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Abstract. An algorithm is presented. for generating a succinct encoding of all pairs shor

test path infonnation in a directed planar graph G with real-valued edge costs but no

negative cycles. The algorithm runs in 0 (pn) time. where n is the number of vertices in

G, andp is the minimum cardinality of a subset of the faces that cover all vertices, taken

over all planar embeddings of G. The algorithm is based on a decomposition of the

graph into 0 (pn) outerplanar subgraphs satisfying certain separator properties. Linear

time algorithms are presented for various subproblems including that of finding an

appropriate embedding of G and a corresponding face-on-vertex covering of cardinality

o (P), and of generating all pairs shortest path infonnation in a directed outerplanar

graph.

Key words and phrases. all pairs shortest paths. approximation algorithm, compact

routing table, graph embedding, NP-completeness, outerplanar graph. planar graph, suc

cinct encoding.
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A fundamental problem in graph algorithms is that of determining shonest path

information in a graph [AHU, DP]. Efficient algorithms for various versions of this prob-

lem have been proposed [D, Fl, Fs2, Fm, FT, W], with recent emphasis on exploiting

topological features of the input graph, such as edge sparsity and planarity [FT, Fs2].

Consider the all pairs shortest paths problem on a directed graph with real-valued edge

weights, but no negative cycles. In this paper we introduce a new approach for this prob-

lern, using a succinct encoding of shortest path information based on the topology of the

graph. We present algorithms that handle n-verrex planar graphs in time mat ranges from

o (n) up to 0 (n
2

) as the topological properties of the graphs become more complex. By

encoding shortest path information in what we call compact routing tables, we avoid a

lower bound of Q(n 2) time that would be needed if the output were required to be in the

fonn of n shortest path trees.

. .
Let G be a plane embedding of a planar graph G. We call a set of faces of G that

together cover all the vertices a face-an-vertex covering. An example of an embedded

. .
planar graph G and a face-on-vertex covering of G is shown in Figure 1. Let P be the

minimum cardinality of any face-on-vertex covering over all plane embeddings of G.

The value of p ranges from 1 up to 6(n), depending on the planar graph. Given planar

graph G, but no embedding, our algorithm constructs compact routing tables for all pairs

shortest paths in a directed planar graph in 0 (pn) time. Previous algorithms had pertor-

mance of 0 (n'(laglagn)ll3{(lagn)ll3) for general graphs [Fm], 0 (nm + n2lagn) for

sparse graphs [Fr], 0 Cn 2) for planar graphs [Fs2], and 0 Cn) for nndirected auterplanar

graphs [FII], where m is the number of edges in the graph.
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Our choice of output in the fonn of compact routing tables is narnral, as shortest

path infonnation in this fonn is useful in space-efficient methods for message routing in

distributed networks [FJl, FJ2]. In the conclusion we shall discuss an alternative encod-

iog that costs only 0 en +p2) time to generate. We also give an algorithm that identifies

all edges that violate the generalized triangle inequality in 0 en + p 2) time.

We identify several nice structural properties of planar graphs. Given a face-on-

vertex covering of cardinality p', we identify a decomposition of a planar graph into

o (P') particularly appropriate subgraphs, called hammocks. We prove a monotoniciry

property, which characterizes the difference of the distance from a vertex to two other

vertices as the vertex moves around a face in the embedding. To handle our all pairs

shortest paths problem, we identify and solve the following four subproblems (the latter

two of which are approximation problems for NP-hard problems!):

1. Suppose we are given a directed outerplanar graph with real-valued edge costs,

but no negative cycles. We present an algorithm that determines shonest path infonna-

tion in 0 (n) time. The approach in [FIll for undirected outerplanar graphs does not

work in the directed case, since for directed outerplanar graphs there is no propeny com-

parable to the reflection property.

2. Suppose we are given a directed planar graph G with real-valued edge costs

,
but no negative cycles, Suppose we are also given an embedding G of G, and a face-on-

,

vertex covering of G of cardinality p'. We present an algorithm that detennines shortest

path infonnation in 0 (p'n) time.

,

3. Suppose that an embedding G of an undirected planar graph G is given, but no



3

face-on-venex covenng is provided. It has been shown in [FL, BM] that it is NP-

complete to determine if there is a face-on-venex covering of cardinality at most pl. We

present an algorithm that determines a face-on-vertex covering of cardinality at most

.
twice that of a minimum cardinality face-on-vertex covering for G. This algorithm is

based on an approach in [B], and runs in 0 en) time.

.
4. Suppose we are given an undirected planar graph G, but no embedding G.

Note that there are planar graphs for which one embedding has a face-on-vertex covering

of cardinality 2, while another embedding has a face-on-vertex covering of minimum

cardinality eCn). An algorithm to determine a minimum cardinality face-on-vertex cov-

ering and associated embedding is given in [EM], but takes O(2Pn) time. This is too

much for our shortest paths application except when p is 8(1). We give an algorithm

. .
that finds an embedding G and a face-on-vertex covering in G of cardinality within a

constant factor of the minimum cardinality covering for any embedding of G. The algo-

rithm uses a decomposition of G into triconnected components [HT1], and runs in 0 (n)

time.

Our algorithm for problem 1 is used in the solution of problem 2, and our algo-

rithm for problem 3 is used in the solution of problem 4. The all pairs shonest paths

problem in planar graphs can then be solved as follows. Given a directed planar graph G,

we first find a good embedding and a good face-on-vertex covering by converting the

directed edges to undirected edges, and then applying the algorithm for problem 4.

