
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 10, no. 2, pp. 353–363 (2006)

Planar embeddability of the vertices of a graph

using a fixed point set is NP-hard

Sergio Cabello

Department of Mathematics
IMFM and FMF, University of Ljubljana

Slovenia
http://www.fmf.uni-lj.si/˜cabello/

sergio.cabello@fmf.uni-lj.si

Abstract

Let G = (V, E) be a graph with n vertices and let P be a set of n points
in the plane. We show that deciding whether there is a planar straight-line
embedding of G such that the vertices V are embedded onto the points
P is NP-complete, even when G is 2-connected and 2-outerplanar. This
settles an open problem posed in [2, 4, 13].
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1 Introduction

A geometric graph H is a graph G(H) together with an injective mapping of its
vertices into the plane. An edge of the graph is drawn as a straight-line segment
joining its vertices. We use V (H) for the set of points where the vertices of G(H)
are mapped to, and we do not make a distinction between the edges of G(H)
and H. A planar geometric graph is a geometric graph such that its edges
intersect only at common vertices. In this case, we say that H is a geometric
planar embedding of G(H). See [14] for a survey on geometric graphs.

Let P be a set of n points in the plane, and let G be a graph with n vertices.
What is the complexity of deciding if there is a straight-line planar embedding
of G such that the vertices of G are mapped onto P? This question has been
posed as open problem in [2, 4, 13], and here we show that this decision problem
is NP-complete. Let us rephrase the result in terms of geometric graphs.

Theorem 1 Let P be a set of n points, and let G be a graph on n vertices.
Deciding if there exists a geometric planar embedding H of G such that V (H) =
P is an NP-complete problem.

The reduction is from 3-partition, a strongly NP-hard problem to be de-
scribed below, and it constructs a 2-connected graph G. The proof is given in
Section 2, and we use that the maximal 3-connected blocks of a 2-connected pla-
nar graph can be embedded in different faces. In a 3-connected planar graph,
all planar embeddings are topologically equivalent due to Whitney’s theorem
[9, Chapter 6]. Therefore, it does not seem possible to extend our technique to
show the hardness for 3-connected planar graphs.

Related work A few variations of the problem of embedding a planar graph
into a fixed point set have been considered. The problem of characterizing what
class of graphs can be embedded into any point set in general position (no three
points being collinear) was posed in [11]. They showed that the answer is the
class of outerplanar graphs, that is, graphs that admit a straight-line planar
embedding with all vertices in the outer face. This result was rediscovered in
[5], and efficient algorithms for constructing such an embedding for a given
graph and a given point set are described in [2]. The currently best algorithm
runs in O(n log3 n) time, although the best known lower bound is Ω(n log n).

A tree is a special case of outerplanar graph. In this case, we also can choose
to which point the root should be mapped. See [3, 12, 15] for the evolution on
this problem, also from the algorithmical point of view. For this setting, there
are algorithms running in O(n log n) time, which is worst case optimal. Bipartite
embeddings of trees were considered in [1].

If we allow each edge to be represented by a polygonal path with at most
two bends, then it is always possible to get a planar embedding of a planar
graph that maps the vertices to a fixed point set [13]. If a bijection between the
vertices and the point set is fixed, then we need O(n2) bends in total to get a
planar embedding of the graph, which is also asymptotically tight in the worst
case [16].
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We finish by mentioning a related problem, which was the initial motivation
for this research. A universal set for graphs with n vertices is a set of points Sn

such that any planar graph with n vertices has a straight-line planar embedding
whose vertices are a subset of Sn. Asymptotically, the smallest universal set
is known to have size at least 1.098n [6], and it is bounded by O(n2) [7, 17].
Characterizing the asymptotic size of the smallest universal set is an interesting
open problem [8, Problem 45].

2 Planar embeddability is NP-complete

It is clear that the problem belongs to NP: a geometric graph H with V (H) = P

and G(H) ≡ G can be described by the bijection between V (G) and P , and for
a given bijection we can test in polynomial time whether it actually is a planar
geometric graph; therefore, we can take as certificate the bijection between V (G)
and P .

For showing the NP-hardness, the reduction is from 3-partition.

Problem: 3-partition
Input: A natural number B, and 3n natural numbers a1, . . . , a3n

with B
4

< ai < B
2
.

Output: n disjoint sets S1, . . . , Sn ⊂ {a1, . . . , a3n} with |Sj | = 3 and∑
a∈Sj

a = B for all Sj .

