Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1988

Planar Graph Decomposition and All Pairs Shortest Paths

Greg N. Frederickson
Purdue University, gnf@cs.purdue.edu

Report Number:
88-788

Frederickson, Greg N., "Planar Graph Decomposition and All Pairs Shortest Paths" (1988). Department of
Computer Science Technical Reports. Paper 675.
https://docs.lib.purdue.edu/cstech/675

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PLANAR GRAPH DECOMPOSITION AND
ALL PAIRS SHORTEST PATHS

Greg N. Frederickson
CSD-TR-788

July 1988
(Revised Oclober 1989)

PLANAR GRAPH DECOMPOSITION AND ALL PAIRS SHORTEST PATHS*

(revised October 1989)

Greg N. Frederickson

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

* This research was supporied in part by the Natonal Science Foundation under Grants DCR-
8320124 and CCR-8620271, and by the Olfice of Naval Research uader conmract N00014-86-K-0689.

Abstract. An algorithm is presented for generating a succinct encoding of all pairs shor-
test path informaton in a directed planar graph G with real-valued edge costs but no
negative cycles. The algorithm runs in O (pn) time, where n is the number of vertices in
G, and p is the minimum cardinality of a subset of the faces that cover all vertices, taken
over all plana.-r embeddings of G. The algorithm is based on a decomposition of the
graph into O (pn) outerplanar subgraphs satisfying certain separator properties. Linear-
time algorithms are presented for various subproblems including that of finding an
appropriate embedding of G and a corresponding face-on-vertex covering of cardinality
O(p), and of generating all pairs shortest path information in a directed outerplanar

graph.

Key words and phrases. all pairs shortest paths, approximation algorithm, compact
routing table, graph embedding, NP-completeness, outerplanar graph, planar graph, suc-

cinct encoding.

A fundamental problem in graph algorithms is that of determining shortest path
information in a graph [AHU, DP]. Efficient algorithms for various versions of this prob-
lem have been proposed [D, Fl, Fs2, Fm, FT, W], with recent emphasis on exploiting
topological features of the input graph, such as edge sparsity and planarity [FT, Fs2].
Consider the all pairs shortest paths problem on a directed graph with real-valued edge
weights, but no negative cycles. In this paper we introduce a new approach for this prob-
lem, using a succinct encoding of shortest path information based on the topology of the
graph. We present algorithms that handle n-vertex planar graphs in time that ranges from
O(@m)upto O (nz) as the topological properties of the graphs become more complex. By
encoding shortest path information in what we call compact routing tables, we avoid a
lower bound of Q(nz) time that would be needed if the output were required to be in the

form of n shortest path tees.

Let G be a plane embedding of a planar graph G. We call a set of faces of G that
together cover all the vertices a face-on-vertex covering. An example of an embedded
planar graph Gand a face-on-vertex covering of G is shown in Figure 1. Let p be the
minimum cardinality of any face-on-vertex covering over all plane embeddings of G.
The value of p ranges from 1 up to &(n), depending on the planar graph. Given planar
graph (, but no embedding, our algorithm constructs compact routing tables for all pairs
shortest paths in a directed planar graph in O (pn) time. Previous algorithms had perfor-
mance of O(n3(loglogn)“3r’(logn)m) for general graphs [Fm)], O (nm +n210gn) for
sparse graphs [FT1, O (n?) for planar graphs [EFs2], and O (n) for undirected outerplanar

graphs [FJ1], where m is the number of edges in the graph.

Qur choice of output in the form of compact routing tables is natural, as shortest
path information in this form is useful in space-efficient methods for message routing in
distributed networks [FJ1, FJ2]. In the conclusion we shall discuss an alternative encod-
ing that costs only O (n + p2) time to generate. We also give an algorithm that identifies

all edges that violate the generalized triangle inequality in O (n + p2) time.

We identify several nice structural properties of planar graphs. Given a face-on-
vertex covering of cardinality p’, we identify a decomposition of a planar graph into
O (p") particularly appropriate subgraphs, called hammocks. We prove a monotonicity
property, which characterizes the difference of the distance from a vertex to two other
vertices as the vertex moves around a face in the embedding. To handle our all pairs
shortest paths problem, we identify and solve the following four subproblems (the latter

two of which are approximation problems for NP-hard problems!):

1. Suppose we are given a directed outerplanar graph with real-valued edge costs,
but no negative cycles. We present an algorithm that determines shortest path informa-
tion in O (n) time. The approach in [FJ1] for undirected outerplanar graphs does not
work in the directed case, since for directed outerplanar graphs there is no property com-

parable to the reflection property.

2. Suppose we are given a directed planar graph G with real-valued edge costs
but no negative cycles, Suppose we are also given an embedding G of G, and a face-on-
vertex covering of G of cardinality j;’. We present an algorithm that determines shortest

path information in O (p’n) time.

3. Suppose that an embedding G of an undirected planar graph G is given, but no

face-on-vertex covering is provided. It has been shown in [FL, BM] that it is NP-
compiete to determine if there 1s a face-on-vertex covering of cardinality at most p*. We
present an algorithm that determines a face-on-vertex covering of cardinality at most
twice that of a minimum cardinality face-on-vertex covering for G. This algorithm 1is

based on an approach in {B], and runs in O () time.

4. Suppose we are given an undirected planar graph G, but no embedding G.
Note that there are planar graphs for which one embedding has a face-on-vertex covering
of cardinality 2, while another embedding has a face-on-vertex covering of minimum
cardinality &(n). An algorithm to determine a minimum cardinality face-on-vertex cov-
ering and associated embedding is given in (BM], but takes O (2’n) dme. This is too
much for our shortest paths application except when p is ©(1). We give an algorithm
that finds an embedding G and a face-on-vertex coverng in G of cardinality within a
constant factor of the minimum cardinality covering for any embedding of G. The algo-
rithm uses a decomposition of & into wriconnected components [HT1], and runs in O (n)

time.

Qur algorithm for problem 1 is used in the solution of problem 2, and our algo-
rithm for problem 3 is used in the solution of problem 4. The all pairs shortest paths
problem in planar graphs can then be solved as follows. Given a directed planar graph G,
we first find a good embedding and a good face-on-vertex covering by converting the
directed edges to undirected edges, and then applying the algorithm for problem 4.
Given the good embedding and the good face-on-vertex covering, we then use the algo-

rithm for problem 2.

Our paper is organized as follows. In section 2 we discuss compact routing
tables, and then describe a decomposition of a planar graph. In section 3 we present an
algorithm for finding all pairs shortest paths in directed outerplanar graphs. In section 4
we sketch our basic approach for solving all pairs shortest paths in planar graphs, and
present the monotonicity property and its application. In section 5 we show how to gen-
erate shortest path information between the subgraphs in our decomposition. In section 6
we show how to generate shortest path information within each subgraph in our decom-
position. In sections 7 and 8 we describe our approximation algorithm for finding a good
embedding and a good face-on-vertex covering. In section 9 we discuss verifying the tri-

angle inequality, and give another encoding of all pairs shortest paths.

A preliminary version of this paper appeared in [Fs3].

2. Structure of planar graphs

In this section we first review the notion of compact routing tables. We then
define, relative to a given face-on-vertex covering of a planar graph, subgraphs that we
term hammocks. Hammocks have several nice properties that make them especially
appropriate for use in shortest paths algorithms. A hammock is outerplanar, each ham-
mock shares at most four vertices with the rest of the graph, and the vertices in a ham-
mock form two chains of consecutive vertices along faces in the face-on-vertex covering.
Our definition of hammocks leads to a linear-time algorithm for decomposing a planar

graph into O (p’) hammocks, if the given face-on-vertex coverin g-has p’ faces.

We first discuss the idea of compact routing tables, which appears in [FJ1] and is

based on ideas in [SK, vLT]. Let the vertices be assigned names from 1 to # in an
appropriate manner to be discussed. For every edge <v, w> incident from any given
vertex v, let § (v, w) be the set of vertices such that there is a shortest path from v to each
vertex in S (v, w) with the first edge on this path being <v, w>. A tie occurs if there is a
vertex u such that there is a shortest path from v to u with the first edge on this path being
<v, w> and also a shortest path from v to u with the first edge on this path being
<v, w> for some w'#w. In the event of ties, an appropriate tie-breaking rule is
employed so that for each pair of vertices v and u # v, u is in just one set S (v, w) for
some w. Let each set S (v, w) be described as a union of a minimum number of subinter-
vals of [1, n]. Here we allow a subinterval to wrap around from n back 1o 1, i.e., 2 set
{6 i+1, ---.n, 1,2, ---, j}, where { > j+1 will be described by [i, j]. We call the
set S (v, w) described in the form of a minimum number of subintervals of [1, n] the

label of edge <v, w>.

For example, consider an outerplanar graph. (A graph is outerplanar if it can be
embedded in the plane such that all vertices are on one face [H].) It was shown in [FJ1]
that if the vertices of an undirected outerplanar graph are named in clockwise order
around this one face, then each set S(v, w) is a single interval [/, A]. Clearly this pro-
perty also holds for directed outerplanar graphs. A compact routing table for v consists
of a list of initial values / of each interval, along with pointers to the corresponding
edges. The list is a rotated list [MS, Fs1], and can be searched using a modified binary

search.

A linear-time algorithm has been presented in [FJ1] for determining the labels of

all edges of an undirected outerplanar graph. (For an undirected graph, each edge has

two labels, one corresponding to each endpoint of the edge, since the edge can be
traversed in either direction.) In the next section we give a linear-time algorithm for
determining the labels of all edges of a directed outerplanar graph. If the graph is not
outerplanar, i.e., p > 1, then an edge label S (v, w) can consist of more than one subinter-
val. A compact routing table will then have an entry for each of the subintervals con-
tained in an edge label at v. It can be shown that the total size of all compact routing
tables for directed planar graphs is O (pn). (The proof is essentially the same as the proof

in [FJ1] for undirected planar graphs.)

For the remainder of the section we discuss a decomposition of an embedded
directed planar graph with no self-loops into subgraphs, each of which is outerplanar, and
each of which shares at most four vertices with all other subgraphs in the decomposition.
Let G = (V, E, F) be an embedding of G with a face-on-vertex covering F’ of p’ faces,
where p” > 1. To generate the decomposition, we shall first convert the embedded
directed graph G into an embedded undirected planar graph él =(V,, £, F) with cer-
tain nice properties, along with a face-on-vertex covering F’ of size p’. We shall then
identify certain subgraphs in G 1, and convert these back into the desired subgraphs of G.
The conversion will be such that él has no parallel edges, that all faces in Fy; — F;” are
bounded by three edges, that no pair of faces in F,” share a vertex, and that the boundary
of each face is a simple cycle. We call an embedded undirected planar graph that
satisfies the above assumptions neatly prepared. We describe the stucture of CA}l with
respect to F{’, and give a decomposition of 61 into O (p") outerplanar graphs. At the

end of the section we discuss how to perform the conversions.

In the case that p’=2, there is a special procedure which we discuss subse-
quently. Otherwise, for p” > 2, let the faces in F,” be indexed with the integers from 1 to
p’. We label the faces of | — F " with a 4-tuple (i, j, &, r). The values i, j and k are
the indices of the faces in ', containing the three vertices of the face. These are ordered
so that £ = j implies i = j. The value r is the number of edges of the face that are shared
with faces in #". Thus (i, , j, 1) represents a face that has two vertices on face f; and
one on face f;, with the two vertices on face f; adjacent via an edge on face f;. Also,
(i, i, I, 2) represents a face with three vertices on face f;, with one pair of vertices adja-

cent via an edge on f;, and a second pair adjacent via a second edge that is also on f;.

We now show how to group the faces together to form hammocks, using two
operations: absorption and sequencing. We first perform absorption. Consider a pair of
faces in F; — F{” that share an edge. Suppose the labels are (i, i, i, 2yand (G, i, f, r),
where either j=iand r =1, or j #i and r =0. Absorb the first face into the second, and
relabel it as (7, i, j, r-+1). This is equivalent to performing the following operations on
the embedded graph. First contract an edge thart the first face shares with face f;. The
first face becomes a face bounded by two parallel edges, one of which is shared with the
second face. Then delete this edge, effectively merging the faces. Repeat the absorption

operation until it can no longer be applied.

Once the absorption operation can be applied no longer, we group the remaining
faces by sequencing. Identify maximal sequences of faces such that each consecutive
pair of faces in the sequence share an edge in common, and all faces have the label
G i, J, D or (j, j, i, 1), for some pair of indices { and j. A special case arises if such a

sequence of faces extends ail the way around one of the faces in F{’, say f;. In this case

there is a vertex on f; that is contained in both the first and last faces of the sequence.
Split this vertex into two vertices. Each such sequence of faces then comprises an outer-
planar graph. Expanding the faces that were absorbed into faces in the sequence yields a
graph that 18 still outerplanar. Each such resulting graph is called a (major) hammock, so
called because it stretches berween two faces. The first and last vertices on each of these
two faces of the hammock are called the vertices of attachment. Any edge that is not
included in a major hammock is taken individually to induce a (minor) hammock. The
set of all major and minor hammocks comprises a hanunock decomposition of the embed-

ded graph él.

In Figure 2 is an undirected embedded planar graph that was generated from the
directed embedded planar graph given in Figure 1. (We discuss this generation later.)
Let the faces in the face-on-vertex covering be indexed: f covers vertices 1-7, f covers
vertices 8-11, f3 covers vertices 12-14, f4 covers vertices 15-20, and f5 covers vertices
21-23. The face containing vertices 9, 10, and 11 will have label (2, 2, 2, 2), and the
face containing vertices 3, 9, and 11 will have label (2, 2, 1, 0). Absorbing the first face
into the second by contracting edge (9, 10) and deleting edge (9, 11) will yield a face
with vertices 3, 9, and 11 and label (2, 2, 1, 1). Then a maximal sequence of faces
berween faces f; and f; contains faces with vertex sets {3, 9, 11}, {3, 4, 9}, 4, 9, 8},
{4, 8, 11}, and {4, 5, 11}. (The face {3, 9, 11} in this sequence is the result of absorbing
face {9, 10, 11} into the original face {3, 9, 11} of Figure 2. As noted earlier, this result-
ing face has edge (9, 11) on face f,.) Note that this sequence extends all the way around
face fo. Thus the vertex 11 should be split into two vertices, say 11° and 11”. The edges

in the corresponding major hammock will be (9, 10), (9, 117), (10, 11’9, (3, 9), (3, 4),

4,9, (8,9, (4, 8), (8, 11, (4, 11°), (4, 5), (5, 11", and (3, 11”). These are listed in an
order of six instances of an edge that can be contracted followed by an edge that can be
deleted, culminating with a final edge that remains, as discussed in the proof of the
upcoming Lemma 2.2. Note that the vertices of attachment of this hammock are 3, 117,

5,and 117,

Note that a major hammock can span between two different sequences of vertices
on the same face in F1”, as is shown by the hammock that spans vertices {1, 7, 3}. There
can also be two different hammocks spanning between the same pair of faces, as shown
by the hammock spanning vertices {3, 6, 7, 16, 15, 20} and the hammock spanning ver-
tices {7, 16, 17}. Other major hammocks span the vertex sets {1, 2, 3, 12, 13, 14},
{17, 18, 19, 20, 21, 22, 23}, and {7, 21, 23}. Note that edges (7, 11) and (11, 16) each

induce a minor hamnmock.