Given the good embedding and the good face-on-venex covering, we then use the algo-

rithm for problem 2.
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Our paper is organized as follows. In section 2 we discuss compact routing

tables, and then describe a decomposition of a planar graph. In section 3 we present an

algorithm for finding all pairs shortest paths in directed Qurerplanar graphs. In section 4

we sketch our basic approach for solving all pairs shortest paths in planar graphs, and

present the monotonicity property and its application. In section 5 we show how to gen

erate shortest path information between the subgraphs in our decomposition. In section 6

we show how to generate shortest path infonnation within each subgraph in our decom

position. In sections 7 and 8 we describe our approximation algorithm for finding a good

embedding and a good face-on-vertex covering. In section 9 we discuss verifying the tri

angle inequality. and give another encoding of all pairs shortest paths.

A preliminary version of this paper appeared in [Fs3].

2. Structure of planar graphs

In this section we first review the notion of compact routing tables. We then

define, relative to a given face-on-vertex covering of a planar graph, subgraphs that we

tenn hammocks. Hammocks have several nice properties that make them especially

appropriate for use in shortest paths algorithms. A hammock is outerplanar, each ham

mock shares at most four vertices with the rest of the graph, and the vertices in a ham

mock fonn two chains of consecutive vertices along faces in the face-on-vertex. covering.

Our definition of hammocks leads to a linear-time algorithm for decomposing a planar

graph into 0 (P') hanunocks, if the given face-an-vertex. covering-has p' faces.

We first discuss the idea of compact routing tables, which appears in [FJl] and is
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based on ideas in [SK, vLT]. Let the vertices be assigned names from 1 to n in an

appropriate manner to be discussed. For every edge <v, w> incident from any given

vertex v, let S (v, w) be the set of vertices such that there is a shortest path from v to each

vertex in S(v, w) with the first edge on this path being <v, w>. A tie occurs if there is a

vertex u such that there is a shortest path from v to u with the first edge on this path being

<v, w> and also a shortest path from v to u with the first edge on this path being

<v, w'> for some w'::t w. In the event of ties, an appropriate tie-breaking rule is

employed so that for each pair of vertices v and u ::t v, u is in just one set S (v, w) for

some w. Let each set S (v, w) be described as a union of a minimum number of subinter

vals of [1, n]. Here we allow a subinterval to wrap around from n back to I, i.e., a set

{i, i+I, .... n, 1,2, ... , n, where i > j+1 will be described by [i, n. We call the

set S (v, w) described in the fonn of a minimum number of subintervals of [1, n] the

label of edge <v, w>.

For example. consider an outerplanar graph. (A graph is outerplanar if it can be

embedded in the plane such that all vertices are on one face [H}.) It was shown in [FJ1J

that if the vertices of an undirected omerplanar graph are named in clockwise order

around this one face, then each set S(v, w) is a single interval [t, hJ. Clearly this pro

perty also holds for directed outerplanar graphs. A compact routing table for v consists

of a list of initial values t of each interval, along with pointers to the corresponding

edges. The list is a rotated list [MS, FsIJ, and can be searched using a modified binary

search.

A linear-time algorithm has been presented in [FJ1J for determining the labels of

all edges of an undirected outerplanar graph. (For an undirected graph, each edge has
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two labels, one corresponding to each endpoint of the edge, since the edge can be

traversed in either direction.) In the next section we give a linear-time algorithm for

detenruning the labels of all edges of a directed ourerplanar graph. If the graph is not

outerplanar, i.e., p > I, then an edge label S (v, w) can consist of more than one subimer-

val. A compact routing table will then have an entry for each of the subintervals con-

rained in an edge label at v. It can be shown that the total size of all compact routing

tables for directed planar graphs is 0 (pn). (The proof is essentially the same as the proof

in [FIl] for undirected planar graphs.)

For the remainder of the section we discuss a decomposition of an embedded

directed planar graph with no self-loops into subgraphs, each of which is outerplanar, and

each of which shares at most four vertices with all other subgraphs in the decomposition.

.
Let G = (V, E, F) be an embedding of G with a face-on-vertex covering F' of p' faces,

where p' > 1. To generate the decomposition, we shall first convert the embedded

. .
directed graph G into an embedded undirected planar graph G 1 = (V 1, E 1, F 1) with cer-

tain nice properties, along with a face-on-vertex covering F 1 I of size p'. We shall then

.
identify certain subgraphs in G I, and convert these back into the desired subgraphs of G.

.
The conversion will be such that G I has no parallel edges, that all faces in F I - F I I are

bounded by three edges, that no pair of faces in F I I share a vertex, and that the boundary

of each face is a simple cycle. We call an embedded undirected planar graph that

.
satisfies the above assumptions neatly prepared. We describe the structure of G 1 with

respect to F 1I, and give a decomposition of G 1 into 0 (P') outerplanar graphs. At the

end of the section we discuss how to perfonn the conversions.
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In the case that p' = 2, there is a special procedure which we discuss subse

quently. Otherwise, for p' > 2, let the faces in F I' be indexed with the integers from 1 to

p'. We label the faces of F I - F I' with a 4-tuple Ci, j, k, r). The values i, j and k are

the indices of the faces in F 1' containing the three vertices of the face. These are ordered

so that k = j implies i = j. The value r is the number of edges of the face that are shared

with faces in F I" Thus (i, i, j, 1) represents a face that has two vertices on face fi. and

one on face fj, with the two vertices on face Ii adjacent via an edge on face Ii. Also,

Ci, i, t, 2) represents a face with three vertices on face ii, with one pair of vertices adja

cent via an edge on!i. and a second pair adjacent via a second edge that is also coli.

We now show how to group the faces together to form ha,mmocks, using two

operations: absorption and sequencing. We first perform absorption. Consider a pair of

faces in F 1 - F l' that share an edge. Suppose the labels are (i, i, i. 2) and (i, i, j, r),

where either j =i and r =1, or j;t; i and r =O. Absorb the first face into the second, and

relabel it as (i, i, i, r+l). This is equivalent to performing the following operations on

the embedded graph. First contract an edge that the first face shares with face Ii. The

first face becomes a face bounded by two parallel edges, one of which is shared with the

second face. Then delete this edge, effectively merging the faces. Repeat the absorption

operation until it can no longer be applied.