We will use that 3-partition is a strongly NP-hard problem, that is, it is NP-
hard even if B is bounded by a polynomial in n [10]. Observe that because
B
4

< ai < B
2
, it does not make sense to have sets Sj with fewer or more than 3

elements. That is, it is equivalent to ask for subdividing all the numbers into
disjoint sets that sum to B. Of course, we can assume that

∑3n

i=1
ai = Bn, as

otherwise it is impossible that a solution exists.
Given a 3-partition instance, we construct the following graph G (see Figure

1):

• Start with a 4-cycle with vertices v0, . . . , v3, and edges (vi−1, vi mod 4).
The vertices v0 and v2 will play a special role.

• For each ai in the input, make a path Bi consisting of ai vertices, and put
an edge between each of those vertices and the vertices v0, v2.

• Construct n − 1 triangles T1, . . . , Tn−1. For each triangle Ti, put edges
between each of its vertices and v2, and edges between two of its vertices
and v0. We call each of these structures a separator (the reason for this
will become clear later).

• Make a path C of (B + 3)n vertices, and put edges between each of the
vertices in C and v0. Furthermore, put an edge between one end of the
path and v1, and another edge between the other end and v3.
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Figure 1: Graph G for the NP-hardness reduction.
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It is easy to see that G is planar; in fact, we are giving a planar embedding of
it in Figure 1. The idea is to design a point set P such that G \ (B1 ∪ · · · ∪B3n)
can be embedded onto P in essentially one way. Furthermore, the embedding
of G \ (B1 ∪ · · · ∪B3n) will decompose the rest of the points into n groups, each
of B vertices and lying in a different face. The embedding of the remaining
vertices B1 ∪ · · · ∪ B3n will be possible in a planar way if and only if the paths
Bi can be decomposed into groups of exactly B vertices, which is equivalent to
the original 3-partition instance. The following point set P will do the work
(see Figure 2):

• Let K := (B + 2)n.

• Place (B+3)n points at coordinates (0,−n), (0,−(n−1)), . . . , (0,−1) and
at coordinates (0, 1), (0, 2), . . . , (0,K).

• Place points p0 := (1, 0), p1 := (K,K), p2 := (2K, 0), p3 := (K,−n). In
the figure, these points are shown as boxes and are labeled.

• For each i ∈ {0, . . . , n − 1}, place the group of B points (K,−2 + (B +
2)i + 1), (K,−2 + (B + 2)i + 2), . . . , (K,−2 + (B + 2)i + B).

• For each i ∈ {1, . . . , n− 1}, place the group of three points (K, (B + 2)i−
3), (K, (B + 2)i− 2), . . . , (K + 1, (B + 2)i− 3). In the figure, these points
are shown as empty circles.

Let CH (P ) be the points in the convex hull of P . Notice that CH (P ) consists
of the points with x-coordinate equal to 0, and the points p1, p2, p3.

The rest of the proof goes in two steps. Firstly, we will show that, in any ge-
ometric planar graph H such that G(H) is isomorphic to G and V (H) = P , the
vertices of C ∪ {v1, v2, v3} are mapped to CH (P ), and the vertices v0, v1, v2, v3

are mapped either to p0, p1, p2, p3, respectively, or to p0, p3, p2, p1, respectively.
In particular, v0, v2 are always mapped to p0, p2, respectively. Secondly, we
will discuss why a mapping of the rest of the vertices, namely vertices in
G\ (C∪{v0, v1, v2, v3}), onto the rest of the points, namely P \ (CH (P )∪{p0}),
provides a geometric planar graph if and only if the 3-partition instance has a
solution.

For the first step, consider the subgraph G̃ of G induced by the vertices of
C and v0, . . . , v3; see Figure 3. The graph G̃ is a subdivision of a 3-connected
graph; consider replacing the path v1, v2, v3 by the edge v1, v3. Therefore, be-
cause of Whitney’s theorem [9, Chapter 6], in any topological planar embed-
ding of G̃, the faces are always induced by the same cycles. In particular, in
any planar embedding of G̃ we will get the same faces as shown in Figure 3.
Furthermore, in any planar embedding of G, all the vertices of G \ G̃ have to
be drawn inside the cycle v0, v1, v2, v3 (notice that this cycle may be the outer
face). This means that in any planar embedding of G we have the faces induced
by G̃ plus the faces induced by G \ G̃ inside the face v0, v1, v2, v3.

Any planar embedding of G has Bn + 3(n − 1) vertices placed inside the
cycle v0, v1, v2, v3, and so any face inside the cycle v0, v1, v2, v3 has fewer than
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Figure 2: Point set P for the NP-hardness reduction. K = (B + 2)n.