If p" =2, then E?l can be decomposed as follows. (Note that after absorbing all
possible faces, there would be a cycle of faces rather than a sequence of faces.) Identfy
a face notin |’ that contains vertices not all on the same face in F{*. OFf the vertices on
this face, choose two which are on different faces of F,’. Split each of these vertices into
two vertices, and reconnect the edges so that the face not in F” and the two faces in F
are merged. The resulting graph is ocuterplanar, and we designate it a major hammock.

The vertices of attachment are the four vertices resulting from the splitting.

Lemma 2.I. The above algorithm generates a decomposition of a neatly prepared

embedded undirected planar graph into hammocks.

10

Proof. We claim that there is a one-to-one correspondence between the edges in Er'l and
the edges in the hammocks of the hammock decomposition of él. If o =2, then this is
clearly true. Thus we consider the case in which p® > 2. First it is clear that any edge in
G 1 has at least one corresponding edge in the hammocks of the decomposition, since any
edge not in a major hammock is inserted into a harmmock of its own. Suppose that there
were an edge in él that is in more than one major hammock. This edge cannot be an
edge on some face f; in F’, since such an edge is in only one face in F{ — F;”, and each
face in F; — F” is included in at most one sequence of faces. Thus this edge must be
shared by two faces in F; — F’, each of which is included in a different hammock. Let
one face have label (i, i, j, ‘1) after all absorptions. The edge it shares must be between
faces f; and f;. Thus the other face must have label (i, i, j, 1) or (J, J, i, 1) after all
absorptions. But in either case this face would be in the same sequence as the first. It

follows that an edge cannot be shared by two faces in F; — £,”. Thus the claim follows.

It is not hard to verify that the vertices of attachment of any hammock are the

only vertices shared with any other hammocks. OJ

Lemma 2.2. Let él be a neatly prepared embedded undirected planar graph with a
face-on-vertex covering of p” > 1 faces. There are max{3p’ — 6, 1} hammocks in a ham-

mock decomposition of G ;.

Proof. If p”=2, then clearly there is only one hammock. For p” > 2, consider the fol-
lowing construction. Generate embedded graph &;, from él as follows. First mimic the
absorption of faces by contracting and deleting edges as discussed previously. After the

absorption of faces has been mimicked, we compress major hammocks as follows. For

11

every edge that is on some face f; in £’ and in a major hammock, contract the edge, and
delete one of the two resulting parallel edges. Such operations should be performed so as
to preserve the embedding. Call the resulting graph CA};,. It follows that in é;, there is a
vertex corresponding to each face in F’, and each edge in éh corresponds to a hammock
in él. It is also clear that there is no face bounded by two paraliel edges in é;,. There
are no faces bounded by a single edge, which follows from the way faces labeled by

(i, i, i, 2) are absorbed.

Let Vi, Ey and Fj, be the sets of vertices, edges and faces of éh. Since there is no
face bounded by a single edge and no face bounded by just two edges, any face in éh
must be bounded by three edges. (Note that there are potentially Ioops in the graph, but
these do not individually enclose faces in the embedding, and similarly that there may be
two edges with the same endpoints, but these do not alone bound any face.) Thus
|Fpl =2|E, /3. Since (};, is planar, Buler’s formula [H] gives |V,| — |Ey| + |Fy|
=2. Combining yields |E,| =3]|V,| —6. Since {V,| =p’, and |E, | is the number of

hammocks, the result follows. [J

We now discuss how (o convert an embedded undirected graph
ég =V, E¢, Fo), with face-on-vertex covering F’y, into an embedded undirected graph
él =(Vy, £), Fy) with face-on-vertex covering F,’, which is neatly prepared. Recall
that él is neatly prepared if él has no parallel edges, all faces in F; — F’ are bounded
by three edges, no pair of faces in £’ share a vertex, and the boundary of each face is a
simple cycle. First consider any vertex v appearing more than once in a clockwise walk

around a face. Since there are no loops or parallel edges in the graph, the preceding and

i2

succeeding vertices u and w on the walk are distinct from v and from each other. Ver-
tices u and w are not adjacent, since every path from u to w must necessarily contain v,
Add an edge from u to w. If the face so split was in F*g, replace it with the resulting face
that is enclosed by the clockwise walk, but with edges (u, v) and (v, w) replaced by

(4, w). Repeat this operation until the boundary of every face is a simple cycle.

Designate as a shared vertex any vertex shared by two faces in F'y. Suppose a
face f; in £’y conrtains at least four vertices, with at least one shared vertex v. Let # and w
be the preceding and succeeding vertices in a clockwise walk around f;. Add an edge
from u to w, and replace f; in F’y with the resulting face that is enclosed by the clockwise
walk, but with edges (x4, v} and (v, w) replaced by (1, w). Repeat this operation until

every remaining shared vertex is on a face in F'y with three vertices.

For any remaining vertex v shared by faces f; and f;, replace v by vertices v' and
v/ and edge (vf, v/). Replace edges (v, w) by (vi, w) or (vf » W), so that the clockwise
walks around f; and f; are the same except with v replaced by v’ and v/, respectively,
and planarity is preserved. Finally add edges as necessary to triangulate faces in

Fg — F'y. The resulting undirected graph G satisfies the assumptions stated earlier.

We handle an embedded directed graph G in the following way. We assume that
if both edges <v, w> and <w, v> are in f}, then they together bound a face. To gen-
erate undirected graph éo, replace each directed edge <v, w> by an undirected edge
(v, w), and remove duplicates. Embedded graph él is generated from éo in the manner
discussed above. The hammmocks for él are determined using the main algorithm of this

section. Delete any edges from the hammocks which were added in converting &0 to

13

G 1, noting that any minor hammocks that lose their single edges can be deleted. Replace
the remaining edges by the directed edges thar they replaced in the conversion from G to

ég. We call the resulting subgraphs hammocks of the embedded directed planar graph.

Theorem 2.1. Let G be an embedding of an n-vertex directed planar graph with a face-
on-vertex covering F’ of p’ faces. Given G and F', the above algorithm will generate a

decomposition of G into O (p") hammocks in O (n) time.

Proof. It is reasonable to assume that G is presented so that edges are maintained in cir-
cular doubly-linked lists in order around each vertex, and are also maintained in circular
doubly-linked lists in order around each face. Then the conversions of G to ég, and ég
to él will take O (#) time. The conversions will result in a planar undirected graph of
O (n) vertices, with a face-on-vertex covering of p’ faces. The hammocks are determined
by our procedure in O () time, since each absorption can be performed in constant time,
and the handling of 2 maximal sequence of faces can be performed in time proportional
to the number of faces in the sequence. By Lemma 2.1, the decomposition generates
outerplanar subgraphs, each of which shares at most four vertices. By Lemma 2.2, the

number of such graphs generated will be O (p”). O

An undirected embedded planar graph is given in Figure 2 for the directed
embedded planar graph in Figure 1. Note that vertex 4 was a shared vertex, and an edge
(8, 11) was added to remedy this sitvation. In addition, edges (1, 14), (3, 12), (5, 15),

(6, 16) (7, 11), (7, 21), (7, 23), and (11, 16) were added to triangulate faces not in F”.

A decompositon for the directed embedded graph of Figure 1 is given in Figure

14

3, with the attachment vertices shown as emboldened. The generation and the decompo-
sition for the associated undirected embedded graph in Figure 2 has been discussed ear-
lier. Note that both minor hammocks in that decomposition were discarded, since they
were induced by edges that had been added. Also note that the hammock spanning ver-
tices {7, 21, 23} has been trimmed to a subgraph containing vertices {21, 23}. This was
done because both edges (7, 21) and (7, 23) were added, and when removed they left
vertex 7 isolated within the subgraph. The final decomposition is comprised of 7 outer-

planar subgraphs.

3. Shortest paths in directed outerplanar graphs

In this section we show how to determine in linear time the labels for all edges in
a directed outerplanar graph. The major portion of the section assumes that the outer-
planar graph has several nice features, while the latter part of the section shows how to
deal with an outerplanar graph that does not have these nice features. A key idea used in
both is to make use of the natural tree structure of biconnected outerplanar graphs. In
both algorithms, sweeps arc made through the graph based on this tree structure.
Another key idea used in our algorithm is the notion of split vertices, which are actually
the initial values in the intervals labeling the edges, and thus are the values stored in the

compact routing tables.

We now discuss briefly the organization of the section. We first identify the nice
features assumed for most of the section. We then define the notion of a split vertex, and
also discuss the natural tree structure of an outerplanar graph. Given this preliminary

discussion, we are then able to provide an overview of our algorithm, which employs a

15

sweep through the tree structure, processing each face in tun. We introduce the data
structures upon which our algorithm operates, and then give a detailed discussion about
how each face is processed. We then establish the correctness and time complexity of
this algorithm. Finally we discuss how to handle an outerplanar graph in which the nice

features identified earlier are not present.

We now identify the nice properties that we assume in the major portion of this
section. We assume that for each directed edge <v, w > there is an edge <w, v > in the
graph, and that the graph with the orientation of edges removed is biconnected. We also
assume that edge costs satisfy the generalized triangle inequality, i.e., each edge <v, w>
is a shortest path from v to w. We assume that vertices are named in clockwise order
around the exterior face. With the vertices named in this order, we can describe mean-
ingful sets of vertices using interval notation. For example, {i+1,i+2, - -, j—1}can be
described by the open interval (i, j), and {i+1, i+2, ---, j} by the half-open interval
(#, 7]. Arthe end of this section we examine how to handle a directed outerplanar graph

in which these assumptions are not necessarily satisfied.

We next define several terms, that lead up to the definition of a split vertex.
Define an interior face in an outerplane embedding to be any face other than the exterior
face that is bounded by more than two edges, ie., not bounded by a pair of edges
<v, w> and <w, v> for any v and w. Recall that for every edge <v, w> we defined
S (v, w) to be the set of vertices such that there is a shortest path from v to each vertex in
S (v, w) with the first edge on this path being <v, w>. We now specify the tie-breaking
rule that guarantees that 4 will be in one set S (v, w) for each v. Let w and w’ be neigh-

bors of v on some interior face, with w in the open interval (v, w") and with u in the half-

16

open interval (w, w']. If there is a shortest path from v to # with the first edge on this
path being <v, w> and also a shortest path from v to u with the first edge on this path
being <v, w'>, then u is in only the set S (v, w"). If a vertex uisin a set S (v, w"), we say
that edge <v, w™> claims u. Let z be the farthest vertex from v in a counterclockwise
direction around the exterior face that is claimed by <v, w'>. We call z the split vertex

of vertex v relative to neighbors w and w', or the splir vertex for (v, w, w).

Consider the outerplanar graph in Figure 4. Note that it satisfies the assumptions
in the first paragraph of this section. There are four interior faces. Consider the face
containing vertices 5, 6, 7, 12, 13, 14, 19 and 20. Vertex 7 has neighbors 12 and 6 on this
face. Edge <7,6> claims vertces in the interval [17,7), and edge <7,12> claims ver-
tices in the interval [12,17). The split vertex of 7 relative 1o neighbors 12 and 6 is vertex
17. (Vertex 7 is also on the face containing vertices 7, 8, - -, 12. Edge <7,8> claims

vertices in [8,12). The split vertex of 7 relative to neighbors 8 and 12 is vertex 12.)

We next discuss the natural tree structure of the outerplanar graph. Consider a
relation on interior faces, with two faces related if they are separated by precisely two
edges, <v, w> and <w, v>, for any v and w. There is a natural tree structure based on
this relation. (This is the dual graph restricted to interior faces.) Root this tree at an inte-
rior face that is related to only one other interior face. Our algorithm sweeps through the
tree bottom-up, i.e., an interior face is handled once all interior faces that are children of
it in the tree have been handled. For any interior face f other than the root, there is a
unique interval [x, x] comprising the set of names of all vertices on faces in the subtree
rooted at f. Associate with each interior face other than the root the pair of edges

<x, x> and <x’, x>. Associate with the interior face that is the root a pair of edges

17

<x, x'> and <x’, x > on the exterior face, where x follows x’ in clockwise order around

the exterior face.

We illustrate the tree with respect to the outerplanar graph in Figure 4. Let the
root be the interior face with vertices in [20,5]. Edges <7,12> and <12,7> will be asso-
ciated with the face containing vertices in [7,12], edges <14,19> and <19,14> will be
associated with the face containing vertices in [14,19], and edges <5,20> and <20,5>
will be associated with the face containing vertices in [5,7] U [12,14] y (19,20]. We

choose edges <3,2> and «<2,3> as the edges associated with the root.

As the algorithm sweeps up through the tree, it determines split verrices. The
algorithm processes each interior face f in turn, by which we mean the following. For
face fnot the root of the tree, let interval [x, x] be associated with f. After face fis pro-
cessed, the split vertex z will have been found for each triple (v, w, w') such that z is in
(x, x’]. (Some of these split vertices may have been found already when proper descen-
dants of fin the tree were processed.) Every other triple (v, w, w") such that v, w and w’
are in [x, x] will be stored on a list, ordered by appearance of v on the exterior face.
This list will mimic a face in that there are edges between consecutive entries on the list,
with edge costs that preserve the difference in distances d (v, x) —d (v, x"). In addition,
every vertex v in [x, x'] that can be a split vertex for some vertex not in (x, x] will also
be in a list, ordered by appearance of v on the exterior face, with edge costs that preserve
the difference in distances d(x, v) —d (x', v). By carefully traversing and manipulating
these lists, split vertices can be found and vertices can be eliminated as candidates for

split vertices, in time proportional to the number of changes in the lists.

18

We now discuss the definition and manipulation of these lists. For each interior
face f associate a doubly-linked list L, (f) of triples (v, w, w'), where v is a vertex on f,
and w and w’ are clockwise and counterclockwise neighbors respectively of v on f. List
L1(f) is an ordered list of all triples (v, w, w") on face f, ordered on vertex v around face
ffrom x 1o x". Each link in the list will have a cost, representing the distance between the
corresponding vertices. Also associate with f a doubly-linked list L, (f) of vertices from
xtox’. List Lo(f) is an ordered list of vertices on face £, all of which are candidates for

being split vertices. Again, links will have costs.

Before f is processed, list L (f) will be modified to a list L, (f) that holds all tri-
ples of fand any wmiples (v, w, w") of descendants of f in the tree, such that the split ver-
tex for (v, w, W) is not determined before f is processed. Certain link costs in L, (f)
will represent modified distances, which will be adequate for determining split vertices
not already identified. The modified distances are chosen to satisfy several properties
such as the generalized triangle inequality and the no negative cycle property. Also
before f is processed, list L,(f) will be modified to a list Ly’(f) of vertices in [x, x],
such that if y is not on L,'(f), then y is not a split vertex for any remaining triples. The

upcoming Lemma 3.1 will guarantee that list L, (f) will be modified correctly.

The lists L (f) and L»(f) together represent a face of the embedded graph. If
face fis a leaf, then L{’(f) = L1 (f) and Lo"(f) = Lo(f). If face fis not a leaf, then once
these lists have been modified, the resulting lists L,"(f} and L,’(f) do not strictly
represent in general a face of a graph, since L,’(f) may contain a triple (v, w, "), but
L9’(f) does not contain the commesponding vertex v, or vice versa. Also, the costs may

not correspond from L, '(f) to L3’(f). This situation seems to be the result of having a

19

nonsymmetric cost function. We do not know of a simpler approach that is as efficient

and avoids using these modified lists.