Once the absorption operation can be applied no longer, we group the remaining

faces by sequencing. Identify maximal sequences of faces such that each consecutive

pair of faces in the sequence share an edge in common, and all faces have the label

(i, i, i. 1) or U, i, i, 1), for some pair of indices i and j. A special case arises if such a

sequence of faces extends all the way around one of the faces in F 1', say:k In this case
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there is a vertex on Ii that is contained in both the first and last faces of the sequence.

Split this vertex into two vertices. Each such sequence of faces then comprises an outer-

planar graph. Expanding the faces that were absorbed into faces in the sequence yields a

graph that is still outerplanar. Each such resulting graph is called a (major) hammock, so

called because it stretches between two faces. The first and last vertices on each of these

two faces of the hammock are called the vertices of attachment. Any edge that is not

included in a major hammock is taken individually to induce a (minor) hammock. The

set of all major and minor hammocks comprises a hanunock decomposirion of the embed-

.
ded graph G 1.

In Figure 2 is an undirected embedded planar graph that was generated from the

directed embedded planar graph given in Figure 1. (YVe discuss this generation later.)

Let the faces in the face-on-venex covering be indexed: 11 covers vertices 1-7,12 covers

vertices 8-11,13 covers vertices 12-14, 14 covers vertices 15-20, and 15 covers vertices

21-23. The face containing vertices 9. 10, and 11 will have label (2. 2, 2, 2), and the

face containing vertices 3, 9, and 11 will have label (2, 2, I, 0). Absorbing the first face

into the second by contracting edge (9, 10) and deleting edge (9, 11) will yield a face

with vertices 3, 9, and 11 and label (2, 2, I, 1). Then a maximal sequence of faces

between faces hand h contains faces with vertex sets {3, 9, 11j, {3, 4, 9j, {4, 9, 8},

{4, 8, 11}, and {4, 5, 11}. (The face {3, 9, 11} in this sequence is the result of absorbing

face {9, 10, II} into the original face {3, 9, II} of Figure 2. As noted earlier, this result-

ing face has edge (9, 11) on face 12') Note that this sequence extends all the way around

face 12. Thus the venex 11 should be split into tWO vertices, say 11' and lIN. The edges

in the corresponding major hammock will be (9, 10), (9, 11"), (10, 11''), (3, 9), (3,4),
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(4,9), (8, 9), (4,8), (8, II'), (4, 11'), (4, 5), (5, 11'), and (3, 11"). These are listed in an

order of six instances of an edge that can be contracted followed by an edge that can be

deleted, culminating with a final edge that remains, as discussed in the proof of the

upcoming Lemma 2.2. Note that the vertices of attachment of this hammock are 3, 11",

5, and 11'.

Note that a major hammock can span between two different sequences of vertices

on the same face in F 1', as is shown by the hanunock that spans vertices {I, 7, 3}. There

can also be two different hammocks spanning between the same pair of faces. as shown

by the hammock spanning vertices {5. 6, 7, 16, 15, 20} and the hammock spanning ver-

tices {7, 16, 17}. Other major hammocks span the vertex sets {I, 2, 3, 12, 13, 14},

{17, 18, 19, 20, 21, 22, 23}, and {7, 21, 23}. Note that edges (7, 11) and (11, 16) each

induce a minor hammock.

.
If p' = 2, then G I can be decomposed as follows. (Note that after absorbing all

possible faces, there would be a cycle of faces rather than a sequence of faces.) Identify

a face not in F l' that contains vertices not all on the same face in F 1'. Of the vertices on

this face, choose two which are on different faces of F 1'. Split each of these venices into

two vertices, and reconnect the edges so that the face not in F 1' and the two faces in F 1'

are merged. The resulting graph is outerplanar, and we designate it a major hammock.

The vertices of attachment are the four vertices resulting from the splitting.

Lemma 2.1. The above algorithm generates a decomposition of a neatly prepared

embedded undirected planar graph into hammocks.
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"Proof. We claim that there is a one-la-one correspondence between the edges in Gland

the edges in the hammocks of the hammock decomposition of G 1- If p' = 2, then this is

clearly true. Thus we consider the case in which p' > 2. First it is clear that any edge in

G 1 has at least one corresponding edge in the hanunocks of the decomposition, since any

edge not in a major hammock is inserted into a hammock of its own. Suppose that there

were an edge in G 1 that is in more than one major hammock. This edge cannot be an

edge on some face fi in F 1', since such an edge is in only one face in F I - F 1', and each

face in F 1 - F l' is included in at most one sequence of faces. Thus this edge must be

shared by two faces in F I - F 1'. each of which is included in a different hammock. Let

one face have label (i, i, j, 1) after all absorptions. The edge it shares must be between

faces t and Ij· Thus the other face must have label (i, i, j, 1) or V, j, i. 1) after all

absorptions. But in either case this face would be in the same sequence as the first. It

follows that an edge cannot be shared by two faces in F 1 - F l~. Thus the claim follows.

It is not hard to verify that the vertices of attachment of any hammock are the

only vertices shared with any other hammocks. 0

"
Lemma 2.2. Let G I be a neatly prepared embedded undirected planar graph with a

face-an-vertex covering of p ~ > 1 faces. There are max{3p' - 6, 1} hammocks in a ham-

.
mock decomposition of G 1.