Bn + 3(n − 1) + 4 < (B + 3)n + 3 vertices. However, we always have a face
consisting of (B + 3)n + 3 vertices, namely the outer face of G̃ in Figure 3. We
conclude that, in any planar embedding of G, there is always a unique face with
(B + 3)n + 3 vertices, and it is induced by the vertices in C ∪ {v1, v2, v3}.

Recall that CH (P ) denotes the points in the convex hull of P , and observe
that it consists of exactly (B + 3)n + 3 points. In any geometric planar graph,
all the points in the convex hull have to be part of the outer face, and therefore,
the vertices in C ∪ {v1, v2, v3} have to be mapped onto the points CH (P ).

Next, observe that the vertex v0 has an edge with each point in C ∪{v1, v2},
and the rest of the vertices have to lie inside one single face, namely v0, v1, v2, v3.
Among the points P \ CH (P ), only p0 has this property, and we conclude
that the vertex v0 has to be mapped to the point p0. Furthermore, the ver-
tices v0, v1, v2, v3 have to be mapped to either p0, p1, p2, p3, respectively, or to
p0, p3, p2, p1, respectively. In any case, v0 is always mapped to the point p0, and
v2 is mapped to the point p2.

This concludes the first step of the proof. Figure 4 shows with solid straight
segments the part of G which has been already embedded onto P .

For the second step, the only points of P that do not have vertices assigned
to them are P̃ := P \ (CH (P ) ∪ {p0}). Consider one of the triangles Ti ⊂ G.
To realize it, we need to find three points p, q, r ∈ P̃ such that r is the only
point contained in the triangle p2pq, and the triangle p0pq contains no points.
Only the groups of three adjacent points that are marked with empty circles
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Figure 3: Subgraph G̃ of G induced by C and v0, . . . , v3. It is a subdivision of a
3-connected graph; we obtain it by inserting the vertex v2 in the middle of the
edge v1, v3.
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Figure 4: Part of G embedded onto P . The edges with solid segments are
embedded at the end of the first step. We can have either p1 ≡ v1 and p3 ≡ v3,
or p1 ≡ v3 and p3 ≡ v1. The edges with dotted segments are the separators
placed during the second step. They induce the faces F1, . . . Fn.
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have this property, that is, the separators that were added in the last item when
generating the point set P . There are n − 1 triangles Ti, and n − 1 separators,
so each triangle gets assigned to one separator. The induced edges are drawn
with dotted segments in Figure 4.

We are left with n faces F1, . . . , Fn, each containing exactly B points; see
Figure 4. For a geometric planar embedding H of G having V (H) = P , each of
the paths Bi has to lie completely inside some face Fji

. Therefore, a geometric
planar embedding of G is possible if and only if B1, . . . , B3n can be arranged in
groups such that each of the groups has exactly B vertices. However, because
|V (Bi)| = ai, such a geometric planar embedding of G is possible if and only if
the 3-partition instance has a solution.

Because 3-partition is NP-hard even when B is bounded by a polynomial
in n, the graph G has a polynomial number of vertices, and the point set P

also has a polynomial number of points. Furthermore, the coordinates of the
points in P are bounded by polynomials and the whole reduction can be done
in polynomial time. This finishes the proof of Theorem 1. 2

3 Concluding remarks

The point set P that we have constructed has many collinear points. However, in
the proof we have not used this fact, and so it is easy to modify the reduction in
such a way that no three points of P are collinear. Probably, the easiest way for
keeping integer coordinates is replacing each of the points lying in a vertical line
by points lying in a parabola, and adjusting the value K accordingly. Therefore,
the result remains valid even if P is in general position, meaning that no 3 points
are collinear.

In the proof, the graph G that we constructed is 2-outerplanar, as shown in
Figure 1. k-outerplanarity is a generalization of outerplanarity that is defined
inductively. A planar embedding of a graph is k-outerplanar if removing the
vertices of the outer face produces a (k − 1)-outerplanar embedding, where 1-
outerplanar stands for an outerplanar embedding. A graph is k-outerplanar if it
admits a k-outerplanar embedding. For (1-)outerplanar graphs, the embedding
problem is polynomially solvable [2], but for 2-outerplanar we showed that it is
NP-complete. Therefore, regarding outerplanarity, our result is tight.

The graph G that we constructed in the proof is 2-connected; removing the
vertices v1, v3 disconnects the graph. As mentioned in the introduction, we
have strongly used this fact in the proof because in a 2-connected graph the
maximal 3-connected blocks can flip from one face to another one. Therefore, it
would be interesting to find out the complexity of the problem when the graph
G is 3-connected, and more generally, the complexity when the topology of the
embedding is specified beforehand.
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