To process face f with associated edges <x, x> and <x’, x>, do the following.
Processing face f will consist of determining the split vertex z for every (v, w, w') on
L1’(f) such that z is in (x, x'], and modifying the lists L, ’(f") and L, (f"), where f* is the
parent of f in the tree. A certain prefix of L’(f) and a certain suffix of L '(f) will
together constitute the set of triples (v, w, w) on L1’(f") such that their split vertices z are
in (x, x’]. In tum we shail discuss handling the first triple in L, (f), handling the remain-
ing triples in the prefix of L’(f), handling the suffix of L,(f), modifying list L ,’(f") of

the parent f” of £, and modifying list L '(f").

We first describe how to handle the prefix of L °(f). First determine the split ver-
tex z for the first tiple (v, w, w') on list L°(f). (Note that v =x and w’ = x’ for this first
triple.) This is accomplished by traversing up L,(f) from the other end, starting with
y =x’, and computing for each vertex y the shortest distances from v to y through w and
through w’. The split vertex z will be the last vertex encountered on L, (f) such that
d(v, w) +dw, z) <d(v, w) +d(w, z). Note that d(v, w) +dW, z) ~({d (v, w)
+d(w, z)) is monotonically nondecreasing as Lq’(f) is traversed, since there are no
negative cycles. Save a pointer to the list node containing z, the split vertex for x, and
compute the shortest distance from x’ to z as the shortest distance from x to z through w’

minus the cost of edge <x, x">.

As an example, consider the face f associated with edges <14,19> and <19,14>

in Figure 4. Lists L1’(f) and L,’(f) will be the same as lists L,(f) = (14,15,19),

20

(15,16,14), (16,17,15), (17,18, 16), (18,19,17), (19,14,18) and L,(f) =14, 15, 16, 17,
18, 19, respectively. The algorithm determines the split vertex for (14,15,19) as 18,
since d(14,19+d(19,18) =11 and d(14,15y+d(15,18) =12 while

d(14,19)+d(19,17) = 15 and d (14,15) + 4 (15,17) = 10.

Each distance computation will require constant time, if we had initially com-
puted the clockwise and counterclockwise distance around each interior face. Fory =x/,
the shortest distance through w” will be the cost of <x, x>, and the shortest distance
through w will be the cost of the clockwise distance around f minus the cost of <x’, x>.
In moving from vertex y to vertex ¥" on L4°(f), one value needs to be added to the shor-
test distance through w’, and one value needs to be subtracted from the shortest distance
through w. The cost of link <y, y'> is added to the distance from v through w’, and the

cost of link <y’, y > is subtracted from the distance from v through w.

We next discuss handling the remainder of the prefix of L,’(f). Having found the
split vertex z for (v, w, w’), we move down the list L{(f) to the next entry (', w”, w'™).
By the upcoming Lemma 3.2, we know that split vertex 2z’ for (v, w”, w™’) is in [z, x].
Compute the shortest distances from v’ to z through w” and throngh w’. Reset v, w and
w’ to v/, w and w" respectively. Reset y to z. While d(v, w') +d(W', ¥) >d (v, w)
+d(w, y)andy # X, reset y to be the next vertex back toward x” on L,’(f). When a split
vertex z for (v, w, w) is found, once again move to the next triple (v, w”, w"'") on the
list Ly'(f) from x. If d(v, w") +d (W', y) > d(v, w) +d(w, y) where y =x', then the
split vertex for (v, w, w') cannot be found on the face. Save a pointer to the list node for
the triple (v, w, w), and compute the shortest distance from v to x through w’ as the shor-

test distance from v to x” through w’, minus the cost of <x, x'>.

21

In Figure 4, the split vertex for (15,16,14) will be 19. The split vertex for
(16,17,15) cannot be found on the face, since d(16,15)+d(15,19)\= 16

>d(16,17)+d(17,19) = 11.

To handle triples in the suffix of L ’(f), perform the same type of computation as
above, but reversing the roles of x and x’, and the direction in which the lists are
traversed. The test will be slightly different because the tie-breaking between edges is
not symmetric. The split vertex z for (v, w, w) will be the last vertex y in the interval
(x, x) encountered on Lz’(f)'SUCh that d(v, w) +d (W, y) £d (v, w) +d(w, y). Note
that y is not allowed to be x, since if y =x and v = x then by definition x is claimed by
edge <x’, x>, while if y =x and v # x’ then z may be outside of face f. In Figure 4, the
split vertex for (19,14,18) will be 16 and the split vertex for (18,19,17) will be 15. (The

split vertex for (17,18, 16) will be outside of face £, and will turn out to be vertex 7.)

Once split vertices have been found for triples in the prefix and suffix of L{’(f),
lists L,°(f) and L,'(f) are rimmed and inserted into L’(f") and L,'(f") respectively,
where f” is the interior face that is the parent of f. If the rimmed version of L {’(f) is not
empty, then insert the trimmed version of L "(f) between x and X’ in L, ‘(f"), and set the
costs of the links as follows. Let (v, w, w') and (v, w”, w™) be the first and last miples
in the rimmed version of L’(f). Using distances with respect to L 1(f), set ¢’(", x*) to
0, V)twoc, x)+d (', x)—d(V, x), (v, x)to d (v, x) —d (V', X), and ¢'(x, v) to
¢(x, x) —d (v, V). Note that d (v, V') is the distance from v to x through w minus the dis-

tance from v’ to x through w”,

The above operation preserves a number of nice properties. It is shown in the

22

proof of Theorem 3.1 that the generalized triangle inequality is preserved, and that no
negative cycles are inttoduced. It can be verified that d'(x, x") =c (x, x) and (', x)
=c(x’, x), where 4’ is the new distance function for list L ,’(f*). Thus for any triple
(v, w, w) on L, (f"), the insertion of the trimmed version of £ ’(f) will be transparent
with respect to distances from v to other vertices whose triples are already on L,’(f"). In
additdon, &'(u, x") —d'(u, x) =d(u,) —d(u, x), where u is any vertex in the interval
[v, v] that is on L,’(f). Since the split vertex for any vertex u in the rimmed version of
Ly'(f) will be in [x’, x], the modified distances will not affect any choice of split vertex.
Thus the split vertices found for triples in the modified list L{’(f") will be correct. Also

note that the time to modify the list is clearly constant,

With respect to Figure 4, the rimmed version of L (f) will contain the triples
(16,17,15), (17,18,16) in that order. These will be inserted between (14,19,13) and
(19,20,14) on L ’(f"), and the costs of new links on this list will be set as ¢’(17,19) =0,

c’'(19,17)=7+7-10=4,¢'(16,14)=8~7=1,and ¢'(14,16) =8 —4 = 4.

List L,'(f") can be modified similarly. Let z and z* be the split vertices of x and x’
respectively. By the upcoming Lemma 3.1, no split vertices yet to be determined will
fall in (x, z') _(z, x). Furthermore, it can be shown that any edge <v, w'>, with v in
the interval (x’, x) that claims vertex x” will also claim z. If z # 7', let z”" be the vertex in
interval {Z’, z) that immediately precedes z on L,’(f). If z =2, then simply give x’ in
L5(f') a new name of z. Otherwise, we trim L,’(f) so that z’ is the first vertex and z” is
the last vertex, and insert the trimmed version of L,’(f) between x and x” in L,°(f"). We

give x"in L2"(f") a new name of z, and set the costs of the links as follows. Using dis-

23

tances with respect 10 L,(f), set ’(x’, 2”) 10 0, (2", x)to c (x, x) +d (x', z”) - d(x, 2)
—-d(Z,2"), c'x, Z) o d(x, 2) -d (X,), and ¢’(Z, x) to ¢ (¥, x) —d(z”, 2'). Note that
d(z”, 2’} is the distance from x” to z’ minus the distance from x’ to z”. It can be verified
that &'(x, x') =c (x, x), &', x) =c (X, x), and &'(x’, u) —d'(x, u) =d (',) —d(x, u),
where 4’ is the new distance function for list L,'(f"), and u is any vertex in the interval

[Z/, 2”] thatis on L, "(f).

With respect to Figure 4, the trimmed version of L,’(f) will contain the vertices
16,17 in that order. These will be inserted between 14 and 19 on L,'(f"), and 19 will be
relabeled as 18. The costs of new links on this list will be set as ¢’(18,17)=0,

c’(17,18)=8+7-6-4=5,c(14,16)=6 -7 =-1,and c’'(16,14) =7 -2 =5.

Once the interior face at the root is handled, let any remaining wiples be assigned

the split vertex x.

In the next two lemmas, we prove the crucial properties about where split vertices
can fall, which allow us to traverse the graph efficiently. The first property allows certain
vertices to be ruled out as potential split vertices, on the basis of work already completed.
We give an example of the first property before stating it formally. Consider interior
edge <x, x> = <14,19>, and the face containing vertices in the interval [14,19]. The
split vertex for triple (x, u, x) = (14,15,19) is z =18, and the split vertex for triple
', x, ') = (19,14,18) is z’=16. Consider a vertex in the interval (19,14), say v =6,
with neighbors w =7 and w” =5 on the same face. Then the split vertex for (v, w, w') =

(6,7,5) will not be in (x, 2')) (z, X') = (14,16) _y (18,19), i.e., will not be vertex 15.

Lemma 3.1, Let G be a directed outerplanar graph. Let x and x” be endpoints of an

24

interior edge. Let u and &’ be the neighbors of x and x” respectively that are in the inter-
val (x, x°) and are on the same interior face as x and x". Let z be the split vertex for
(x, u, x’), and 2z’ be the split vertex for (x’, x, #'). Let v be a vertex in (¥, x), with neigh-
bors w and w’ on the same face, where w is in interval (v, w’). Then the split vertex y for

(v, w, w)is notin (x, 27\ (z, x).
Proof. Suppose that y is in (x, x'). Tt follows that
dv, w)+dWw, xY+d&,x) > dv, w)+d(w, x) (1
dv, w)+dWw,x) € dv, w)+d(w, x)+d(x, X) 2)
Suppose that y were in (x,). Since 2’ is the split vertex for (x’, x, '),
A, W)+d@,y) > d@, x)+d(x, u)+d @, y). 3)
Since y is the split vertex for (v, w, w),
d, wi+d W, xX)+d @, u)+d W, y) Sd v, w)+d(w, x)+d(x, w)+dWu, y). @)
Adding (1) and (3) yields a contradiction to (4). Thus y is not in (x, z°).
Suppose that y were in (z, x'). Since z is the split vertex for (x, u, x7),
d{x, XV +d &, W)Y+d W, z) € dx, u)+du, z) (5)
Since y is the split vertex for (v, w, w"), and y is in (z, x),
A, w)+d W, x)+d (@, uy+d W', z) > dv, w)+d(w, x)+d(x, wy+du, z). (6)
Adding (2) and (5) yields a contradiction to (6). Thus y is not in (x’, z).

The lemma then follows. O

25

The second property indicates in which direction to look for a split vertex, if we
already know the split vertex of a relevant triple. This justfies the correctmess of our
scan through L,(f) as we scan through L,’(f). Consider two triples (v, w, w’) and

Ll

(v, w”, w*’) whose vertices are in faces f* and f”, resp., that are contained in the subtree
rooted at f. Suppose that the split vertices for these triples are not determined before face

fis processed. There are two cases that arise. Either fis the lowest common ancestor of

f"and f” in the tree, or it isn’r.

The simpler example is when f is not the lowest common ancestor of f” and f”.
Then there is an edge <r, "> on f, such that v and v’ are both in the interval (¢, ']. For
example, consider the face f containing the vertices 5, 6, 7, 12, 13, 14, 19 and 20, and
consider the triples (16,17,15) and (17,18,16). The vertices in these triples are contained
in the same face, containing vertices 14, 15, 16, 17, 18, and 19, and this face is thus the
lowest common ancestor. The edge <t, "> is edge <14,19>. The split vertex for triple
(16,17,15) is in the interval (19,14). (In fact, the split vertex for (v, w, w') = (16,17,15)
is vertex z =6.) Vertex v/ =17 is in the interval (v, r') = (16,19), and the split vertex z’

I

for triple (v, w”, w") = (17,18,16) is also in the interval (19,14). Then 2’ is in [z, ¢) =

[6,14). (Infactz'=7.)

The more complicated case to state is when f is the lowest common ancestor of f*
and f”. Consider the face f containing vertices 5, 6, 7, 12, 13, 14, 19 and 20, and con-
sider triples (13,14,12) and (16,17,15). The vertices in triple (13,14,12) are on face f,
and the vertices in triple (16,17,15) are on a face that is a descendant of face £, so that f
is the lowest common ancestor. Consider the edges <u, ¥'> = <12,13> and <, £'> =

<14,19> on this face. The split vertex z for a triple (v, w, w") = (13,14,12) is in the

26

interval (13,12). (In fact, z =3.) Vertex v' =16 is in the interval (14,19], and the split
vertex z’ for trple (v, w”, w”) =(16,17,15) is in the interval (19,14). Then z"isin {z, 1)

=[3,14). (Infactz’' =6.)

Lemma 3.2. Let G be a directed outerplanar graph. Let f be an interior face, and let
<u, u"> and <t, "> be edges bounding this face, with &’ following u in clockwise order
around f and similarly for #" and ¢, where either u =¢and ' =1 or u’is in (&, ¢] and ¢ is
in [, 1). Let v be a vertex in the interval (, u’] whose split vertex z for (v, w, w') is in
(', u), where w and w’ are neighbors on some interior face, with w in the interval (v, w").
Let v’ be a vertex in the interval (¢, £'] ~(v, '] whose split vertex z’ for (v/, w”, w”") is in
(¢, 1), where w” and w"’ are neighbors on some interior face, with w” in the interval

rrr

(', w”’). Then 2’ is in the interval [z, 7).

Proof. Suppose that z” were in the interval (7, z). Let P and P’ be the shortest paths to z
from v through w and w’ respectively. Let P” and P” be the shortest paths to z* from v’
through w" and w”’ respectively. Let r; be the nearest vertex from v contained in both P
and P”, and r, be the nearest vertex from v contained in both P’ and P’”. Let ry be the
nearest vertex from v contained in both P and P, Such a vertex exists, by the following
argument. Since z is in (&', u), the portion of P on f will include the clockwise path
around f from 4’ to . Since 2’ is in (¢, ¢'), the portion of P’ on f will include the coun-
terclockwise path around f from u” to t. These portions clearly share a vertex except
when u =’ and r =¢. In that case, if v and v’ are on the same interior face, then either P

contains v' or P contains v. If v and v’ are not on the same interior face, then there is a

face f with all its vertices in the interval [&, #'] such that it contains edges <u”, u'’>,

27

LI

<u”, u’>, <", ">, and <7, ">, where vis in [4”, &"] and v’ is in [¢”, £"”’]. Thus the

previous argument applies.
Since the portion of P’ from v to r5 is a shortest path,
d(v, rz) £ d(v, ra)+d(ra, ra) €
Similarly, since the portion of P from v’ to r is a shortest path,
d(v,r)) €£d0, r3)+d(rs, ry) 8)
Since z’ is the split vertex for (v', w”, w™’),
d(',r3)+d(ry, ro)+d(ry, 2) £ d0, ry)+d(ry, 2) M
Since z is the split vertex for (v, w, w'), and 2" is in (¢, z),
d(v, ra)+d(ro,2) > dv, ra)+d(rs, ri)+d@rq, 2) (10)

Adding (7), (8) and (9) yields a conradiction to (10). Thus z’ is not in the interval (¢, z).