Proof. If p ~ = 2, then clearly there is only one hammock. For p ~ > 2, consider the fol-

" "
lowing construction. Generate embedded graph Gh from G I as follows. First mimic the

absorption of faces by contracting and deleting edges as discussed previously. After the

absorption of faces has been mimicked, we compress major hammocks as follows. For
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every edge that is on some face Ii in F 1' and in a major hammock, contract the edge, and

delete one of the two resulting parallel edges. Such operations should be performed. so as

~ ~

to preserve the embedding. Call the resulting graph Gho It follows that in Gh there is a

~

vertex corresponding to each face in F 1', and each edge in Gh corresponds to a hammock

~ ~

in G 1 . It is also clear that there is no face bounded by two parallel edges in Gh _ There

are no faces bounded by a single edge. which follows from the way faces labeled by

(i, i, i, 2) are absorbed.

~

Let Vh• Eh and Fh be the sets of venices, edges and faces of Gh. Since there is no

A

face bounded by a single edge and no face bounded by just two edges, any face in G
h

must be bounded by three edges. (Note that there are potentially loops in the graph, but

these do not individually enclose faces in the embedding, and similarly that there may be

two edges with the same endpoints, but these do not alone bound any face.) Thus

~

IFhl =2IEh l/3. Since Gh is planar, Euler's formula [H] gives IVhl -IEhl + IFhl

=2. Combining yields IEh I =3IVh I - 6. Since IVh I =p', and IEh I is the number of

hammocks, the result follows. 0

We now discuss how to conven an embedded undirected graph

A

Go = (Vo, Eo, F 0), with face-on-venex covering F'o. into an embedded undirected graph

A

G I = (VI. E I. F I ) with face-on-vertex covering F I ', which is neatly prepared. Recall

that G1 is neady prepared if G1 has no parallel edges, all faces in F 1 - F l' are bounded

by three edges, no pair of faces in F 1' share a vertex, and the boundary of each face is a

simple cycle. First consider any vertex v appearing more than once in a clockwise walk

around a face. Since there are no loops or parallel edges in the graph, the preceding and
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succeeding vertices u and w on the walk are distinct from v and from each other. Ver-

rices u and w are not adjacent, since every path from u to w must necessarily contain v.

Add an edge from u to w. If the face so split was in F'o. replace it with the resulting face

that is enclosed by the clockwise walk, but with edges Cu, v) and (v. w) replaced by

Cu, w). Repeat this operation until the boundary of every face is a simple cycle.

Designate as a shared vertex any vertex shared by two faces in F'o. Suppose a

face Ii in F'0 contains at least four vertices, with at least one shared vertex v. Let u and w

be the preceding and succeeding vertices in a clockwise walk around Ii. Add an edge

from u to w, and replace fi. in F'0 with the resulting face that is enclosed by the clockwise

walk, but with edges Cu, v) and (v, w) replaced by Cu, w). Repeat this operation until

every remaining shared vertex is on a face in P'0 with three vertices.

For any remaining venex v shared by faces Ii and /j, replace v by vertices v i and

v
j and edge (vi, vi). Replace edges (v, w) by (vi, w) or (v j , W), so that the clockwise

walks around Ii and Ij are the same except with v replaced by v i and vi, respectively,

and planarity is preserved. Finally add edges as necessary to triangulate faces In

.
F 0 - F'o. The resulting undirected graph G satisfies the assumptions stated earlier.

We handle an embedded directed graph G in the following way. We assume that

.
if both edges <v, w> and <w, v> are in G, then they together bound a face. To gen-

.
erate undirected graph Go, replace each directed edge <v, w> by an undirected edge

. .
(v, w), and remove duplicates. Embedded graph G 1 is generated from Go in the manner

discussed above. The hammocks for Glare detennined using the main algorithm of this

.
section. Delete any edges from the hammocks which were added in converting Go to
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.
G 1, noring that any minor hammocks that lose their single edges can be deleted. Replace

.
the remaining edges by the directed edges that they replaced in the conversion from G to

.
Go. We call the resulting subgraphs hammocks of the embedded directed planar graph.

.
Theorem 2.1. Let G be an embedding of an n-vertex directed planar graph with a face-

on-venex covering F' of p' faces. Given G and F', the above algorithm will generate a

decomposition of G into 0 (p') hammocks in 0 (n) time.

.
Proof. It is reasonable to assume that G is presented so that edges are maintained in cir-

cular doubly-linked EMS in order around each vertex, and are also maintained in circular

.. .
doubly-linked lists in order around each face. Then the conversions of G to Go, and Go

.
[0 G 1 will take 0 (n) time. The conversions will result in a planar undirected graph of

o (n) vertices. with a face-an-vertex covering of p' faces. The hammocks are detennined

by our procedure in 0 (n) time, since each absorption can be perfonned in constant time,

and the handling of a maximal sequence of faces can be perfonned in time proportional

to the number of faces in the sequence. By Lemma 2.1, the decomposition generates

omerplanar subgraphs, each of which shares at most four vertices. By Lemma 2.2, the

number of such graphs generated will be 0 (P'). 0

An undirected embedded planar graph is given In Figure 2 for the directed

embedded planar graph in Figure 1. Note that vertex 4 was a shared vertex. and an edge

(8, 11) was added to remedy 'his situation. In addition, edges (I, 14), (3, 12), (5, IS),

(6, 16) (7, 11), (7, 21), (7, 23), and (11, 16) were added to triangulate faces not in r.

A decomposition for the directed embedded graph of Figure 1 is given in Figure
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3. with the attachment venices shown as emboldened. The generation and the decompo

sition for the associated undirected embedded graph in Figure 2 has been discussed ear

lier. Note that both minor hammocks in that decomposition were discarded, since they

were induced. by edges that had been added. Also note that the hammock spanning v e r ~

tices {7, 21, 23} has been trimmed to a subgraph containing vertices {21, 23}. This was

done because both edges (7,21) and (7,23) were added, and when removed they left

vertex 7 isolated within the subgraph. The final decomposition is comprised of 7 outer

planar subgraphs.

