given a combinatorial embedding of
a graph G on an orientable genus-g surface, S, and are asked to produce a
geometric drawing of G that respects the given rotation system. Motivated by
the gold standard for planar graph drawing and by the fact that computer screens
and physical printouts are still primarily two-dimensional display surfaces, the
approach we take is to draw G in the plane rather than on some embedding of
S in R3.

Making this choice of drawing paradigm, of course, requires that we “cut up”
the genus-g surface, S, and “unfold” it so that the resulting sheet is topologically
equivalent to a disk. The traditional method for performing such a cutting is with
a canonical polygonal schema, P , which is a set of 2g cycles on S all containing a
common point, p, such that cutting S along these cycles results in a topological
disk. These cycles are fundamental in that each of them is a continuous closed
curve on S that cannot be retracted continuously to a point. Moreover, these
fundamental cycles can be paired up into complementary sets of cycles, (ai, bi),

Planar Drawings of Higher-Genus Graphs 47

one for each handle, so that if we orient the sides of P , then a counterclockwise
ordering of the sides of P can be listed as a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g ,

where a−1
i (b−1

i) is a reversely-oriented copy of ai, so that these two sides of P
are matched in orientation on S. Thus, the canonical polygonal schema for a
genus-g surface S has 4g sides that are pairwise identified.

Because we are interested in drawing the graph G and not just the topology
of S, it would be preferable if the fundamental cycles are also cycles in G in
the graph-theoretical sense. It would be ideal if these cycles form a canonical
polygonal schema with no repeated vertices other than the common one. This is
not always possible [8] and furthermore, as we show in [3], the problem of finding
a set of 2g fundamental cycles with vertex-disjoint interiors in a combinatorially
embedded genus-g graph is NP-complete. There are two natural choices, both of
which we explore in this paper:

– Draw G in a polygon P corresponding to a canonical polygonal schema, P ,
possibly with repeated vertices and edges on its boundary.

– Draw G in a polygon P corresponding to a polygonal schema, P , that is not
canonical.

In either case, the edges and vertices on the boundary of P are repeated (since we
“cut” S along these edges and vertices). Thus, we need labels in our drawing of
G to identify the correspondences. Such planar drawings of G inside a polygonal
schema P are called polygonal-schema drawings of G. There are three natural
aesthetic criteria such drawings should satisfy:

1. Straight-line edges: All the edges in a polygonal-schema drawing should be
rendered as polygonal chains, or straight-line edges, when possible.

2. Straight frame: Each edge of the polygonal schema should be rendered as
a straight line segment, with the vertices and edges of the corresponding
fundamental cycle, placed along this segment. We refer to such a polygonal-
schema drawing as having a straight frame.

3. Polynomial area: Drawings should have polynomial area when they are nor-
malized to an integer grid.

It is also possible to avoid repeated vertices and instead use a classic graph
drawing paradigm, by transforming the fundamental polygon rendering using
polygonal-chain edges that run through “overpasses” and “underpasses” as in
road networks, so as to illustrate the topological structure of G; see Fig. 1.

Our Contributions. We provide several methods for producing planar polygo-
nal-schema drawings of higher-genus graphs. In particular, we provide four algo-
rithms, one for torodial (g = 1) graphs and three for non-toroidal (g > 1) graphs.
Our algorithm for toroidal graphs simultaneously achieves the three aesthetic cri-
teria for polygonal schema drawings: it uses straight-line edges, a straight frame,
and polynomial area. The three algorithms for non-toroidal graphs, Peel-and-
Bend, Peel-and-Stretch, and Peel-and-Place, achieve two of the three aesthetic
criteria and differ in which criteria they fail to meet.

48 C.A. Duncan, M.T. Goodrich, and S.G. Kobourov

A1

A2

A1
−1

A2
−1

A

A

A

A

A

A

A

A A A

A

A A A

A

A

1

1

2

2

3

3

4

4

−1

−1

−1

−1

5

5

6

6

7

7

8

8

−1

−1

−1

−1A

A

A

A

A

A

A

A

1

2

2

3

3

4

4

−1

−1

−1

−1

1

Fig. 1. First row: Canonical polygonal schemas for graphs of genus one, two and
four. Second row: Unrolling the high genus graphs with the aid of the overpasses and
underpasses.