Since 2’ is by assumpton in (¢, r),z"isin [z, ¢). O

Theorem 3.1. The above procedure will correctly determine in O (n) time all split ver-
tices in an n-vertex directed outerplanar graph in which for every edge <v, w> there is
an edge <w, v >, the graph with edge orientation removed is biconnected, and the edge

costs satisfy the generalized triangle inequality.

Proof. Correctness follows from Lemmas 3.1 and 3.2 and the fact that the costs of links
of edges <v', x">, </, v'>, <v, x> and <x, v> are set 50 as to preserve the generalized
miangle inequality and the property that there are no negative cycles. We establish the

latter fact with respect to the operation of inserting the trimmed version of L(f)

28

between x and x” in L’(f"). The argument for handling L,’(f"} is similar. We assume
inductively that the desired properties hold, and show that the operation of setting the

new link costs preserves the properties.

We first derive several useful inequalities. Since the split vertices of v and v*

have not been determined by that point in the algorithm), then it must hold that

dv,v)+dw x) £d0, xY+c{x, x) an
and

dwv, VY+d(', xX) < dv, x)+c(x, X) (12)
Summing (11) and (12) gives

d, v)Y+dO,v) < c(x, XY+ c(x', x) (13)

Let u and #’ be the first vertices in two triples on the trimmed version of L ’(f), with the
triple containing u preceding the triple containing 4. Since there are no negative cycles,

d(V,u)y+dWw, vy =2 0andd(v, u)+d @, v) = 0. Thus

dO,) +d@,v)+dE, uy+d, v) 20 (14)

We now consider the effect on the generalized triangle inequality. Edges whose
endpoints are not both in [x, x] will be unaffected. It can easily be verified that the four
(new) edges whose costs are set will all satisfy the generalized miangle inequality. We

consider the remaining edges. Solving (13) for d (v*, v) gives

div,v) < 0+c@x, X))+, x)—d, V)

= 'OV, X+, x)+c(x, v)

29

which is equivalent to

d,uY+dW, u)+du, VV)+d@W,v)+d@, u)

< dW, v+,)+, x)+c(x, v)+d(v, u)
Subtracting (14) from the above gives
dw,u) < d@, vVY+c W, xX)+ec,)+ (x, vY+d v, u)

Thus edge </, « > is a shortest path from &” to u. We derive the similar result for edge

<u, u’> as follows. Solving (13) for d(v, V'), and adding and subtracting terms, gives

dw, V)< dW, x)—dWV, xXN+c @ XN+ ({(cX, x)+d V', XY —d V', v)—d (v, x))

= 'y, x)+clx, X)+c'(X, v)
where d(V, x) = d(v, v) +d (v, x). Applying (14) gives
du,) < du, v)+c'v, xV+cx, X))+, vVY+d (W, u)

We next argue that no negative cycles are created. Since 4'(x, x) = c(x, x’) and

d'(x’, x) = ¢, x), no simple negative cycle is introduced that includes both x and x’.

We next consider the cycle consisting of edges <v’, x"> and <x’, v'>. Now
Y

WV, N+, V) = e@, X)+dV, X)) —-d(V, x)

which is greater than 0, by (11). Similarly, for edges <v, x> and <x, v>,
v, x)+c'(x, v) =dW, x)—d (', XY+, XY —-d v, v)
=dv, x)+clx, xXY—@dw, vV)Y+d{, X
which is greater than 0, by (12). Thus no negative cycles are introduced.

With respect to timming L,'(f), we show that for any vertex v in the interval

30

rrr

(x’, x) with neighbors w and w’ on the same face, if the split vertex z** for (v, w, w') is in

(x, x'], then it is in (x, z]. Since z"” isin (x, x]

c, w)+dWw, x) € cv, w)+d(w, X)+c(x, X)
By the definition of z as a split veniex,

clx, xXY+d(x',z) £ d(x, 2)Y+d(Z, z)
Adding the above two inequalities gives

cv, w)+dWw,x)+d, 2) € clv, w)+dw, X)+d(x, 2)+d(Z, 2)

s

which establishes that z”" isin (x, z].

We finally analyze the time required by the algorithm. The time to initialize
relevant lists is O (#). In handling each interior face, the number of list nodes deleted is
within a constant additive term of the number of times that list nodes are examined.

Constant work is involved in examining a list node. O

We now consider how to handle an outerplanar graph in which our initial assump-
tions do not hold. Suppose that outerplanar graph G with edge orientation removed is not
biconnected. For every vertex v such that there is no edge <v, w > to the vertex w whose
name follows v's name numerically, insert edge <v, w > into G with cost ee. The result-
ing graph G without edge orientation will clearly be biconnected. Suppose that there is
some edge <v, w> in G but no corresponding edge <w, v >. For each edge <v, w>, if
there is no edge <w, v >, insert itinto G with cost eo. Clearly the only possible change to
the edge labeling information resulting from the above operations will be the inclusion

into edge labels of vertices that were not previously reachable,

31

Note that any edges included in the above operations will violate the generalized
triangle inequality. We enforce the generalized triangle inequality by identifying any
edge that does not satisfy it, labeling the edge as a "pseudo-edge”, and changing its cost
to be the shortest distance from the vertex representing its tail to the vertex representing
its head. We discuss how to do this efficiently in the paragraphs below. Once accom-
plished, we run our outerplanar algorithm on this modified subgraph. The edge labels
which result from this will be in general different from the edge labels for the original
subgraph. However, the original edge labels can be recovered by unioning the edge label
on each pseudo-edge into the label on the first edge in the shortest path realizing the shor-
test distance from tail to head, and setting the label on the pseudo-edge 1o the empty
interval. If the shortest distance on the pseudo-edge is realized by two different paths,

choose the path that moves counterclockwise around the corresponding face.

We now discuss how to identify edges that violate the generalized triangle ine-
quality and replace them with appropriate pseudo-edges. Recall the relation on interior
faces, and the natural tree structure based on this relaton. We sweep through the tree
structure twice, processing an interior face once on each sweep. On the first sweep, we

process an interior face after all its children in the tree have been processed.

An interior face is processed as follows. Determine the cost of the cycles visiting
precisely the vertices of the face in clockwise and counterclockwise order. For each edge
<v, w> on the clockwise cycle, do the following. If the cost of <v, w> is greater than
the cost of the counterclockwise cycle minus the cost of edge <w, v >, make <v, w> a
pseudo-edge of cost equal to the cost of the counterclockwise cycle minus the cost of

<w, v>. Perform an analogous operation for counterclockwise edges.

32

The second sweep processes interior faces in the reverse order from the first

sweep, and processes interior faces in the same way.

Suppose that vertices are not named in order around the exterior face. If the
names in clockwise order comprise a constant number of consecutive sequences, then the
graph can still be handled quickly. Such a case arises with respect to the outerplanar
graphs generated in the next section. Rename the vertices in order around the exterior
face, apply our outerplanar algorithm to generate edge labels, and then ranslate the edge
labels back to the original names. In the translation, each edge label will grow larger by

at most a constant factor.

Theorem 3.2. The above algorithm will correctly determine in O (#) time all edge label-
ing information in an n-vertex directed outerplanar graph with real edge costs but no

negative cycles.

Proof. We first establish the correctness. After a face is processed, the cost of any edge
<v, w> on the face represents the shortest distance from v to w along a path constrained

to include only vertices that are on the face.

Recall that for each interior face f, there is an interval [x, x] comprising the set of
vertices on faces in the subtree rooted at f, and there is a pair of edges <x, x> and
<x’, x > associated with f. By induction on the number of faces processed before face f
in the first sweep, the following can be established. After face fis processed, the costs on
edges <x, x> and <x’, x > represent the shortest distances from x to x” and from x’ to x

along paths constrained to include only vertices that are in interval [x, x7.

33

By induction on the number of faces processed before face fin the second sweep,
the following can then be established. Just before an interior face fis processed in the
second sweep, the costs on edges <x, x> and <x’, x > represent unconstrained shortest
distances from x to x” and from x” to x. Then after processing £ on the second sweep, the
cost on any edge <v, w > between vertices v and w on f will represent the unconstrained
shortest distance from v and w. This follows since the processing on the first sweep
guarantees that the shortest path from v to w need not detour off of f onto faces that are
proper descendants of f, and the processing from the second sweep before f is processed

guarantees that the shortest path from v to w need not detour off of fonto the parent of f.

The time bound follows since the additional time to enforce the triangle inequal-
ity, and the time to combine shortest path information from biconnected subgraphs with

shortest path information from the rest of the graph, will be O (n). O

Corollary 3.1. A shortest path tree rooted at any vertex v in an outerplanar graph can be

found in O (n) time.

Proof. Reverse the direction of every edge, and apply the above algorithm. For each
vertex w, put edge <u, w> in the tree if v is in the interval labeling edge <w, u > at ver-

tex u for the reversed graph. [J

4. Overview of basic approach for planar graphs that are not outerplanar

In this section we first sketch our approach to solving problem 2, i.e., solving all
pairs shortest paths in planar graphs, given a good embedding and a good face-on-vertex

covering. We then discuss two crucial features of this solution. The first is how to

34

compress a hammock down to a graph of constant size, while preserving both planarity
and the distances between the vertices of attachment in the hammock. The second is the
description of a monotonicity property, and its application to the traversal of special sub-

graphs that arise in section 6.

We now sketch our basic approach, assuming we are given a good embedding
and a good face-on-vertex _covcring. First, we name the vertices, using the following
rule:

Vertex Naming Rule: Given an embedded directed planar graph G and a face-on-
vertex covering F’ of cardinality p’, vertices are named in clockwise order around
each face of F’ in un. If a vertex is encountered more than once in traversing the
faces of F’, the vertex receives its name on the first encounter.
Second, we determine a hammock decomposition of é as discussed in section 2. Third,
we find all pairs shortest paths between every pair of attachment vertices. For efficiency,
we do this on a compressed graph that we generate as follows. For each major hammock
H, a compressed version C (H) of H is generated, as described later in this section. Each
C (H) will be planar and of constant size. The compressed version C (G) of G is then
generated from the compressed versions of the hammocks by identifying corresponding
attachment vertices, and adding in the minor hammocks. Compressed graph C (G) will
be of size O (p’). We then use the all pairs shortest path algorithm for planar graphs in
[Fs2] to determine shortest distances between all attachment vertices. This will take
O ((p")?*) time.

Fourth, for each pair of proper hammocks, we determine succinct shortest path

35

information for each veriex in one hammock to all vertices in the other hammock, We
will show how 10 do this in ume proportional to the total size of both hammocks, which

over all pairs of hammocks will be O (p’n), as discussed in section 6.

Fifth, for each hammock, we determine shortest path information between ver-
tces in the same hammock. This would seem to be easy, since we have a linear time
algorithm (o find shortest path information in outerplanar graphs. However a shortest
path in the graph between any pair of vertices in the same hammock H may leave H at
one attachment vertex and reenter at another. We give a fast method for determining for
each vertex v in A the set of vertices u in H for which the shortest path from v to u stays
in H. We then determine shortest path information for those paths that leave A by taking
two copies of H and treating them as a pair of different hammocks, to which the methods
of section 5 are applied. Combining shortest path information within the hammock with
shortest path information that detours out of the hammaock gives the desired information.

All of this can be accomplished in O (n) time, as discussed in section 6.

This completes the sketch of our approach for solving problem 2. The activity in

section 5 is seen to dominate the running time of our algorithm, which is O (p’n).

We next discuss how to generate a compressed version C (H) of H for any ham-
mock H. The basic idea is to form a subgraph of the hammock that contains shortest
paths between pairs of attachment vertices. Then replacement rules are applied to this
subgraph which iteratively reduce the number of edges. We first describe how to form
the subgraph B ({{). Leta and @, be the attachment vertices of H on face f;, and a3 and

a4 the attachment vertices of H on face f;, where a3 is adjacent to a,, and a; is adjacent

36

to a4, in the corresponding triangulation used to generate the hammocks. Let T be a
tree formed by taking the union of the shortest paths in H (if they exist) from a; to a,
and from a) to @3. Let T4 be a tree formed by taking the union of the shortest paths in 4
(if they exist) from a4 t0 a4 and a3, using edges from T'; to break ties. We can use our
all pairs shortest paths algorithm for outerplanar graphs to identify these trees in time
proportional to the size of the hammock. If we use the same edge labeling information to
setup T4 as to set up Ty, this tie-breaking will be enforced. Similarly, let T, be a tree
formed by taking the union of the shortest paths in H (if they exist) from a, to a; and
a4, and T3 be a tree formed by taking the union of the shortest paths in H (if they exist)
from a3 to a, and a4. We inidalize a graph B (H) to be the graph T, UTe UTs
T4 \{<a, as>, <as, a1>, <a,, az>, <as, a;>}, where the latter edges have
cost equal to the shortest distance between their endpoints in . For each such pseudo-
edge we associate with it the actual edge in the corresponding shortest path. For edges in

each T;, we associate the edge with itself,

We next describe how to repeatedly replace edges and delete vertices until we
have compressed B (1) as much as possible, yielding C (H). Temporarily label edges in
Th U T4 as blue, edges in T\ T3 as red, and the remaining four edges as black. If
any edge in Ty \ T3\ T3\ T4 is idenrical to a black edge except for color, then
delete it. Recall the definition of an interior face from the previous section. Perform the
following operations until they can no longer be applied. Suppose that <u, v> and
<v, w> are the only two blue edges incident with vertex v, and u, v, w are consecutive
vertices on the same interior face of the current B(H). Then replace <u, v> and

<v, w> with blue edge <u, w> of cost c(u, v) + ¢ (v, w). Associate with edge <u, w>

37

the edge associated with <u, v >. If v becomes isolated by this operation, then delete it.
There is a corresponding operation for red edges. Each such test and replacement can be
performed in constant time, if B (H) is stored in the following form. Keep the edges both
to and from a vertex on the adjacency list of the vertex. Maintain each adjacency list
with edges in clockwise order around the corresponding vertex. If both <v, w> and
<w, v> are present in B (H), order edge <v, w> clockwise before <w, v> in v’s list,

and <w, v > clockwise before <v, w> in w’s list.

When no further compression can be done on B (), remove edge colors, and call

the result C' (H).

Lemma 4.1. Let # be a hammock in a planar graph, with attachment vertices a1, a5,
a3, and a4. Graph C (H) is an outerplanar graph of constant size. For any pair of attach-
ment vertices g; and g, if there is a path from 4; to a; in H, there is one in the

compressed graph C (H), and the Jengths of the shortest such paths are identical.

Proof. The initial version of the graph B (H) is outerplanar, and each application of an
operation leaves B (H) outerplanar. Furthermore, an application of an operation will not

change the shortest distance between any pair of attachment vertices.