3. Shortest paths in directed outerplanar graphs

In this section we show how to determine in linear time the labels for all edges in

a directed outerplanar graph. The major portion of the section assumes that the outer

planar graph has several nice features, while the latter pan of the section shows how to

deal with an outerplanar graph that does not have these nice features. A key idea used in

both is to make use of the natural tree structure of biconnected outerplanar graphs. In

both algorithms, sweeps are made through the graph based on this tree structure.

Another key idea used in our algorithm is the notion of split vertices, which are actually

the initial values in the intervals labeling the edges, and thus are the values stored in the

compact routing tables.

We now discuss briefly the organization of the section. We first identify the nice

features assumed for most of the section. We then define the notion of a split vertex, and

also discuss the natural tree structure of an outerplanar graph. Given this preliminary

discussion, we are then able to provide an overview of our algorithm, which employs a
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sweep through the tree structure, processing each face in rum. We introduce the data

structures upon which our algorithm operates, and then give a detailed discussion about

how each face is processed. We then establish the correctness and time complexity of

this algorithm. Finally we discuss how to handle an outerplanar graph in which the nice

features identified earlier are not present.

We now identify the nice properties that we assume in the major portion of this

section. We assume that for each directed edge <Y, w> there is an edge <w, v> in the

graph, and that the graph with the orientation of edges removed is biconnected. We also

assume that edge costs satisfy the generalized triangle inequality, i.e., each edge <v, w>

is a shortest path from v to w. We assume that vertices are named in clockwise order

around the exterior face. With the vertices named in this order. we can describe mean

ingful sets of vertices using interval notation. For example, {i+l, i+2, ... , j-l} can be

described by the open interval (i, n, and {i+l, i+2, ... , j} by the half-open interval

(i, n. At the end of this section we examine how to handle a directed ourerplanar graph

in which these assumptions are not necessarily satisfied.

We next define several terms. that lead up to the definition of a split venex.

Define an interior face in an outerplane embedding to be any face other than the exterior

face that is bounded by more than two edges, i.e., not bounded by a pair of edges

<v, w> and <w. v> for any v and w. Recall that for every edge <\I, w> we defined

5 (v, w) to be the set of vertices such that there is a shortest path from \I to each vertex in

5 (v, w) with the first edge on this path being <v, w>. We now specify the tie-breaking

rule that guarantees that u will be in one set 5(\1, w) for each v. Let w and w' be neigh

bors ofv on some interior face, with w in the open interval (v, w') and with u in the half-
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open interval (w, w']. If there is a shortest path from v to u with the first edge on this

path being <v, w> and also a shortest path from v to u with the first edge on this path

being <v, w'>, then u is in only the set S (v, w'). If a vertex u is in a set S (v, W), we say

that edge <v, w'> claims u. Let z be the farthest vertex from v in a counterclockwise

direction around the exterior face that is claimed by <v, w'>. We call z the split vertex

a/vertex v relative to neighbors w and w', or the split vertex for (v, w, w').

Consider the outerplanar graph in Figure 4. Note that it satisfies the assumptions

In the first paragraph of this section. There are four interior faces. Consider the face

containing vertices 5, 6, 7,12,13.14,19 and 20. Vertex 7 has neighbors 12 and 6 on this

face. Edge <7,6> claims vertices in the interval [17,7), and edge <7,12> claims ver

tices in the interval [12,17). The split vertex of 7 relative to neighbors 12 and 6 is vertex

17. (Vertex 7 is also on the face containing vertices 7, 8, ... , 12. Edge <7,8> claims

vertices in [8.12). The split vertex of 7 relative to neighbors 8 and 12 is vertex 12.)

We next discuss the natural tree structure of the outerplanar graph. Consider a

relation on interior faces, with two faces related if they are separated by precisely two

edges, <v, w> and <w, v>. for any v and w. There is a natural tree structure based on

this relation. (This is the dual graph restricted to interior faces.) Root this tree at an inte

rior face that is related to only one other interior face. Our algorithm sweeps through the

cree bottom-up, i.e., an interior face is handled once all interior faces that are children of

it in the tree have been handled. For any interior face f other than the root. there is a

unique interval [x, xl comprising the set of names of all vertices on faces in the subtree

rooted at f. Associate with each interior face other than the root the pair of edges

<.x, x> and <x', x>. Associate with the interior face that is the root a pair of edges
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<x, X'> and <x, x> on the exterior face, where x follows x' in clockwise order around

the exterior face.

We illustrate the cree with respect to the outerplanar graph in Figure 4. Let the

root be the interior face with vertices in [20,S]. Edges <7,12> and <12,7> will be asso

ciated with the face containing vertices in [7,12]. edges <14.19> and <19,14> will be

associated with the face containing vertices in [14,19], and edges <5,20> and <20,5>

will be associated with the face containing vertices in [5,7] U [12,14] U [19,20]. We

choose edges <3,2> and <2,3> as the edges associated with the root.

As the algorithm sweeps up through the tree, it determines split vertices. The

algorithm processes each interior face f in tum, by which we mean the following. For

face fnot the root of the tree, let interval [x, x'] be associated with f. After face I is pro

cessed, the split vertex z will have been found for each triple (v, w, w') such that z is in

(x, x']. (Some of these split vertices may have been found already when proper descen

dants oflin the ttee were processed.) Every other triple (v, w, w') such that v, w and w'

are in [x, x'] will be stored on a list, ordered by appearance of v on the exterior face.

This list will mimic a face in that there are edges between consecutive entries on the list,

with edge costs that preserve the difference in distances d(v, x) - d(v, x'). In addition,

every venex v in [x, x1 that can be a split vertex for some vertex not in (x, x1 will also

be in a list, ordered by appearance of v on the exterior face, with edge costs that preserve

the difference in distances d(x, v) - d(x' , v). By carefully traversing and manipulating

these lists, split vertices can be found and vertices can be eliminated as candidates for

split vertices, in time proportional to the number of changes in the lists.