2 Finding Polygonal Schemas

Suppose we are given a graph G together with its cellular embedding in an
(orientable) genus-g surface, S. An important first step in all of our algorithms
involves our finding a polygonal schema, P , for G, that is, a set of cycles in G such
that cutting S along these cycles results in a topological disk. We refer to this as
the Peel step, since it involves cutting the surface S until it becomes topologically
equivalent to a disk. Since these cycles form the sides of the fundamental polygon
we will be using as the outer face in our drawing of G, it is desirable that these
cycles be as “nice” as possible with respect to drawing aesthetics.

2.1 Trade-Offs for Finding Polygonal Schemas

Unfortunately, some desirable properties are not effectively achievable. As
Lazarus et al. [8] show, it is not always possible to have a canonical polygonal
schema P such that each fundamental cycle in P has a distinct set of vertices in
its interior (recall that the interior of a fundamental cycle is the set of vertices
distinct from the common vertex shared with its complementary fundamental
cycle—with this vertex forming a corner of a polygonal schema). In addition,
we show in [3] that finding a vertex-disjoint set of fundamental cycles is NP-
complete. So, from a practical point of view, we have two choices with respect
to methods for finding polygonal schemas.

Finding a Canonical Polygonal Schema. As mentioned above, a canonical
polygon schema of a graph G 2-cell embedded in a surface of genus g consists

Planar Drawings of Higher-Genus Graphs 49

of 4g sides, which correspond to 2g fundamental cycles all containing a common
vertex. Lazarus et al. [8] show that one can find such a schema for G in O(gn)
time and with total size O(gn), and they show that this bound is within a
constant factor of optimal in the worst case, where n is the total combinatorial
complexity of G (vertices, edges, and faces), which is O(|V | + g).

Minimizing the Number of Boundary Vertices in a Polygonal Schema.
Another optimization would be to minimize the number of vertices in the bound-
ary of a polygonal schema. Erikson and Har-Peled [5] show that this problem is
NP-hard, but they provide an O(log2 g)-approximation algorithm that runs in
O(g2n logn) time, and they give an exact algorithm that runs in O(nO(g)) time.

In our Peel step, we assume that we use one of these two optimization cri-
teria to find a polygonal schema, which either optimizes its number of sides
to be 4g, as in the canonical case, or optimizes the number of vertices on its
boundary, which will be O(gn) in the worst case either way. Nevertheless, for
the sake of concreteness, we often describe our algorithms assuming we are given
a canonical polygonal schema. It is straight-forward to adapt these algorithms
for non-canonical schemas.

2.2 Constructing Chord-Free Polygonal Schemas

In all of our algorithms the first step, Peel, constructs a polygonal schema of
the input graph G. In fact, we need a polygonal schema, P , in which there is
no chord connecting two vertices on the same side of P . Here we show how to
transform any polygonal schema into a chord-free polygonal schema.

In the Peel step, we cut the graph G along a canonical set of 2g fundamental
cycles getting two copies of the cycle in G∗, the resulting planar graph. For each
of the two pairs of every fundamental cycle there may be chords. If the chord
connects two vertices that are in different copies of the cycle in G∗ then this is
a chord that can be drawn with a straight-line edge and hence does not create
a problem. However, if the chord connects two vertices in the same copy of the
cycle in G∗, then we will not be able to place all the vertices of that cycle on
a straight-line segment; see Figure 2(a). We show next that a new chord-free
polygonal schema can be efficiently determined from the original schema.

Theorem 1. Given a graph G combinatorially embedded in a genus-g surface
and a canonical polygonal schema P on G with a common vertex p, a chord-free
polygonal schema P∗ can be found in O(gn) time.

Proof. We first use the polygonal schema to cut the embedding of G into a
topological disk; see Fig. 2(a). Notice this cutting will cause certain vertices to
be split into multiple vertices. For each fundamental cycle in ci ∈ P , we stitch
the disk graph back together along this cycle forming a topological cylinder. The
outer edges (left and right) of the cylinder along this stitch will have two copies
of the vertex p, say p1 and p2. We perform a shortest path search from p1 to
p2. This path becomes our new fundamental cycle c∗i , (since p1 and p2 are the
same vertex in G). Observe that this cycle must be chord-free or else the path

50 C.A. Duncan, M.T. Goodrich, and S.G. Kobourov

(a) (b)

Fig. 2. (a) A graph embedded on the torus that has been cut into a topological disk
using the cycles 1, 2, 3 and 1, 4, 7, 8, 11, 13, 15 with chord (4, 8). The grey nodes corre-
spond to the identical vertices above. The highlighted path represents a shortest path
between the two copies of vertex 1. (b) The topological disk after cutting along this
new fundamental cycle. The grey nodes show the old fundamental cycle.

chosen was not the shortest path; see Fig. 2(b). We then cut the cylinder along
c∗i and proceed to ci+1. The resulting set, P∗ = {c∗1, c∗2, . . . , c∗2g}, is therefore a
collection of chord-free fundamental cycles all sharing the common vertex p. ��
It should be noted that, although each cycle c∗i is at the time of its creation a
shortest path from the two copies of p, these cycles are not the shortest funda-
mental cycles possible. For example, a change in the cycle of ci+1 could introduce
a shorter possible path for c∗i , but not additional chords.