We argue that the resulting graph C (H) is of constant size as follows. For each
attachment vertex a; of H, let v; be the vertex farthest from g; that is common to the shor-
test paths from g; 1o each of the two leaves in tree T;. Let w; be the vertex farthest from
a; that is common to the shortest paths from the roots to g; in the two trees containing a;
asaleaf. Let V'={a;, v;, w; | i =1, 2, 3, 4}. Note that if for example v, = v, then the

shortest paths from @, to a4 and from a4 to a3 do not share a common vertex. (This is

38

shown as follows. Suppose the shortest path P | from a; to @, shares a common vertex
with the shortest path P43 from a4 to a3. Let x be the farthest such vertex from 2. By
the tie-breaking rule, the shortest path from @, to x is a subpath of P ;, and the shortest
path from x to a3 is a subpath of P43. Thus the shortest path from a; to a5 follows P15
from a, to x, and then follows P 43 to @3. Similarly it can be shown that the shortest path
from a4 to a, follows P 43 from a4 to x and then follows P |5 10 ap. Thus vy =v4=x.)

We consider several cases.

If vy #v4 and v, # v3, then every vertex v not in ¥V can have the above opera-
tions applied twice, once for blue edges and once for red edges. Thus the only vertices in
C (H) will be the ar most 12 vertices in V’. Similarly, if v{ #v4 and v, = va, then the
only vertices in € (H) will be the vertices in V*, which will number at most 10, since
V1 =vg4, which implies w3 =wq. A comresponding argument applies if the equality and

inequality are reversed in the above condition.

If vi =v4 and vy = v4, then V’ will have cardinality at most 8. The only vertices
in C(H) will be V, unless the following condition also holds. From faces f; and f5
bounding hammock H in é, if vy and w3 are not on the same face, and v3 and w are not
on the same face, then the shortest path from w3 to vy and the shortest path from w; to
v4 will intersect at at least one vertex. Exactly one of these vertices (call it z) will be in

C (H). Thus in this case, at most 9 vertices will be in C(H). O

In the next two sections we show how to determine shortest path information
between vertices in different hammocks, and between vertices in the same hammock. In

the remainder of this section we establish a property that will be particularly useful.

39

First we recall the guadrangle inequality, which will be useful in the proof of the
property. Let wq, wa, 4 and u, be vertices in G. If the shortest path from w, to u,

intersects the shortest path from w to u4, then
d(wy, ua)+d(wy,) < d(wy, u)+dws, us).
To show this, let z be a common vertex on the paths. Then

d(Wl, Z)+d(Z, ul) = d(W‘[, ul)

d(WQ, z)+d(z, uz) = d(W2, uz)
By the triangle inequality

d(wy, uz) < d{wy, z) +d(z, us)

d(wg, uy) < dwy, 2} +d(z, 1)
Summing the above inequalities and equations yields the claimed result.

We now define the following function that that is dcséﬁbcd by our monotonicity
property. Let x and y be vertices in the graph, and fa face in the embedding of the graph.

Define

hy(V) = d(v, x) —d (v, y)

where v is a vertex on the boundary of face f.

Lemma 4.2, (Monotonicity Property) Let x and y be vertices and f a face in an embed-
ded planar graph G. Define hy()=d(v, x) —d(v, y). Let v’ and v” be vertices at
which s, (") achieves a minimum and a maximum, respectively, over all vertices on f.
Then A4, () is nondecreasing on the clockwise sequence of vertices of f from v' to v, and

nonincreasing on the clockwise sequence of vertices of f from v” to v'. If x is on f, then

40

hzy(*) realizes a minimum at x, and if y is on f, then Ay, () realizes a maximum at y.

Proof. We assume that /,,(V") < hx),(v”), since otherwise the lemma holds trivially.
Consider a set of all pairs shortest paths for G such that if for any pair of paths, and any
two vertices & and w, if u precedes w in both paths, then the subpaths from u to w are
identical. This can be enforced by assigning each edge a unique index, and breaking ties

lexicographically.

Consider any vertex v different from v". Suppose that the shortest path from v to y
intersects the shortest path from v’ 1o x. Then we claim that hyy(v) = ﬁxy (v"). By the qua-

drangle inequality,
dv, x)—d, y) <dW, x)—d{/, y)
Since hyy(*) realizes a minimum at v/,
d(vV,x)—dW,y) £dW, x)—d(y, y)
which together imply that 4., (") realizes a minimum at v. If the shortest path from v to x

intersects the shortest path from v’ to y, then by a similar reasoning hey (V) = Ay (V).

Since we assumed that /1., (V') < k., (v™), by the above we can conclude that the
shortest paths from v to x and y do not intersect shortest paths from v to y and x, respec-

tively.

Now choose a vertex v on face f that is different from v and v”, and such that
hry(v1) > hgy(v)). The above implies that shortest paths from v, to x and y do not inter-
sect shortest paths from v’ to y and x, respectively. Then either the shortest path from v

to y intersects the shortest path from v to x, or the shortest path from v, to x intersects

41
the shortest path from v” 10 y.

Let v5 be a vertex in the sequence of vertices on face f between v” and v; that
does not contain v'. We shall show that hyy(V1) < hgy(v,). Suppose the shortest path
from v, to y intersects the shortest path from v to x. Then the shortest path from v, to x
must intersect either the shortest path from vy to y or the shortest path from v to x. Ifit
intersects the shortest path from v to x, then because of the manner in which ties
between shortest paths are broken, the rest of the shortest path from v, to x will follow
the rest of the shortest path from v" to x, and thus must intersect the shortest path from v

to y anyway. Let the shortest path from v, to x intersect the shortest path from vy to y, at

vertex z. By the quadrangle inequality,
d(V‘l,x)—d(vl,)’) = d(V’Z, x)_d(vZ?y)

which is the desired result. If the shortest path from v, to x intersects the shortest path
from v” to y, then a similar argument establishes that the shortest path from v, to y must

intersect the shortest path from v to x, leading again to By (V1) S Ay (v2).
If x is on face fa minimum for A, () is achieved at x, since

hy®) = d@, x)—d(, y)

2 dv, x)— @, x)+d(x, y)) = —d(x, y) = hy(x)
A similar argument applies if yison £, O
We define a related funcdon as follows.

Exy(v) =dx, v)—-d(, v)

By reversing the direction of all edges in the graph, and then applying the above lemma,

42

we note that the function ;:-x). (v) also possesses the Monotonicity Property.

Consider a graph in which p’ =2, and the two faces in f; and f, share two ver-
tices, x and y, in common. Consider the two components Cy and C separated by the
pair x and y. Note that each component is outerplanar. We take advantage of the mono-
tonicity property in a procedure MON_LABEL that generates labels for routing from one
component through x or y to the other component. Let v be in one component, and u in

the other. The shortest path from v to u will be through x if
d(v, x)+d(x, u) < d(v, y)+d(y, u)
which holds if and only if
hy®) = dO, x)=d(, y) < d(y, ©) —d @, u) = hy(u)

The basic idea behind the application of the property is to simultaneously walk through
one component and through the other component, using the /4., and }_:yx functions, as

though one wanted to merge two ordered lists of values.

Shortest paths from vertices in one component to vertices in the another com-
ponent can be computed in linear time as follows. We first compute the values hxy (v) for
all vertices v and return a list of vertices in each component ordered by ey (v), and do the
same for Ey,:(u). This is accomplished by doing the following in each component C;,
i =1, 2. Run the outerplanar algorithm from the previous section to generate the edge
labels. Determine the shortest path trees rooted at x and y as follows. Temporarily
reverse the direction of edges, run the outerplanar algorithm on the result, and then select
for each vertex v #x the edge <w, v >, where x is in the label for edge <v, w > for the

reversed graph. Once the shortest path trees have been found, traverse each tree and

43

store at each vertex v the distances d(v, x) and d(v, y). For each vertex v form the
difference s, (v) =d(v, x) —d(v, y). By the Monotonicity Property, this difference is
monotonically nondecreasing as v moves around either face from x to y. Merge the list
of vertices on each of the faces f and f5, in order of nondecreasing value hry(v), yield-
ing a list /; of vertices v for component C;. We assume that the first entry on /; is x.
Temporarily reverse the direction of all edges in the component, reverse the roles of x
and y, and repeat the above. The result will be to compute ny(u) =d(y, u) —d(x, u),

along with the list_l",- of vertices u, ordered by nondecreasing Fyx(u).

For each vertex v in component C;, i = 1, 2, define S,(v) to be the set of vertices
in component C3_; whose shortest path from v goes through x, and §,(v) to be the set of
vertices in C'3_; whose shortest path goes through y. The set S¢(v) (and also set Sy(v)) is
the union of two sets of vertices, each set containing consecutive vertices on one of the
faces f, and f2. Assume that the vertices are named according to the vertex naming con-
vention. It follows that each set S,(v) (and also set §y(v)) can be described as the union

of at most four intervals.

We finally describe the simultaneous walk through both components, For
i=1, 2, we then examine the vertices v of component C;, in order of nondecreasing
value kg (v), and simultaneously examine the vertices u of component C5_; in order of
nondecreasing value Zy,(u). This is done as follows. Initialize S, to the empty set, and
Sy to be the intervals describing vertices in component C3 ;. Set v to the first entry on /;,
and u to the first entry on ?3_,-. While A, (v) 2 ny(u), delete u from Sy, insert u into $,,

and reset u to the next vertex on list'!‘3_,-. When A5, (v) < %x(u), SEL Sx(v) 10 S, set Sy (V)

44

to Sy, and reset v to the next vertex on list /;. If the sets S,(v) and S, (v) are each main-
tained as the union of two sets of vertices when insertions or deletions are performed, the
work performed between consecutive tesettings of # and v will be constant. For any ver-
tex v not equal to x or y, the edge <v, w > incident from v that contains x in its edge label
for its component will receive the set 5,(v) into its label. The edge incident from v that
contains y is handled similarly. This completes our description of procedure

MON LABEL.

Lemma 4.3. Let G be an embedded planar graph in which there is face-on-vertex cover-
ing of cardinality 2, with its n vertices named according to the vertex naming convention.
Suppose these two faces share two vertices that separate G into two components. Pro-
cedure MON IABEL generates edge labels for any vertex in one component to vertices

in the other component in O (n) time.

Proof. By Theorem 3.2, the time to generate edge labels within each component is
O (n). Note that while vertices around the border of a component (as opposed to a face
f1 or f3) are not necessarily named in order, the names in clockwise order comprise a
constant number of consecutive sequences. By the remark preceding Theorem 3.2, this
involves additional expense of at most a constant multiplicative factor. The time to com-
pute shortest path trees rooted at x and y is O (n), since the time to identify all appropriate
edges <w, v> is proportional to the total size of all edge labels, which is O (n). The
creaton of the lists /; and _i-, by merging will take O (#) time, and the routine to search

these lists will also take O (n) time. O

45
5. Handling shortest paths between two hammocks

In this section we give an algorithm to generate shortest path information between
vertices in two different hammocks, assuming that distances between their vertices of
attachment are known. Our approach is based on computing information about certain
constrained shortest paths, and then combining it to yield information about less and less
constrained shortest paths, culminating with unconstrained shortest paths. We first give a
utility routine whose output is used in generating information about highly constrained
shortest paths. Then we define information for various levels of constrained shortest
paths. Finally, we show how (o generate information about less constrained shortest

paths, given information about more constrained shortest paths.

We first give a utility routine that produces very basic information. Let A be a
hammock with attachment vertices @, a4, a3, a4, and let x be a vertex not in H. Let
N (x, H, a;) be the set of vertices in H such that a vertex y is in N (x, H, ;) if and only if
y isin A and a shortest path from x to y goes through a;, but no shortest path from x to y
goes through any g; for f < i. Suppose the shortest distances are given from x to each of

ai, a2, a3, and a4. We describe a procedure to determine the sets N (x, H, g;), for

i=1,- -, 4. First generatc graph A’ from H by introducing vertices x;, i =1, - - -, 4,
and edges <x;, g;>, i =1, -+ +, 4, with cost equal to the shortest distance from x to g; in
the original graph.

Next we label each vertex in H” with the shortest distance to the nearest x; as fol-
lows. First identify shortest path trees in 4’ rooted at each x;. Foreachx;, i =1, 2, 3, 4,

traverse its shortest path tree, labeling a vertex v with i and the distance from x; to v if the

46

distance to v is smaller than its previous distance. Note that the vertices in each
N (x, H, a;) will be the union of two sets of vertices, each set contiguous along one face
of the hamamock. Since vertices are named in order around each face, N (x, H, ;) can be
described by the union of four intervals. It is easy to traverse the edges along each face
bounding the hammock, forming succinct descriptions of the four sets. Call the above

procedure ATTACH CLAIM.

Lemma 5.1. Given a hammock H with attachment vertices a;,i = 1, - -+, 4, vertex x not
in H, and shortest distances from x to the g;, procedure ATTACH CLAIM will generate

the four sets N (x, H, g;) in O (n") dme, where »’ is the size of H.

Proof. By Corollary 3.1, each of the four shortest path rees can be determined in O (n")
time. Traversing the shortest path trees, and then generating the sets N (x, H, g;), will

each take O (#") time. O

As before, let H be a hammock, and x a vertex not in H. Let N¥(x, H, a;) be the
set of vertices in H such that a vertex y is in N®(x, &, g;) if and only if y is in H and a
shortest path from y to x goes through a;, but no shortest path from y to x goes through
any a; for j <i. Sets NR (x, H, a;) can be computed in a fashion similar to that of
N (x, H, a;), by reversing the direction of every edge. Note that given shortest distances
between all attachment vertices in the graph, and shortest distances from any vertex x to
the attachment vertices of its hammock, it is easy to compute, in constant time, shortest

distances from x to the attachment vertices of any hammock.

We now discuss the information for various types of constrained shortest paths.

We start by defining this information from the least constrained to the most constrained.

47

We present this informaton in the form of sets. Let 41 and H4, be distinct hammocks.
Letv beavertex in H¢, and <v, w> an edge in H,. Let My(v, w, H3) be r.ht-a set of ver-
tices u in A, whose shortest paths from v to «# include edge <v, w>. In defining these
sets Mg, as in subsequently defining sets M, M5, and M4, we assume that ties in the
lengths of paths are broken in the following way to yield shortest paths. Among various
choices of paths of shortest length, the preferred path will go through an attachment ver-
tex of H of smallest possible index, and given that through an artachment vertex of H,
of smaliest possible index, and given that will be consistent with the shortest path infor-

mation generated by our outerplanar algorithm within each of A | and H,.

Let x| be an attachment vertex of H . Let M (v, w, H,, x{) be the set of ver-
tices i in 5 whose shortest paths from v to u go through vertex x; and include edge

<v, w>, Clearly Mg(v, w, H5) is the union of M (v, w, H4, x) over all choices of x.

Let y; be a second attachment vertex of ;. For vertices u in H,, we term as
type 1 constrained shortest paths those paths from v to u that are shortest subject to the
constraint that they go through either x; or y;. Let M,(v, w, H4, X1, ¥;) be the set of
vertices u In H, whose type 1 constrained shoriest paths from v to u include edge
<y, w> and vertex x;. A vertex u is in M, (v, w, H,, x1) if for each attachment vertex

y1#xyof Hy, uisin Mo (v, w, Ha, x1, y1).