18

We now discuss the definition and manipulation of these lists. For each interior

face f associate a doubly-linked list L 1(f) of triples (v, w, w'), where v is a vertex on f.

and wand w' are clockwise and counterclockwise neighbors respectively of v on f List

L 1(j) is an ordered list of all triples (v, w, w') on face J. ordered on venex v around face

f from x to x. Each link in the list will have a cost, representing the distance between the

corresponding vertices. Also associate with f a doubly-linked list L2(/) of vertices from

x to x. List £2 (f) is an ordered list of vertices on face f. all of which are candidates for

being split vertices. Again, links will have costs.

Before fis processed, list L 1(f) will be modified to a list L I '(f) that holds all tri

ples of f and any rriples (v, w, w') of descendants of f in the tree, such that the split ver

tex for (v, w, w') is not determined. before tis processed. Certain link costs in L 1'(/)

will represent modified distances, which will be adequate for determining split vertices

not already identified. The modified distances are chosen to satisfy several properties

such as the generalized triangle inequality and the no negative cycle property. Also

before f is processed, list L2(f) will be modified to a list L2'(f) of vertices in [x, x'],

such that if y is not on L2'(f), then y is not a split vel1ex for any remaining triples. The

upcoming Lemma 3.1 will guarantee that list L2(f) will be modified. correctly.

The lists L 1(f) and L 2(f) together represent a face of the embedded graph. If

face tis a leaf, ilien L, '(f) = L, (f) and L(f) = L2(f). If face tis not a leaf, ilien once

these lists have been modified, the resulting lists L1'(f) and L 2'(j) do not strictly

represent in general a face of a graph, since L 1'(f) may contain a triple (v, w, w'), but

L 2 '(f) does not contain the corresponding vertex v, or vice versa. Also, the costs may

not correspond from L 1'(f) to L2'(j). This situation seems to be the result of having a
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nonsymmetric cost function. We do not know of a simpler approach that is as efficient

and avoids using these modified lists.

To process face f with associated edges <x, x'> and <x', x >. do the following.

Processing face f will consist of determining the split vertex z for every (v, w, w') on

L, '(f) such that z is in (x, x'], and modifying the lists L ,-(f') and L2(f'), where I' is the

parent of f in the tree. A certain prefix of L,'(j) and a certain suffix of L1'(f) will

together constitute the set of triples (v, w, w') on L1'(j) such that their split vertices z are

in (x, xl In turn we shall discuss handling the first triple in L I '(j), handling the remain

ing triples in the prefix of L, '(f), handling the suffix of L,'(f), modifying list L, 'if') of

the parentI' off, and modifying list L2(f').

We first describe how to handle the prefix of L 1'(j). First determine the split ver~

rex z for the first triple (v, w, w') on list L I '(j). (Note that v = x and w' = x' for this first

triple.) This is accomplished. by traversing up L2'(I) from the other end, starting with

y = x', and computing for each vertex y the shortest distances from v to y through w and

through w'. The split vertex z will be the last vertex encountered on L2 '(I) such that

d(v, w') +d(w', z) ';d(v, w) +d(w, z). Note that d(v, w') +d(w', z) -(d(v, w)

+d(w, z)) is monotonically nondecreasing as L2'(I) is traversed, since there are no

negative cycles. Save a pointer to the list node containing z, the split vertex for x, and

compute the shortest distance from x to z as the shortest distance from x to z through w'

minus the cost of edge <.t. x'>.

As an example, consider the face f associated with edges <14,19> and <19,14>

in Figure 4. Lists L,V) and L2(f) will be the same as lists L,(f) =(14,15,19),
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(15,16,14), (16,17, IS), (17,18,16), (18,19,17), (19,14,18) and L2(f) = 14, IS, 16, 17,

18, 19, respectively. The algorithm detemrines the split vertex for (14,15.19) as 18,

,mce d(14,19)+d(19,18)=11 and d(l4,15)+d(l5,18)=12 while

d (14, 19) + d (19, 17) = 15 and d (14, IS) + d (15, 17) = 10.

Each distance computation will require constant time, if we had initially com

puted the clockwise and counterclockwise distance around each interior face. For y = x'.

the shortest distance through w' will be the cost of <x, x'>, and the shortest distance

through w will be the cost of the clockwise distance around f minus the cost of <x'. x >.

In moving from vertex y to vertex y' on L 2 '(f). one value needs to be added to the shor

test distance through w', and one value needs to be subtracted from the shortest distance

through w. The cost of link <Y, y'> is added to the distance from v through w', and the

cost of link <y', y> is subtracted from the distance from v through w.

We next discuss handling the remainder of the prefix of L 1'(j). Having found the

split vertex z for (v, w, w'), we move down the list L 1'(j) to the next entry (v', w", w"').

By the upcoming Lemma 3.2, we know that split vertex z' for (v', w", w"') is in [z, x].

Compute the shortest distances from v' to z through w" and through w"'. Reset v, wand

w' to v', w" and w", respectively. Reset y to z. While d(v, w') +d(w', y) > d(v, w)

+ dew, y) and y '1'x'. resety to be the next vertex back toward x' on L 2 '(j). When a split

vertex z for (v, w, w') is found, once again move to the next triple (v', w", w"') on the

list Lj'(f) fromx. Ifd(v, w') +d(w',y) >d(v, w) +d(w,y) wherey=x', then the

split vertex for (v, w, w') cannot be found on the face. Save a pointer to the list node for

the triple (v. w, w'), and compute the shortest distance from v to x through w' as the shor

test distance from v to x' through w', minus the cost of a. x'>.
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In Figure 4, the split vertex for (15,16,14) will be 19. The split vertex for

,
(16,17,15) cannot be found on the face, smce d(16,15)+d(15,19)=16

> d(16, 17) + d (17, 19) = 11.