3 Straight Frame and Polynomial Area

In this section, we describe our algorithms that construct a drawing of G in a
straight frame using polynomial area. Here we are given an embedded genus-g
graph G = (V, E) along with a chord-free polygonal schema, P , for G from the
Peel step. We rely on a modified version of the algorithm of de Fraysseix, Pach
and Pollack [2] for the drawing. Sections 3.1 and 3.2 describe the details for g = 1
and for g > 1, respectively. In the latter case we introduce up to O(k) edges with
single bends where k is the number of vertices on the fundamental cycles. Thus,
we refer to the algorithm for non-toroidal graphs as the Peel-and-Bend algorithm.

3.1 Grid Embedding of Toroidal Graphs

For toroidal graphs we are able to achieve all three aesthetic criteria: straight-line
edges, straight frame, and polynomial area.

Theorem 2. Let G∗ be an embedded planar graph and P = {P1, P2, . . . , P4g}
in G∗ be a collection of 4g paths such that each path Pi = {pi,1, pi,2, . . . , pi,ki} is
chord-free, the last vertex of each path matches the first vertex of the next path,
and when treated as a single cycle, P forms the external face of G∗. If g = 1,
we can in linear time draw G∗ on an O(n)×O(n2) grid with straight-line edges
and no crossings in such a way that, for each path Pi on the external face, the
vertices on that path form a straight line.

Planar Drawings of Higher-Genus Graphs 51

Proof. For simplicity, we assume that every face is a triangle, except for the
outer face (extra edges can be added and later removed). The algorithm of
de Fraysseix, Pach and Pollack (dPP) [2] does not directly solve our problem
because of the additional requirement for the drawing of the external face. In
the case of g = 1, the additional requirement is that the graph must be drawn so
that the external face forms a rectangle, with P1 and P3 as the top and bottom
horizontal boundaries and P2 and P4 as the right and left boundaries.

Recall that the dPP algorithm computes a canonical labeling of the vertices of
the input graph and inserts them one at a time in that order while ensuring that
when a new vertex is introduced it can “see” all of its already inserted neighbors.
One technical difficulty lies in the proper placement of the top row of vertices.
Due to the nature of the canonical order, we cannot force the top row of vertices
to all be the last set of vertices inserted, unlike the bottom row which can be
the first set inserted. Consequently, we propose an approach similar to that of
Miura, Nakano, and Nishizeki [9]. First, we split the graph into two parts (not
necessarily of equal size), perform a modified embedding on both pieces, invert
one of the two pieces, and stitch the two pieces together.

Lemma 1. Given an embedded plane graph G that is fully triangulated except
for the external face and two edges el and er on that external face, it is possible
in linear time to partition V (G) into two subsets V1 and V2 such that

1. the subgraphs of G induced by V1 and V2, called G1 and G2, are both con-
nected subgraphs;

2. for edges el = (ul, vl) and er = (ur, vr), we have ul, ur ∈ V1 and vl, vr ∈ V2;
3. the union U of the set of faces in G that are not in G1 or G2 forms an

outerplane graph with the property that the external face of U is a cycle with
no repeated vertices.

Proof. First, we compute the dual D of G, where each face in (the primal graph)
G is a node in D and there is an arc between two nodes in D if their corresponding
primal faces share an edge in common. We ignore the external face in this step.
For clarity we shall refer to vertices and edges in the primal and nodes and arcs
in the dual; see Fig. 3(a). We further augment the dual by adding an arc between
two nodes in D if they also share a vertex in common. Call this augmented dual
graph D∗.