Let x5 and y, be attachment vertices in H,. Recall that for attachment vertex y
in hammock A and vertex x notin H, N (x, H, y) is the set of vertices in H whose shortest
paths from x go through y. For vertices u in H,, we term as type 2 constrained shortest

paths those paths from v to u that are shortest subject to the constraint that they go

48

through either both xy and x4 or both y; and y;. Let My4(v, w, H,, x3, ¥1, X2, ¥2) be
the set of vertices u in N (x, H2, x2) "N (y1, Ha, y,) whose type 2 constrained shor-
test paths from v to u include edge <v, w> and vertices x; and x5. Then
My(v, w, Hg, X1, ¥1) is the union of M4(v, w, H,, X}, ¥1, X2, y4) over all choices of

x4 and y, for which visin N®(x,, H, 1) NRy,, Hqi, y).

We now show how the M; sets can be generated, once certain N (-,-,-) sets have
been computed. We start with information about the most constrained shortest paths, and
work toward the least constrained shortest paths. We can generate
Ma(v, w, Hy, X1, ¥1, X2, ¥2) as follows. Each set N(x, H, y) can be computed using
procedure ATTACH_CLAIM. Generate the graph G (xy, ¥1, X2, y2) induced on
Ny, Hy, x2) UN(Y1, Ha, y2) UNR(xy, Hy, x1) UNR(y,, Hy, y1), with the edges
<Xy, X2>, <X3, X1>, <Y1, ¥2>, and <y, y1> added, of cost equal to the length of the
corresponding shortest paths. Perform procedure MON _LABEL to generate edge labels
for this graph. For edge <v, w> incident from vertex v in N%®(x,, Hy, x;)
NNR(yy, Hy, y1), intersect its label with N (xy, Hy, x2) ANy, Ha, yo) and with

the label on the end of edge <x, x2> incident at x;.

Once all sets M 4(v, w, H3, xy, y1, X2, y7) are generated, then set operations can
be performed to yield all sets M, (v, w, H, x;, y)), then all sets M (v, w, H», x1), and
finally all sets Mo(v, w, H,). Each set generated should be represented in the compact
interval notation. Once all sets Mg(v, w, H,) have been computed for ail v in H, a

similar computation will yield all sets M g(u, w, H,).

Theorem 5.1. Let H, and H, be hammocks of sizes n{ and n,, resp., in an embedded

49

graph G. Given shortest distances between the vertices of attachment of H; and H, the
above procedure generates edge labels for any vertex in one hammock to any vertex in

the other hammock in O (n+n,) time.

Proof. We first address the correctness of the set computation. It is clear that
Mo{v, w, H3) is the union of M (v, w, H», x;) over all choices of x. It is also clear
that a vertex u is in M (v, w, H4, x) if for each attachment vertex y; #x; of H,, u is

inMa(v, w, Hp, X1, y1).

We next argue that Ma(v, w, H3,x3,y;) is the union of
My(v, w, Ha, X1, ¥1, X2, ¥2) over all choices of x, and vy, for which v is in
NRGo, Hy, x)) " N® @y, Hy, y1). Since v is in N®(xp, Hy, xy), the shortest path
from v to x4 goes through x,. Since v is in NR(yz, H, y,), the shortest path from v to
¥, goes through y ;. Consider a vertex u in M4(v, w, Ha, X1, ¥1, X2, ¥2). Since uis in
N(xy, Hy, x3), if the shortest path from v to u goes through x,, it goes through x,.
Since u is in N(yq, Ha, y2), if the shortest path from v to u goes through y;, it goes
through y,. Thus unioning over M4(v, w, H3, x|, ¥, X2, ¥2) for all choices of x, and

y2 1s a correct approach.

The computation of each M, set is cormrect, since the graph G (xy, ¥1, X2, ¥2)

contains the appropriate vertices.

We next address the time complexity. Given all relevant sets N(x, H, y), each
set Mo(v, w, H) can be computed in constant time. Each label generated by perform-
ing procedure MON_LABEL will be the union of at most 6 sets of vertices, each contigu-

ous along one of the faces of hammocks A, and H,. The computation on graph

50

G(x1,¥1,X2,y2) need only be performed when NR(x,, Hy, xy)
ANRG,, Hy, y1) 2D and N(xy, Hs, x3) "N (1, Ha, y2) #D. In this case the ver-
tices in the graph are the union of at most six sets, each contiguous along one of the four
faces of the hammocks. Any edge label generated by procedure MON LABEL will be of
the same type. The intersection of this label with N(xq, Hq, x2) "Ny, H3, y3) will
be the union of at most two sets of vertices, each contiguous along a face of H,. The
intersection of this result with the label on <xy, x5> will yield a set again of the same
type. Since a set of contiguous vertices on a face can be described by the union of at

most two intervals, M4 (v, w, H», X1, ¥1, X2, ¥2) will be at most four intervals.

Each intersection operation involves a constant number of intervals, and hence
can be performed in constant time. There are 16 choices of pairs x4, y5. Unioning the
corresponding labels can be done in constant time. There are 3 choices for v, and the
intersection of a constant number of intervals can be done in constant ime. For all v in
Hy, the number of each type of set My, M, M4, M4, will be proportional to the total
outdegre.e of Hy, or O(n). For all u in H,, the number of each type of set will be

O (n32). Thus the total tirne for the above procedure will be O (n1 + n5). O

6. Handling shortest paths between vertices in one hammock

In this section we give an algorithm to generate shortest path information between
vertices in the same hammock, assuming that distances between its vertices of attach-
ment are known. This problem is easy if shortest paths between vertices in the hammock
do not leave the hammock. It is also possible to determine efficiently the information for

shortest paths constrained to leave and reenter the hammock, using the methods of the

51

previous section. The challenging part is determining efficiently for every pair of ver-
tices v and u whether the shortest path from v to u stays in the hammock or leaves and
reenters the hammock. QOur approach is to determine for each each vertex v the set of
vertices of vertices u such that the shortest path from v to 4 remains in the hammock.
The key idea in the appropriate subproblem is to perform a search of the hamnmock dur-
ing which we determine the shortest distance between many pairs of selected vertices v
and u. Using a special-purpose deque allows this to be accomplished in time linear in the

size of the hammock.

We first address a simple case in which a shortest path leaves and reenters the
hammock H, and show that it can be accommodated by a minor modification of the ham-
mock. Suppose the shortest distance from v to u in G is realized by a path P that leaves
and reenters A through attachment vertices at the same end, i.e., £ would leave and
reenter through vertices a1 and a4, or alternatively through a4 and a3. To handle such
cases, just augment 4 with edges <aj, a4>, <ag4, a\>, <as, @3>, and <as, a,> of

costs equal to the lengths of the corresponding shortest paths in G.

The harder case to handle is when any shortest path P that realizes the shortest
distance from v to # leaves A through an attachment vertex at one end and reenters H at
the other end. Then a portion of the shortest distance information between vertices in H
arises from edge labels for shortest paths within H. The rest of the information arises
from edge labels for shoriest paths between vertices in two copies .Of H. The challenge is
to determine when to use each type of inforrmaton. Qur approach is to determine for
each vertex v in H a set Uy (v) of vertices u such that the shortest path from v to u is con-

tained in H. We shall show that such a set is the union of two sets of vertices, each of

52

which is contiguous along one of the faces bounding H. Thus each set Uy (v) has a con-
stant size description. Then the appropniate portons of edge labels for shortest paths
within / can be unioned with the appropriate portion of edge labels arising from shortest

paths leaving H and reentering H.

We show how to form the sets /4 (v). Let a; be one attachment vertex of H, and
a; be an atrachment vertex at the other end of H, i.e., j # 5—i. For each vertex v in H let
Unij(v) be the set of vertices u such that the distance from v to « in H is no longer than
the shortest distance from v to u along a path that leaves H at g; and reenters H at a ;. We
shall show in Lemma 6.1 that the set Upij(v) is the union of two sets of vertices, each of
which is contiguous along one of the faces bounding H. (In fact, each contiguous set of
vertices contains, if it is not empty, the attachment vertex on its face at the same end of
the hammock as a;.) For each vertex v, the set Uy{v) is the intersection of the sets
Uyij(v) over all valid choices of { and j. Since each of these sets can be described in con-

stant space, the intersection can be formed in constant time.

We describe how to form the sets Upyij(v) for all vertices v in H and for fixed i
and j. The key insight, which we show in Lemma 6.2, is that if we scan vertices v in
order along one face that bounds the hammock, starting from the end of the hammock
containing a;, the set Uy;;(v) loses vertices in a monotonic fashion. Thus the last vertex
in Up;;(v) on each face moves monotonically toward the end of the hammock containing
a; as vertex v moves toward that end along its face. Thus we perform a coordinated
search, bringing along enough information to compute shortest distances between v and
vertices that are candidates for the last vertex in Uy;;(v) on each face. We are able to

perform this search in time proportional to the size of H by using a special-purpose deque

53
and the edge labels to perform a search of H.

We now discuss the generation of the sets Uy;;(v) in detail. For simplicity of
description we assume that i =1 and j =3, i.e., we are considering paths that leave H at
@1 and reenter H at a3. Let face f be the face containing 4, and a,, and face f; be the
face containing a4 and as. For any particular choice of i and j, v can be on either f; or
f2, and we can determine the vertices of Uy;;(v) on either of the faces f, or f,. The
description of our algorithm is instantiated for v on face f;, and for finding the last vertex
in Uy;;(v) on the face f2. The three other cases can be handled in essentially the same
way. We initialize v to a5, and find all pairs shortest distances in H from v to all vertices
in H. We also inidalize u to be the vertex in Ug;;(v) closest to a3 on face f2. It rakes
time proportional to the size of H to find such a vertex, using the shortest path algorithm
for outerplanar graphs. As the result of the initialization, we associate the set of vertices
from u to a4 on face f with vertex v. The set should be represented in compact form, as

the union of a minimum number of intervals. This form will be of constant size.

Also as a part of the initialization, we set up a deque with heap order [GT] to aid
in the search of H. The deque will contain the edges in the shortest path from v to «, as
we move both v and « in H. Each edge <v, w> has a cost associated with it, as well as a
label S(v,w) in compact form, encoding shortest path information in H. One of the
implementations of the deque with heap order in [GT] runs in amortized constant tme
for the deque operations and constant time for the min operation. The deque of [GT] will
perform just as well if the min operation is any associative operation with no inverse.
We thus define the min operation on two subsets, each described as the union of a

minimum number of subintervals, to be the intersection of these subsets, also described

54

as the union of a minimum number of subintervals. Since the deque represents a shortest
path from v to &, u must appear in the min taken over all edges in the deque. In addidon,
we maintain in a straightforward way a value that is the sum of the costs of the edges in

the shortest path from v to u.

We use the deque in our search as follows, handling in turn each veriex in addi-
tion to v on face f,. While v is not a2, we do the following. First, advance from v to the
next vertex v’ towards @, on face f;. Second, use edge labels to search from v towards
u, stopping when we first encounter a vertex ¢ in the shortest path from v to u. Third, we
modify the deque. Delete from the deque all edges from v to ¢, in order from the edge
incident from v to the edge incident to . Then insert the edges from V' to ¢, in order start-
ing with the edge incident on 7 and finishing with the edge incident from v". Fourth, set #’
to u. Fifth, we advance u” as necessary along face f, towards ag4, until & is in Up;;(v").
We discuss in 2 moment how this advancing operation is done. Sixth, we reset v to V',
and u to &', and associate the set of vertices from u (0 @4 on face f, with vertex v. Once

v = @, the particular case we have described is handled.

We discuss how the advancing operation is performed, in which we advance #’
along face f, as necessary towards a4 until &’ is in Uy;;(v'). While ’ is not in Uy;;(v"),
we do the following. First, let #” be the next vertex from u’ towards a4 on face f5.
Second, while " is not in the min for the path, delete non-dummy edges from the end of
the path. Third, extend the path to u”, using the edge labels in 4 to search for #”. Note
that the removal of the end of the path, and also the extension of the path can be carried
out by deque operations. Fourth, set &’ to u”. At this point, we are ready once again for

while-test involving #’. Once u”is in Uy;;(v'), the advancing operation is complete.

55

We note that the test to determine if #” is in Uy;;(v") can be implemented as fol-
lows. For vertices v and u in H, let dy(v, 1) be the length of a shortest path from v to «
that is constrained to stay in H. We must compare dy(V', &) with dy(v', ay) + d(a,, as)
+dy(as,). The value dy (v, &’) will be the total cost of all edges on the path. The
values dy(v’, a;) can be precomputed for all vertices v’ in A in time proportional to H,
and similarly for dy(as, ¥’). The value d (2, a3) is available from the previous all pairs
shortest paths computation on the compressed- graph C (G). The test itself will take con-

stant ume.

We call the above procedure for generatng the Upg;;(v) sets procedure
UVSEARCH. The correctness of procedure UVSEARCH depends on several properties.
Recall the quadrangle inequality: For vertices w, wo, i) and us, if the shortest path

from w to uy intersects the shortest path from w4 to 15, then
dwy, up)+dwa, u1) < d(wy, u1)+d(ws, uz)

The first property establishes our characterization of Ugy;;(v).

Lemma 6.1 Let # be a hammock in graph G. Let x =g; and y = a; be attachment ver-
tices at opposite ends of H. Let v and u be vertices in H, with u on face f, one of the two
faces that bound H. If vertex u is in Ug;;(v), then so are all vertices on face f from u to

the attachment vertex on face fthat is at the same end of the hammock as a;.

Proof. Let &’ be any vertex on face f from u to the antachment vertex on face f at the
same end of the harnmock as ;. We have two cases. In the first case, if # and u” are on

face f, and if v comes between 1’ and u on this face, then the shortest path in H from v to

56

x intersects the shortest path in A from y to &’. Then by the quadrangle inequality,
dy(v, W) +dy(y, x) £ dy(v, x) +dy(y, u)
Since there are no negative cycles in the graph,
0 <dx, y)+dyQy, x)
Summing these yields
dy(v,) < dy(v, x)+d @, y)+dy(y, &)
which is the desired result.

In the second case, if & and 4" are not on face f, or they are but v does not come
between 4" and u on this face, the shortest path in H from v to u intersects the shortest

path in H from y to u’. By the quadrangle inequality we get
dy(v, &) +dyy, u) < dy(v, u) +dy(y, 1)
Since u is in Uy;(v),
dg, u) < dy(v, x)+d(x, y)+dyy, u)
Summing these yields
dy(v. &) < dyv, x)+dx, y)+dy(Q, u),
which is the desired result. OJ
The second property establishes our characterization of the monotonic loss of ver-

tices from Ugy;;(v) as v recedes toward a;.

Lemma 6.2 Let H be a hammock in graph G. Let x =¢; and y = ¢, be attachment ver-

57

tices at opposite ends of H. Let v and u be vertices in H, with v on face £, one of the two
faces that bound A. If u is not in Uy;;(v), then u is also not in Uy;j(v") for any vertex v/
on face f between v and the attachment vertex on face f that is at the same end of the

hammock as a;.

Proof. By Lemma 6.1, & cannot be on face f between v and the attachment vertex on this
face at the same end of the hammock as @;. Thus the shortest path in & from v to x inter-
sects the shortest path in H from v’ to , for any vertex v’ on face f between v and the
attachment vertex on this face at the same end of the hammock as g;. By tﬁe quadrangle
inequality we get

dy(v, x)+dg(v', u) 2 dy(v, u) +dy(V, x)
Since s not in Uy;;(v),

dy(v, u) > dy(v, x)+d(x, y) +du(, u)
Summing these yields

dy (v, u) > dy(v', x) +d(x, y) +dy(y, u),
which is the desired result. [
Lemma 6.3 Let A be a hammock in graph G. Let g; and a; be attachment vertices at

opposite ends of /. Procedure UVSEARCH forms the sets Up;;(v) for all vertices v in H

in ume linear in the size of H.