To handle triples in the suffix of L 1'(j), perform the same type of computation as

above, but reversing the roles of x and x', and the direction in which the lists are

traversed. The test will be slightly different because the tie·breaking between edges is

not symmetric. The split venex z for (v, w, w') will be the last vertex y in the interval

(x, x') encountered on L 2'(j) such that d(v, w') +d(w', y) ";d(v, w) +d(w, y). Note

that y is not allowed to be x, since if y = x and v = x' then by definition x is claimed by

edge <x', x >. while if y = x and v * x' then z may be outside of face f In Figure 4, the

split venex for (19,14,18) will be 16 and the splitvenex for (18,19,17) will be 15, (The

split vertex for (17,18,16) will be outside of face t. and will turn out to be vertex 7.)

Once split vertices have been found for triples in the prefix and suffix of L 1'(j),

lists L,'(j) and L2'(j) are trimmed and insened into L\'(j') and L 2'(j,) respectively,

wheref' is the interior face that is the parent of f. If the trimmed version of L 1'(j) is not

empty. then insert the trimmed version of L 1'(f) between x and x' in L 1'(j'), and set the

costs of the links as follows. Let (v, w, w') and (v', w", w"') be the first and last triples

in the trimmed. version of L I '(j). Using distances with respect to L l'(f), set c'(v', x') to

0, c'(x', v') to c(x', x) + d(v', x') -d(v', x), c'(v, x) to d(v, x) - d(v', x'), and c'(x, v) to

c (x, x') - d (v, v'). Note that d (v, v') is the distance from v to x through w minus the dis-

rance from v'to x through w".

The above operation preserves a number of nice properties. It is shown in the
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proof of Theorem 3.1 that the generalized triangle inequality is preserved, and that no

negative cycles are introduced. It can be verified that d'(x. x') = c (x, x') and d'(x', x)

=c(x', x), where d' is the new distance function for list L 1'(/'). Thus for any triple

(v, W, w') on L I'(f'), the insertion of the trimmed version of L 1'(j) will be transparent

with respect to distances from v to other vertices whose triples are already on L I '(f'). In

addition, d'(u, x') - d'(u. x) = d Cu, x') - d Cu, x), where u is any vertex in the interval

[v, v'] that is on L 1'(j). Since the split vertex for any venex u in the lrimmed version of

L 1'(j) will be in [x', x 1. the modified distances will not affect any choice of split vertex.

Thus the split vertices found for triples in the modified list £1 fcr) will be correct. Also

note that the time to modify the list is clearly constant.

With respect to Figure 4, the trimmed version of L 1'(f) will contain the triples

(16,17,15), (17,18,16) in that order. These will be inserted between (14,19,13) and

(19,20,14) on L 1'(/'), and the costs of new links on this list will be set as c'(17, 19) = 0,

c'(19,17) = 7 + 7 -10=4, c'(16,14) = 8 -7 = 1, and c'(l4,16) = 8 -4= 4.

List L2'(j') can be modified similarly. Let z and z' be the split vertices of x and x'

respectively. By the upcoming Lemma 3.1, no split vertices yet to be detennined will

fall in (x, z') U(z, x'). Furthermore, it can be shown that any edge <v, w'>, with v in

the interval (x', x) that claims vertex x' will also claim z. If z #: z', let z" be the vertex in

interval [z', z) that immediately precedes z on L 2 '(j). If z = z', then simply give x' in

L2'(j') a new name of z. Otherwise, we trim L 2'(j) so that z' is the first vertex and z" is

the last vertex, and insert the trimmed version of £2'(j) between x and x' in L 2'(j'). We

give x' in L 2 '(f') a new name of z, and set the costs of the links as follows. Using dis-
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lances with respect to £2'(/), set c'(x', z") to 0, c'Cz", x') to c (x, X') + d(x', ZN) - dCx, Z/)

- d (z', z"), c'(x, z') to d (x, z'j - d (x', z''j, and c'(z', x) to c (x', x) - d (z", z'j. Note that

d (z", Z/) is the distance from x' to z' minus the distance from x' to z". It can be verified

that d'(x, x') = c (x, x'), d'(x', x) = c (x', x), and d:(x', u) - d'(x, u) = d (x', u) - d (x, u),

where d' is the new distance function for list £2 '(j'), and u is any vertex in the interval

[z', z"] that is cnLz'(f).

With respect to Figure 4, the trimmed version of Lz'(j) will contain the vertices

16,17 in that order. These will be inserted between 14 and 19 on Lz'(f), and 19 will be

relabeled as 18. The costs of new links on this list will be set as c'(18,17) = 0,

c'(17,18) = 8 +7 - 6 -4 = 5, c'(l4, 16) = 6 -7 =-1, and c'(16,14) =7 - 2 = 5.

Once the interior face at the root is handled, let any remaining rriples be assigned

the split vertex x.

In the next two lemmas, we prove the crucial properties about where split vertices

can fall, which allow us to traverse the graph efficiently. The first property allows certain

vertices to be ruled out as potential split vertices, on the basis of work already completed.

We give an example of the first propeny before stating it formally. Consider interior

edge <x, x> = <14,19>, and the face containing vertices in the interval [14,19]. The

split vertex for triple (x, u, x) = (14,15,19) is z =18, and the split vertex for triple

(x', x, u') = (19,14,18) is z' = 16. Consider a vertex in the interval (19,14), say v = 6,

with neighbors w = 7 and w~ = 5 on the same face. Then the split vertex for (v, w, w') =

(6,7,5) will not be in (x, z') U (z, x') = (14, 16) U (18,19), i.e., will not be vertex 15.