Let the source node s be the node corresponding to the edge el and the sink
node t be the node corresponding to the edge er. We then perform a breadth-first
shortest-path traversal from s to t on D∗; see Fig. 3(b). Let p∗ be a shortest
(augmented) path in D∗ obtained by this search. We now create a (regular) path
p by expanding the augmented arcs added. That is, if there is an arc (u, v) ∈ p∗

such that u and v share a common vertex in G but not a common edge in G,
i.e. they are part of a fan around the common vertex, we add back the regular
arcs from u to v adjacent to this common vertex. The choice of going clockwise
or counter-clockwise around the common vertex depends on the previous visited
arc; see Fig. 3(c).

All of the steps described above can be easily implemented in linear time. The
details of the proof can be found in [3]. ��

52 C.A. Duncan, M.T. Goodrich, and S.G. Kobourov

(a) (b)

(c) (d)

Fig. 3. (a) A graph G and its dual D. The dark edges/nodes represent the sink and
source nodes. (b) Each dual node is labeled with its distance (in D∗) from the start
node 0. A shortest path p∗ is drawn with thick dark arcs. This path includes the
augmented arcs of D∗. (c) The path p formed after expanding the augmented arcs.
The edges from the primal that are cut by this path are shown faded. (d) The two
sets V1 (light vertices) and V2 (darker vertices) formed by the removal of path p. The
external face of U is defined by the thick edges along with the edges (1, 2) and (3, 4).

Figure 3(d) illustrates the result of one such partition. In some cases we might
have to start and end with a set of edges rather than just the two edges el and
er. The following extension of Lemma 1 addresses this issue; the details of the
proof can be found in [3].

Lemma 2. Given an embedded plane graph G that is fully triangulated, except
for the external face, and given two vertex-disjoint chord-free paths L and R on
that external face, it is possible in linear time to partition V (G) into two subsets
V1 and V2 such that

1. the subgraphs of G induced by V1 and V2, called G1 and G2, are both con-
nected subgraphs;

2. there exists exactly one vertex v ∈ V (L) (say v ∈ V1) with neighbors in
V (L) \V2 (the opposite vertex set that are not part of V (L)), the same holds
for V (R); and

Planar Drawings of Higher-Genus Graphs 53

3. the union U of the set of faces in G that are not in G1 or G2 forms an
outerplane graph with the property that the external face of U is a cycle with
no repeated vertices.

We can now discuss the steps for the grid drawing of the genus-1 graph G∗

with an external face formed by P . Using Lemma 2, with L = P4 and R = P2,
divide G∗ into two subgraphs G1 and G2. We proceed to embed G1 with G2 being
symmetric. Assume without loss of generality that G1 contains the bottom path,
P3. Compute a canonical order of G1 so that the vertices of P3 are the last vertices
removed. Place all of the vertices of P3 on a horizontal line, p3,k3 , p3,k3−1, . . . , p3,1

placed consecutively on y = 0. This is possible since there are no edges between
them (because the path is chord-free). Recall that the standard dPP algorithm [2]
maintains the invariant that at the start of each iteration, the current external
face consists of the original horizontal line and a set of line segments of slope
±1 between consecutive vertices. The algorithm also maintains a “shifting set”
for each vertex. We modify this condition by requiring that the vertices on the
right and left boundary that are part of P2 and P4 be aligned vertically and
that the current external face might have horizontal slopes corresponding to
vertices from P3; see Fig. 4(a). Upon insertion of a new vertex v, the vertex will
have consecutive neighboring vertices on the external face. We label the left and
rightmost neighbors x� and xr . To achieve our modified invariant, we insert a
vertex v into the current drawing depending on its type, 0, 1, or 2, as follows:

Type 0. Vertices not belonging to a path in P are inserted as with the tradi-
tional dPP algorithm. This insertion might require up to two horizontal shifts
determined by the shifting sets; see Fig. 4(a).

Type 1. Vertices belonging to P2, which must be placed vertically along the
right boundary, are inserted with a line segment of slope +1 between x� and v
and a vertical line segment between v and xr. Notice that xr must also be in P2.
And because P2 is chord-free xr is the topmost vertex on the right side of the
current external face. That is, v can see xr. By Lemma 2 and the fact that the
graph was fully triangulated, we also know that v must have a vertex x�. This
insertion requires only 1 shift, for the visibility of x� and v. Again the remaining
vertices x�+1, . . . , xr−1 are connected as usual; see Fig. 4(b).

Type 2. Vertices belonging to P4, which must be placed vertically along the left
boundary, are handled similarly to Type 1.