Proof. We claim that UVSEARCH never deletes an edge from the deque and then later

reinserts it. This can be seen as follows. Consider three vertices v, V' and v" appearing

58

on the face containing a; and a,, with v* between v and a;, and v between v and .
Consider three vertices u, u” and #” appearing on the face containing a4 and a3, with &’
between u and a4, and u” between &’ and a4. If the shortest pa&s from v to u and from
v” to u” share an edge, then the use of edge labels ensures that this same edge will be on

the shortest path from v' to u’.

Thus every edge in the hammock is added to the deque at most once, at either the
front or the rear of the path. Every edge in the hammock can be deleted at most once,
and will be deleted from either the front or the rear of the path. As discussed already, the
deque with heap order structure of [GT] supports amortized constant deque operations,
and a constant time for the min operaton. Thus inserting and deleting edges will take

time proportional to the size of the hammock.

V-thncver the cost of the path from v’ to & is accessed, or a min operation is per-
formed, progress is made, either in the form of a deletion from the deque, or advancing u’
toward 2. Each such operation can be performed at most once for each edge or vertex
in the hammock. Since each such operation takes constant time, the total time for han-

dling such tests will be proportional to the size of the hammock.

The tme for performing the searches for u” among the edge labels can be
accounted as follows. The vertices along the face containing a3 and a, are visited in
order from a3 to a4. If edges around each vertex are stored in clockwise order according
to an outerplane embedding, then the edges can be scanned in order, without backtrack-
ing, to find the label containing the cufrent u”, starting from the edge whose label con-

tained the previous u”. This implies that each interval in an edge label is scanned just a

39

constant number of times. Thus the time is proportional to the total size of all edge

labels, which is proportional to the number of vertices in H. [

Theorem 6.1. Let H be a hammock of size n, in an embedded graph G. Given shortest
distances in & between the vertices of attachment of H, the above approach generates

edge labels for any vertex in /4 to any other vertex in H in O (n) time.

Proof. Lemmas 6.1 and 6.2 establish the correctness of our approach for computing the
sets Uy;;(v). Since the set Uy(v) is the intersection over a number of such sets, Uy(v) is

the unton of two sets, each of which is a set of contiguous vertices along a face bounding

H.

Lemma 6.3 shows that the search to determine the sets Uy (v) for all vertices v in
H will require time linear in the size of H. By Theorem 3.2, determining information for
shortest paths constrained to remain in A will take O (n;) time. By Theorem 5.1, deter-
mining information for shortest paths constrained to detour out of H will take O (n,)
time. Combining this information will take constant time per edge in H. Thus the total

time will be @ (n41). O

We have now given all the pieces of our algorithm as discussed in section 4.

Theorem 6.2. Given a planar embedding E} and a face-on-vertex covering of cardinality

p’, our algorithms compute all pairs shortest paths in O (p'n) time.

Proof. Given the face-on-vertex covering, a hammock decomposition can be determined

in O (n) tme. The compressed graph C(G) can be determined in O (n) time, and all

60

pairs shortest paths solved on it in O ((p")?) time, using the algorithm in [Fs2]. Shortest
path information between vertices in H;, and all other vertices can be determined in
O (p'n; + n) time, by Theorem 5.1. Summing over all proper hammocks gives O (p'n)
time. By Theorem 6.1, shortest path information between vertices in the same hammock

H;, of size n;, can be found in O (»;) time, or O (n) time over all hammocks. [

7. Determining an appropriate face-on-vertex covering

In this section we briefly give a solution to problem 3. Given a planar embedding
G of an undirected planar graph G, we show how to generate a face-on-vertex covering
whose cardinality is no more than twice the cardinality of a minimum face-on-vertex
covering for G. We find such a covering by using an approximation algorithmn based on
techniques found in [B]. We first recall several definitions from [B]. A vertex is on level
1if it is on the exterior face in G. A cycle of level i vertces is called a level i face if it is
an interior face in the embedded subgraph induced by level i vertices and consistent with
the embedding of G. By an induced embedded subgraph being consistent with é we
mean that the embedded subgraph can be extended to yield G by adding vertices and
edges. For each level i face f, let éf be the embedded subgraph of G induced by all ver-

tices inside fin G. All vertices on the exterior face of G rare level i+] vertices.

We sketch the method of [B], which is a generic approach for approximation
algorithms for certain NP-hard problems on planar graphs. The approach guarantees a
solution within a fixed degree of closeness to optimal, in time that is the product of n

times an exponential in the inverse of the degree of closeness. Let £ be a small positive

61

integer greater than 1, to be chosen subsequently. The idea is to consider k different
“partitions” of an embedded planar graph. For each partition, solve a particular hard
problem exactly on each subgraph, and union the solutions on the subgraphs together.
Then take as the approximate solution the solution to one of the & partitions that is closest
in cost to optimal. The exact notion of partition depends on the particular problem being
handled. In general a partition is created by repeatedly peeling off vertices in a number
of levels to create a subgraph, with every subgraph except the first and the last having

exactly k levels, and the first and the last having no more than £ levels.

We instantiate this approach for our problem. For j=0,1,--- and
r=1,2,---,k let éj, be the embedded subgraph of é containing every face in é

incident on a vertex in level i, where k(j—1)+r <i <kj+r. Let all vertices on levels
k(j—1Wr < i <kj+r be called required vertices of é - The general dynamic program-
ming algorithm in [B] can be adapted to find a minimum cardinality subset # 4 of faces
of G jr- (We omit the details of this adaptation; it is a relatively straightforward adapta-
tion.) Let F, be the union of F;, over j 2 0. Choose F” to be a set among F, of minimum

cardinality.

Let the restricred face-on-vertex covering problem be the problem of finding a
minimum cardinality face-on-vertex covering for an embedded graph in which certain
faces are required to be in the covering, other faces are not allowed to be in the coverin g,
and certain vertices are not required to be covered. We note that the above approxima-
tion algorithm can easily be modified to yield a restricted face-on-vertex covering of car-

dinality at most (k+1)/k times the minimum cardinality.

62

Lemma 7.1. Let G be an embedded planar graph, and & > 1 a positive integer. There is
an O (8%n) time approximation algorithm that generates a restricted face-on-vertex cover-
ing for é whose cardinality is at most (k+1)/k times the cardinality of a minirmum res-

tricted face-on-vertex covering.

Proof. For each r, the set of embedded subgraphs G Jr collectively contain all vertices of
G. Thus F, will be a covering of the required vertices, containing faces required to be in

the covering, and excluding faces not allowed to be in the covering.

Consider an optimal face covering F*. In a fashion consistent with [B], we argue
that |F’| < |F*|(k+1)/k. Forr=1,2,---, k, let b, be the number of faces in F* that
contain vertices from both levels kj+r and kj+r+1 for some j. Since Zf=1 b, < |F¥|,
there is some 7', 1 < 5" <%, such that b < | F*| /k. Then a (not necessarily optimal) face
covering of G i will consist of faces in /* that are incident with required vertices on lev-

els k(j~1x+r'+1 through kj+r". Taken over all j the total number of such faces is

| F*|(1+1/k).

The adapted dynamic programming algorithm from {B] will take O (8*n) ime
on graph G jr» Where nj. 1s the number of vertices in G jr- For each r, the sum of n; over

all jis O (n). Thus the algorithm runs in O (8*n) time. [J

Note that if |F’| < k, then F’ achieves the minimum.

8. Determining an appropriate embedding and an appropriate covering

In this section we address problem 4. Given an undirected planar graph G, but no

63

embedding of G, we show how to generate an embedding G and a face-on-vertex cover-
ing, such that the cardinality of the covering is at most four dmes the cardinality of a
minimurm face-on-vertex covering over all possible embeddings. Qur approach is based
on decomposing G into triconnected components. We initialize a set to hold these com-
ponents, and then handle elements of the set one at a time recursively. Handling a com-
ponent corresponds to running the algorithm in the last section in several variations, and
based on the relative performance for the variations, choosing a gadget to substitute into
a component that shared two vertices with it. The choice of component can encode an
ambiguity as to the embedding, which is resolved as the recursion is unwound. Once we
have given an algorithm for solving problem 4, we conclude the section by claiming the

main result of the paper.

As mentioned in the introduction, there are planar graphs for which one embed-
ding has a face-on-vertex covering of cardinality 2, while another embedding has only
face-on-vertex coverings of cardinality @(r). A family of such graphs is represented in
Figure 5a, where the number » of vertices is 2 more than a multiple of 3, and n = 11. The
graph can be viewed as consisting of (2—2)/3 pieces in the shape of pie slices, with all
slices the same, except for the middle one of the three shown. A minimum face-on-
vertex covering for this embedding contains (n—2)/3 faces. We shall exhibit an embed-

ding of this graph that has a face-on-vertex covering of cardinality 2.

We first discuss the use of triconnected components. We use the linear-time algo-
rithm of [HT1] to decompose G into triconnected components. Each triconnected com-

ponent will be either a bond, a polygon, or a triconnected graph, and will consist of

64

actual edges from G and virtual edges representing portions of G that were split off. Any
virtual edge in a component will have a corresponding virtual edge in some other com-
ponent. The decomposition into triconnected components of the graph in Figure 5a is
given in Figure 5b. Each virtual edge is drawn as a dashed edge, and placed next to its

corresponding edge.

Our algorithm uses a notion of extended components of a graph G, which are
modified riconnected components of G. Sets of extended components are defined recur-
sively as follows. The set of triconnected components of planar graph G is a set of
extended components of G. Let I be a set of extended components of G, with || > 1.
Then I is a set of extended components of G, of cardinality || -1, defined as follows.
Let Cy be an extended component in I" that contains some number of actual edges and
precisely one virtual edge e, and let C5 be the extended component in I” that contains the
virtual edge e’ corresponding to e. Then IV=T - {C,, C3}uU {C3}, where C3 is a com-
ponent generated when edge ¢’ in C; is replaced by any one of the gadgets in Figure 6.
(Our definition allows an arbitrary choice of gadget. Of course our algorithm will make a
particular choice of gadget. This choice will be discussed subsequently.) Note that the
components in any set of extended components are in one-to-one correspondence with
the components in a set of components obtained when certain of the triconnected com-
ponents of G are merged back together. Thus the components in the set of extended
components can be merged together to yield a planar graph G”. (Because of the replace-
ment by gadgets, G” will in general be different from G.) A set of extended components

of the graph in Figure 5a is given in Figure 7a, and a second set is given in Figure 7b.

The designation “can’t use” in certain faces of some of the gadgets refers to the

65

restriction that when a component is embedded in the plane, the corresponding face can-
not be used in the face-on-vertex covering. Note that each gadget is symmetrical with
respect to reflection about the axis through the top and bottom vertices. Thus for any
extended component that was not initally a bond, there are at most two nonequivalent
embeddings of this component, one a reflection of the other, in which any one particular

face 1s the extenior face.

We now give a recursive procedure to determine a good embedding and a good
face-on-vertex covering. We assume as input a data structure containing a set I' of
extended components of G, arranged in lists according to the number of virtual edges in
each. At the top level of recursion, I" will be the set of triconnected components of G. If
I" contains exactly one extended component C,, we generate an embedding and a face-
on-vertex covering of C,, as discussed below. If I" contains more than one extended
component, choose an extended component C; that has exactly one virtual edge e.
Remove) from the set, handle it, and modify the component C, that contains the
corresponding virtual edge ¢”. Component C, is modified by replacing virtual edge &’ by
one of the four gadgets shown in Figure 6, generating a resulting set of exiended com-
ponents I, We discuss the rule for the choice of gadget below. The algorithm is applied
recursively to I, and the resulting embedding and face-on-vertex covering is finally

modified to reflect the processing of C.

We discuss how to handle the component C. Suppose C,| was not initially a
bond. Choose one of the two embeddings 6‘1 of the component, using a linear-time

planarity testing algorithm (HT2, ET, BL]. If C; does not contain a virtual edge, then

66

use the approximation algorithm from the last section on the embedded component C 1>
using the parameter £ =4. If C'; does contain a virtual edge, let f; and f5 be the faces
incident on the virtual edge. Run four versions of the approximation algorithm from the
last section on the embedded component 6’1, again using the parameter £ = 4. In the first
version require both f; and f5 to be used. In the second require f; to be used and f5 not
to be used. In the third require f5 to be used and f; not to be used. In the fourth require
neither to be used. In all four problems, the endpoints of the virtual edge are not required
to be covered. Let py, p4, ps and p4 be the respective number of faces in the face-on-
vertex coverings generated. (If no covering is possible given the restrictions, then take

the number of faces to be = .) Without loss of generality, assume py < ps3.

. If py £min{ py, ps}, then the solution to the first problem is preferred in an
approximation, since including f) and f5 in the covering can only help in covering ver-
tices in other components. Replace the corresponding virtual edge in C4 with the gadget
of type 3 in Figure 6. Note that the middle two faces in this gadget are excluded from
being used in any face-on-vertex covering of an embedding of C',. This then forces the

two faces on either side of this gadget to be in the face-on-vertex covering,

If po <min{ p1—1, pa}, then the solution to the second problem is preferred.
This follows since including f; can only help as compared with the solution to the fourth
problem, and including f, later to help cover vertices in other components would boost
the total cost only to pa+1 <p,. Replace the corresponding virtual edge in C, with the
gadget of type 2 in Figure 6. This forces one of the two faces on either side of the gadget

to be in any face-on-vertex covering.

67

If py <min{ p;—2, py—1}, then the solution to the fourth problem is preferred.
This follows since including one of f, and f, later to help cover vertices of other com-
ponents would boost the total cost only to p4+1 < ps, and including both of f; and f,
later would boost the cost to p4+2 <p ;. In this case, replace the corresponding virtual

edge with the gadget of type 1 in Figure 6.

When none of the above conditions hold, we have that p; =p4+1 <p,. In this
case, we would like to use either the solution to the first or the fourth problem, depending
on which is more advantageous. We replace the corresponding virtual edge with the
gadget of type 4 in Figure 6. Note that the top and bottom interior faces are not allowed
to be used in the face-on-vertex covering. This means that either the middle interior face
is used, or both outside faces will be used. Using the outside faces corresponds to choos-
ing the solution to the first problem, while otherwise not using both outside faces
corresponds to choosing the solution to the fourth problem. This ambiguity about which
solution to use is left unresolved until the procedure returns back from the recursion.
This concludes the descripdon of how to handle 2 component that was not initally a

bond.