Because of Lemma 2, after processing both G1 and G2, we can proceed to stitch
the two portions together. Shift the left wall of the narrower graph sufficiently to
match the width of the other graph. For simplicity, refer to the vertices on the ex-
ternal face of each subgraph that are not exclusively part of the wall or bottom
row as upper external vertices. For each subgraph, consider the point p located
at the intersection of the lines of slope ±1 extending from the left and rightmost
external vertices. Flip G2 vertically placing it so that its point p lies either on or
just above (in case of non-integer intersection) G1’s point. Because the edges be-
tween the upper external vertices have slope |m| ≤ 1 and because of the vertical
separation of the two subgraphs, every upper external vertex on G1 can directly

54 C.A. Duncan, M.T. Goodrich, and S.G. Kobourov

(a) (b)

Fig. 4. (a) The embedding process after insertion of the first 11 vertices and the subse-
quent insertion of a Type 0 vertex with v = 12, x� = 2, and xr = 11. Note the invariant
condition allowing the two partial vertical walls {8, 7, 5} ⊂ P2 and {1, 9, 10} ⊂ P4. The
light vertices to the right of 12 including xr have been shifted over one unit. (b) The
result of inserting a Type 1 vertex with v = 13, x� = 2, and xr = 8. Note, the light
vertices to the left of and including x� = 2 are shifted over one unit.

see every upper external vertex on G2. By Lemma 2, we know that the set of edges
removed in the separation along with the edges connecting the upper external ver-
tices forms an outerplanar graph. Therefore, we can reconnect the removed edges,
joining the two subgraphs, without introducing any crossings.

We claim that the area of this grid is O(n) × O(n2). First, let us analyze
the width. From our discussion, we have accounted for each insertion step using
shifts. Since the maximum amount of shifting of 2 units is done with Type
0 vertices, we know that each of the two subgraphs has width at most 2n.
In addition, the stitching stage only required a shifting of the smaller width
subgraph. Therefore, the width of our drawing is at most 2n. The stitching
stage for example only adds at most W ≤ 2n units to the final height. After the
insertion of each wall vertex we know that the height increases by at most W .
Therefore, we know that the height is at most Wn or 2n2 and consequently we
have a correct drawing using a grid of size O(n) × O(n2). Ideally, the height of
our drawing would also match the width bound. ��

3.2 The Peel-and-Bend Algorithm

The case for g > 1 is similar but involves a few alterations. First, we use n = |V |
unlike prior sections which used n = |V | + g. However, the main difference is
that having chord-free fundamental cycles is insufficient to allow rendering the
outer face as a rectangle unless edge bends are allowed. The following theorem
describes our resulting drawing method, called the Peel-and-Bend algorithm.

Theorem 3. Let G∗ be an embedded planar graph and P = {P1, P2, . . . , P4g}
in G∗ be a collection of 4g paths such that each path Pi = {pi,1, pi,2, . . . , pi,ki}
is chord-free, the last vertex of each path matches the first vertex of the next
path, and when treated as a single cycle, P forms the external face of G∗. Let

Planar Drawings of Higher-Genus Graphs 55

k =
∑4g

i=1(ki − 1) be the number of vertices on the external cycle. We can draw
G∗ on an O(n) × O(n2) grid with straight-line edges and no crossings and at
most k− 3 single-bend edges in such a way that for each path Pi on the external
face the vertices on that path form a straight line.

Proof. First, let us assume that the entire external face, represented by P , is
completely chord-free. That is, if two vertices on the external cycle share an
edge then they are adjacent on the cycle. In this case we can create a new set of
4 paths, P ′ = {P1,∪i=2,...,2gPi, P2g+1,∪i=2g+2,4gPi}. We can then use Theorem 2
to prove our claim using no bends.

If, however, there exist chords on the external face, embedding the graph
with straight-lines becomes problematic, and in fact impossible to do using a
rectangular outer face. By introducing a temporary bend vertex for each chord
and retriangulating the two neighboring faces, we can make the external face
chord-free. Clearly this addition can be done in linear time. Since there are at
most k vertices on the external face and since the graph is planar, there are
no more than k − 3 such bend points to add. We then proceed as before using
Theorem 2, subsequently replacing inserted vertices with a bend point. ��

4 Algorithms for Non-toroidal Graphs

In this section, we describe two more algorithms for producing a planar polygonal-
schema drawing of a non-toroidal graph G, which is given together with its
combinatorial embedding in an (orientable) genus-g surface, S, where g > 1. As
mentioned above, these algorithms provide alternative trade-offs with respect
to the three primary aesthetic criteria we desire for polygonal-schema drawings.
For the sake of space, we describe these algorithms at a very high level and leave
their details and full analysis to the full version of this paper [3].