Suppose component C; was inidally a bond. In the worst case, there will be
many different possible embeddings for C'y. We describe how to generate an embedding
that has a face-on-vertex covering of minimum cardinality, subject to restrictions on how
many faces bounding a virtual edge are to be contained in the covering. For conveni-
ence, we view any edge in C, that was an actual edge in the original bond as a gadget of
type 1. An embedding will be specified by giving a cyclic ordering, around one of the

vertices originally in the bond, of the gadgets in C,, along with the virtual edge, if

68

present. First have all the gadgets of type 1, then all gadgets of type 4, then one gadget
of type 2 if there is one, then all gadgets of type 3, and then the remaining gadgets of
type 2. If there is no virtual edge, then the above embedding is sufficient. If there is a
virtual edge, then we generate three different embeddings, each dependent on how many
faces next (o the virtual edge would be required to be used in the covering. If both such
faces are, then put the virtual edge after the gadgets of type 3. If exactly one such face is,
then put the virtual edge in front of all gadgets. If no faces next to the virtual edge are to
be included in the covering, then put the virtual edge after the first gadget in the list. A
minimum cardinality face-on-vertex covering of each embedding can be generated by a

straightforward greedy algorithm,

Lemma 8.1. Let C; be a component that was originally a bond. Suppose either C| con-
tains no virtual edge, or C'; contains a virtual edge and an embedding is required to have
exactly i faces incident on the virtual edge, where i is 0, 1, or 2. The above algorithm
gives an embedding C 1 that has a minimum cardinality face-on-vertex covering when-

ever such an embedding exists.

Proof. Suppose C; contains no virtual edge. One face will be needed for each gadget of
type 3 or type 4, and every two gadgets of type 2. Furthermore, if there are no gadgets of
type 2, and at least one of type I, then one additional face will be needed. It is easy to

verify that the embedding given has a face-on-vertex covering of this size.

When there is a virmal edge in €, the proof involves verifying a number of
cases. Let g; be the number of gadgets of type jin C';. We note thatif g, + g3 +g4 >0

and g1 + g4 + g2 < 2, then there will be no embedding with both of the faces incident on

69

the virtual edge not used. If either g4 =1 and g; +g5+g3=0, or g3 >0 and
g1 t82+84=0, then there will be no embedding with exactly one of those faces not

used. O

We complete the discussion of how to handle a component that was initially a
bond. If C; contains no virtual edge, then an embedding and a minimum face-on-vertex
covering have been determined. Otherwise, let py, p- and p4 be the number of faces in
a mmimum cardinality covering when respectively 2, 1, 0 faces incident on the virtual
edge are included in the covering. Perform the comparisons between p, p4, and p4 as
described earlier, substituting the selected gadget in place of the corresponding virtual

edge in some component 9.

We now illustrate how to handle components. Consider the set of triconnected
components in Figure 5b. Consider each component that has precisely one virtual edge.
For each of these components, the solutions generated by the algorithm of section 7 for
the various problems will have p; =2, py =p3 =1, and p4 undefined. Since p; <p;-1,
each such component will be replaced by a gadget of type 2. The resulting set of
extended components is shown in Figure 7a. The solutions generated by the algorithm of
section 7 for the component shown in the middle slice of Figure 7a for the various prob-
lems will have py; =2, p; =p3 =2, and pgy=1. Since p; =p4+1 < p,, the component
will be replaced by a gadget of type 4. The solutions generated by the algorithm of sec-
tion 7 for the components shown in the other slices of Figure 7a for the various problems
will have py =2, pa=p3 =1, and p,; undefined. Thus these components will be
replaced by gadgets of type 2. The resulting single component is shown in Figure 7b.

The face-on-vertex covering generated by the approximation algorithm in section 7 is

70

shown in Figure 8a. Note that the cardinality of the covering is the smallest possible.

This must necessarily be so since the cardinality of this covering is less than £.

We finally discuss how to return from the recursion, and resolve ambiguous
choices for the embedding. Thus we discuss how to modify the solution for I' to yield a
solution for I". The embedded grabh G’ for I” contains the gadger that was substituted in
place of component C;. Replace the gadget with component C; minus its virtual edge.
It the gadget is of type 2, choose the reflection of C that forced the choice of the gadget
originally. Union the covering of C; into the covering for the embedding being con-
structed. If the gadget is of type 4, choose the covering of C; that is consistent with the

way the vertices of the gadget were covered.

Theorem 8.1. The above approximation algorithm generates an embedding of G and a
face-on-vertex covering of cardinality at most four times the cardinality of the minimum

covering over all possible embeddings.

Proof. The proof is by induction on the number of extended components of G. Suppose
there is just one extended component. If the component was not initially a bond, then
there are just two embeddings, which are reflections of each other. Our algorithm uses
the approximation algorithm from section 6, that is guaranteed to get within a factor of
(k+1)/k =5/4. 1f the component was initially a bond, then by Lemma 8.1 our algorithm
identifies an embedding that allows for a minimum face-on-vertex covering, and finds

this covering.

Suppose there is more than one extended component. We assume as the induc-

71

tion hypothesis that our algorithm gets within a factor of 4 on any graph with fewer
extended components. Given a graph G, let p(G) be the minimum number of faces in
any face-on-vertex covering of any embedding. Let F* be a face-on-vertex covering for
G that is of cardinality p (¢). For extended component C of G that has one virtual edge,
let F*’ be a minimum cardinality subset of F* needed to cover all vertices in C; except

the endpoints of the virtual edge. Let p(C) be the cardinality of F*’.

Let p be the minimum of the p;, i = 1, 2, 3, 4, for component C,. Let G’ be the
graph resulting after our algorithm deletes component €| and substitutes a gadget in
place of a virtual edge in component C,. Let p(G) be the cardinality of a covering gen-

erated by our algorithm.

Suppose p (C) £3. This means that min{ p;, p;, p4} <3. Consider the case in
which p; min{ p,, psa}. We have p(G) <p(G) — (p1-2), since p; is the minimum,
Thus p(G) <py —2+p(G") <p; —2+4p(G"), by the induction hypothesis. Substitut-
ing, we get p(G) <p; —2 +4(p(G)-p1-2) € 4p(G), since p1 = 2. Consider the case in
which py <min{ p -1, p4}. Wehave p(G) <p(G) - (py-1), since p4 is the minimum,
and p;—22p,-1. Thus p(G) <py—1+p(G) <py—1+4p(G), by the induction
hypothesis. Substituting, we get p(G) Sps — 1 +4(p(G)—p,~1) £4p(G), since p, 2 1.
Consider the case in which pg Smin{ p;-2, ps—1}. If p4 <2, then p(GY<p(G) —py,
since p1—22p4 and py—12p,, and p; and p, are the smallest possible values, not
approximations. Thus p(G) £p4+p(G") £ps+4p(G"), by the induction hypothesis.
Substituting, we get P(G) <p4+4(P(G)ps) <4p(G). If ps=3, then

P(G) £p(G)—p4 +1,since py~1 £py—2. Thus p(G) <p4+p(G) <p4+4p(G), by the

72

induction hypothesis. Substituting, we get H(G) < pas+ 4 (G)-p4+l)

=4p(G)—3ps+4 <4p(G).

Suppose p(C) > 3. Since at most two faces in F*’ cover vertices not in C, p (G")
<p(G)-p(C)+2. Then p(G)<p +p(G") <p' +4p (G, by the induction hypothesis.
Substituting, we get p(G) < BIApC)+4@(G)—p(C)+2) =4p(G) - (11/4)p(CY)+8

<4p(G). O

We suspect that the constant of 4 can be improved by careful analysis. We com-
plete our running example by seeing how the embedding and face-on-vertex covering in
Figure 8a is expanded to yield a good embedding and face-on-vertex covering for the
graph in Figure 5a. For each gadget of type 2 substituted into Figure 7a to yield Figure
7b, we replace the gadget by its corresponding component. Note that we are careful to
use the appropriate reflection of components replacing gadgets of type 2. Also note that
since the gadget of type 4 had both outside faces in the covering, both outside faces of
the component are included. Since these components are rather simple, no faces other
than outside faces were in their coverings. The resulting graph, embedding, and covering
are shown in Figure 8b. Substituting for gadgets in Figure 8b gives the original graph of
Figure 5a, along with an embedding and a face-on-vertex covering. The covering is of

cardinality 2, the best possible for this family of graphs.
We are now able to claim the main result of the paper.
Theorem 8.2. Let G be a directed planar graph, with n vertices, and real-valued edge

costs but no negative cycles. Let p be the minimum cardinality of a face-on-vertex cov-

ering over all planar embeddings of G. Our algorithm constructs compacted routing

73

tables for all pairs shortest paths in G in O (pn) time.

Proof. The result follows directly from Theorems 6.2 and 8.1 O

9. Verifying the triangle inequality, and another encoding

It is possible to determine all edges violating the triangle inequality in time that is
better than O (pn) whenever p is o (n). The time will be O (n + pz), as we now show.
Perform all the portions of our algorithm except for finding edge labels between vertices
in different hammocks. For each edge <v, w>, test if w is in the interval labeling edge
<v, w> in the hammock containing <v, w>. Anedge <v, w > violates the triangle ine-

quality if and only if the test fails.

Theorem 9.1. Let G be a directed planar graph, with # vertices, and real-valued edge
costs but no negative cycles. Let p be the minimum cardinality of a face-on-vertex cov-
ering over all planar embeddings of G. All edges that violate the generalized triangle

inequality can be determined in O (# + p?2) time.

Proof. Since each edge is in some hammock, it is not necessary to find shortest path
information for two vertices in different hammocks. The time to perform all the portions
of our algorithm except for finding edge labels between vertices in different hammocks is
O(n +p?). Given the edge label information withim hammocks, the time to perform

each test is constant per edge, or O (n) overall. O

We know of no class of graphs for which the current best algorithm for verifying

the generalized triangle inequality is faster than the current best algorithm for solving all

74

pairs shortest paths. The class of planar graphs with 2 minimum cardinality face-on-
vertex covering of size p appears to be no different, if we allow an alternative encoding

of all pairs shortest paths information.

The encoding consists of all pairs shortest distances and shortest paths in the
compressed graph C (G), edge labels in each hammock H, the sets Uy (v) for all vertices
v in each hammock H, and shortest distances between each vertex in H to the attachment

vertices of H.

Given this encoding, the first edge <v, w > on a shortest path from v to u is deter-
mined as follows. Suppose v and u are in the same hammock H. If u is in Uy (v), then
the shortest path from v to u stays within . Thus <v, w > is the edge incident from v
with u in its edge label. If u is not in Uy (v), or if v is in hammock H and # is in ham-
mock H’ # H, then we consult the distance information. (If v and u are in the same ham-
mock H, but u is not in Uy(v), then let A" =H in the following.) Leta,, as, as and ay
be the attachment vertices of H, and &, b4, b3 and b, be the attachment vertices of H’.
Choose { and j to minimize 4 (v, a;) +d (q;, b;) +db;, u). If v #qa;, then edge <v, w>
will be the edge incident from v with g; in its edge label. If v =g;, then <v, w> will be

the first edge in a shortest path from g; to b; in C (G).

Theorem 9.2, Let G be a directed planar graph, with n vertices, and real-valued edge
costs but no negative cycles. Let p be the minimum cardinality of a face-on-vertex cov-
ering over all planar embeddings of G. The above encoding of all pairs shortest path

information can be computed in O (r + p2) time.

Proof. The above encoding can be generated by performing all the portions of our

75

algorithm except for finding edge labels between vertices in different hammocks. This

requires time O (n +p?). O

While this encoding can be generated in general more quickly than compact rout-
ing tables, it obviously cannot be used in place of compact routing tables for point-to-

point message routing in a network.

Acknowledgement. The author would like to thank the referees for their careful reading

of the paper and their many helpful suggestions.

References

[AHU] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley (1974).

[B] B. S. Baker, Approximation algorithms for NP-complete problems on planar
graphs (preliminary version), Proc. 24th IEEE Symp. on Foundations of Com-
puter Science, Tucson (1983) 265-273.

[BM] D. Bienstock and C. L. Monma, On the complexity of covering vertices by faces
in a planar graph, STAM J. Computing 17, (1988) 53-76.

[BL] K.S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms, J. Computer and Systems
Sciences 13 (1976) 335-379.

[DP] N. Deo and C. Pang, Shortest-path algorithms: taxonomy and annotation, Net-
works 14 (1984) 275-323.

[D] E. W. Dijksta, A note on two problems in connexion with graphs, Numerische
Mathematik 1 (1959) 269-271.

[ET] S. Even and R. E. Tarjan, Computing an st-numbering, Theor. Computer Science
2 (1976) 339-344,

[FL] M. R. Fellows and M. A. Langston, Nonconstructive advances in polynomial-
time complexity, Info. Proc. Lett. 26 (1987-88) 157-162.

76

[FI1 ~ R. W. Floyd, Algorithm 97: shortest path, Comm. ACM 5 (1962) 345.

[Fs1] G. N. Frederickson, Implicit data structures for the dictionary problem, J. ACM
30 (1983) 80-94.

[Fs2] G. N. Frederickson, Fast algorithms for shortest paths in planar graphs, with
applications, SIAM J. on Computing 16 (1987) 1004-1022.

[Fs3] G. N. Frederickson, A new approach to all pairs shortest paths in planar graphs,
Proc. 19th ACM Symposium on Theory of Computing, New York City (May
1987) 19-28.

(FJ1] G. N. Frederickson and R. Janardan, Designing networks with compact routing
tables, Algorithmica 3 (1988) 171-190.

[FI2] G. N. Frederickson and R. Janardan, Efficient message routng in planar net-
works, STAM J. on Computing 18 (1989) 843-857.

[Fm] M. L. Fredman, New bounds on the complexity of the shortest path problem,
SIAM J. on Compuzing 5 (1976) 83-89.

[FT] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved net-
work optmization algorithms, J. ACM 34 (1987) 596-615.

[GT] H. Gajewska and R. E. Tarjan, Deques with heap order, Info. Proc. Lert. 22
(1986) 197-200.

[H] F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969.

[HT1] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected COITIponents,
SIAM J. Computing 2 (1973) 135-158.

[HT2] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. ACM 21 (1974)
549-568.

[MS] J. 1. Munro and H. Suwanda, Implicit data structures for fast search and update, J.
Computer and System Sciences 21 (1980) 236-250.

[SK] N. Santoro and R. Khatib, Labelling and implicit routing in networks, Computer
Journal 28, (1985) 5-8.

[VLT] J. van Leeuwen and R. B. Tan, Computer networks with compact routing tables,
in The Book of L, G. Rozenberg and A. Salomaa (eds.), Springer-Verlag, New
York (1986) 259-273.

[W] S. Warshall, A theorem on Boolean matrices, J. ACM 9 (1962) 11-12.

Figure 2. An undirected embedded graph generated from the graph in Figure 1,
with faces not in the face-on-vertex covering triangulated.

Figure 3. A hammock decomposition for the embedded graph in Figure 1,
with the attachment vertices emboldened.

Figure 4. A directed outerplanar graph.

O

(b)

Figure 5. An example for determining a good embedding:

(a) an embedded planar graph, and
(b) its decomposition into triconnected components.

type 3

Figure 6. The gadgets that can substitute for a component.

*
L]
-

(b)

Figure 7. Sets of extended components generated by:
(a) replacing certain components in Fig. 5b, and
(b) replacing all components except the largest one.

Figure 8. Expanding the embedding and face covering:
(a) a face covering for the extended component in Fig. 7b,
(b) a face covering when each gadget in Fig. 7b is expanded, and
(¢) a good embedding and face covering for the graph in Fig. 6a.

	Planar Graph Decomposition and All Pairs Shortest Paths
	Report Number:
	

	tmp.1307986960.pdf.m_MWA