The Peel-and-Stretch Algorithm. In the Peel-and-Stretch Algorithm, we
find a chord-free polygonal schema P for G and cut G along these edges to
form a planar graph G∗. We then layout the sides of P in a straight-frame
manner as a regular convex polygon, with the vertices along each boundary
edge spaced as evenly as possible. We then fix this as the outer face of G∗ and
apply Tutte’s algorithm [12,13] to construct a straight-line drawing of the rest
of G∗. This algorithm therefore achieves a drawing with straight-line edges in a
(regular) straight frame, but it may require exponential area when normalized
to an integer grid, since Tutte’s drawing algorithm may generate vertices with
coordinates that require Θ(n log n) bits to represent.

The Peel-and-Place Algorithm. For this method, we start by finding a
polygonal schema P for G and cut G along these edges to form a planar graph
G∗, as in all our algorithms. We then create a new triangular face, T , place G∗

in the interior of T , and fully triangulate this graph. We then apply the dPP
algorithm [2] to construct a drawing of this graph in an O(n)×O(n) integer grid
with straight-line edges. Finally, we remove all extra edges to produce a polyg-
onal schema drawing of G. The result will be a polygonal-schema drawing with

56 C.A. Duncan, M.T. Goodrich, and S.G. Kobourov

straight-line edges having polynomial area, but there is no guarantee that it is a
straight-frame drawing, since the dPP algorithm makes no collinear guarantees
for vertices adjacent to the vertices on the bounding triangle.

5 Conclusion and Future Work

In this paper, we present several algorithms for polygonal-schema drawings of
higher-genus graphs. Our method for toroidal graphs achieves drawings that si-
multaneously use straight-line edges in a straight frame and polynomial area.
Previous algorithms for the torus were restricted to special cases or did not
always produce polygonal-schema renderings [4,7,14]. Our methods for non-
toroidal graphs can achieve any two of these three criteria. It is an open problem
whether it is possible to achieve all three of these aesthetic criteria for non-
toroidal graphs. To our knowledge, previous algorithms for general graphs in
genus-g surfaces were restricted to those with “nice” polygonal schemas [15].

References

1. Chen, J., Kanchi, S.P., Kanevsky, A.: A note on approximating graph genus. In-
formation Processing Letters 61(6), 317–322 (1997)

2. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

3. Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Planar drawings of higher-genus
graphs. Technical report (August 2009), http://arxiv.org/abs/0908.1608

4. Eppstein, D.: The topology of bendless three-dimensional orthogonal graph draw-
ing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 78–89.
Springer, Heidelberg (2009)

5. Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. In: Proc. of
the 18th ACM Symp. on Computational Geometry (SCG), pp. 244–253 (2002)

6. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods 4(3), 312–316 (1983)

7. Kocay, W., Neilson, D., Szypowski, R.: Drawing graphs on the torus. Ars Combi-
natoria 59, 259–277 (2001)

8. Lazarus, F., Pocchiola, M., Vegter, G., Verroust, A.: Computing a canonical polyg-
onal schema of an orientable triangulated surface. In: Proc. of the 17th ACM Symp.
on Computational Geometry (SCG), pp. 80–89 (2001)

9. Miura, K., Nakano, S.-I., Nishizeki, T.: Grid drawings of 4-connected plane graphs.
Discrete and Computational Geometry 26(1), 73–87 (2001)

10. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins U. Press, Baltimore
(2001)

11. Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10(4),
568–576 (1989)

12. Tutte, W.T.: Convex representations of graphs. Proceedings London Mathematical
Society 10(38), 304–320 (1960)

13. Tutte, W.T.: How to draw a graph. Proc. Lon. Math. Soc. 13(52), 743–768 (1963)
14. Vodopivec, A.: On embeddings of snarks in the torus. Discrete Mathemat-

ics 308(10), 1847–1849 (2008)
15. Zitnik, A.: Drawing graphs on surfaces. SIAM J. Disc. Math. 7(4), 593–597 (1994)

http://arxiv.org/abs/0908.1608

	Planar Drawings of Higher-Genus Graphs
	Introduction
	Finding Polygonal Schemas
	Trade-Offs for Finding Polygonal Schemas
	Constructing Chord-Free Polygonal Schemas

	Straight Frame and Polynomial Area
	Grid Embedding of Toroidal Graphs
	The Peel-and-Bend Algorithm

	Algorithms for Non-toroidal Graphs
	Conclusion and Future Work