Lemma 3.1. Let G be a directed outerplanar graph. Let x and x be endpoints of an
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interior edge. Let u and u' be the neighbors of x and x' respectively that are in the inter

val (x, x') and are on the same imerior face as x and x'. Let z be the split venex for

(x, u, x'), and z' be the split vertex for (x', x, u'). Let v be a vertex in (x', x), with neigh

bors wand w' on the same face, where w is in interval (v, w'). Then the split vertex y for

(v, w, w') is not in (x, zi U(z, x').

Proof. Suppose that y is in (x, x). It follows that

d(v, w') + d(w', x')+d(x',x) > d(v, w)+d(w, x)

d(v, w')+d(w',x'):> d(v, w)+d(w, x)+d(x, x')

Suppose thary were in (x, z'). Since z' is the split vertex for (x', x, uJ,

d(x', u') + d(u', y) > d(x', x) + d(x, u) + d(u, y).

Since y is the split vertex for (v, W, w'),

(1)

(2)

(3)

d(v, w')+d(w', x')+d(x', ui+d(u', y) :> d(v, w)+d(w, x)+d(x, u)+d(u, y). (4)

Adding (1) and (3) yields a contradiction to (4). Thus Yis not in (x, z').

Suppose that y were in (z, x'). Since z is the split vertex for (x, U, xJ,

d(x, x') + d(x', u')+d(u', z) :> d(x, u)+d(u, z)

Since y is the split vertex for (v, w, w'), and y is in (z, x'),

(5)

d(v, wi+d(w',xi+d(x', ui+d(u', z) > d(v, w)+d(w, x)+d(x, u)+d(u, z). (6)

Adding (2) and (5) yields a contradiction to (6). Thus y is not in (x', z).

The lemma then follows. 0
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The second property indicates in which direction to look for a split vertex, if we

already know the split vertex of a relevant triple. This justifies the correctness of our

scan through £2'(/) as we scan through L1'(f). Consider two triples (v, w, w') and

(v', w", w"') whose vertices are in faces rand!", resp., that are contained in the subtree

rooted at! Suppose that the split vertices for these ttiples are not detennined before face

fis processed. There are two cases that arise. Either fis the lowest common ancestor of

rand j" in the tree, or it isn'r.

The simpler example is when fis not the lowest common ancestor of f' and f".

Then there is an edge <t, l> on f, such that v and v' are both in the interval Ct, t']. For

example, consider the face/containing the vertices 5, 6, 7,12,13,14,19 and 20, and

consider the triples (16,17,15) and (17,18,16). The vertices in these triples are contained

in the same face, containing vertices 14, 15, 16, 17, 18, and 19, and this face is thus the

lowest cornmon ancestor. The edge <t, t'> is edge <14,19>. The split vertex for triple

(16,17,15) is in the interval (19,14). (In fact, the split vertex for (v, w, w') = (16,17,15)

is vertex z = 6.) Vertex v' = 17 is in the interval (v, c') = (16,19), and the split vertex z'

for triple (v', w", wIN) = (17,18,16) is also in the interval (19,14). Then z' is in [z, t) =

[6,14). (In fact z' = 7.)

The more complicated case to state is when / is the lowest cornmon ancestor off'

and/". Consider the face/containing vertices 5, 6, 7,12,13,14,19 and 20, and con

sider triples (13,14,12) and (16,17,15). The vertices in triple (13,14,12) are on face I,

and the vertices in triple (16,17,15) are on a face that is a descendant of face I, so that I

is the lowest common ancestor. Consider the edges <U, u'> = <12, 13> and <t, t'> =

<14,19> on this face. The split vertex z for a triple (v, w, w') = (13,14,12) is in the
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interval (13,12). (In fact, Z = 3.) Venex v' = 16 is in the interval (14,19], and the split

vertex z' for triple (v', w", w"') = (16, 17,15) is in the interval (19,14). Then z' is in [z, t)

= [3,14). (In fact 2' = 6.)

Lemma 3.2. Let G be a directed outerplanar graph. Let f be an interior face, and let

<U, u'> and <t, t'> be edges bounding this face, with u' following u in clockwise order

around f and similarly for t' and t, where either u = t and u' = t' or u' is in (u, t] and tis

in [u
f

, r). Let v be a vertex in the interval Cu, u'] whose split vertex z for (v, w, w') is in

(u', u), where w and w' are neighbors on some interior face, with w in the interval (v, w').

Let v' be a vertex in the interval (t, (] nev, t'J whose split vertex z' for (v', w", w"') is in

(t, t), where w" and w'" are neighbors on some interior face, with w" in the interval

(v', w"'). Then z' is in the interval [z, r).

Proof. Suppose that z' were in the interval (t', z). Let P and P' be the shortest paths to z

from v through w and w'respectively. Let P" and p", be the shortest paths to z' from v'

through w" and w'" respectively. Let rl be the nearest vertex from v contained in both P

and p", and r2 be the nearest vertex from v contained in both P' and P",. Let r3 be the

nearest vertex from v contained in both P and P",. Such a vertex exists, by the following

argument. Since z is in (u', u). the portion of P on f will include the clockwise path

around ffrom u' to t'. Since z' is in (t, n, the portion of p", on f will include the coun

terclockwise path around f from u' to r'. These portions clearly share a vertex except

when u = u' and r = t'. In that case, if v and v' are on the same interior face, then either P

contains v' or p", contains v. If v and v' are not on the same interior face, then there is a

face f' with all its vertices in the interval [u, u'l such that it contains edges <u", u",>,
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<u"', U">, <t", IN>, and <t"', ('>, where v is in [u". u"1 and v'is in [t", t"']. Thus the

previous argument applies.

Since the portion of P' from v to'2 is a shortest path,

(7)

Similarly, since the portion of P" from v' to r 1 is a shortest path,

(8)

Since z' is the split vertex for (v', wI', w"'),

(9)

Since z is the split vertex for (v, w. w'), and z' is in (t', z),

(10)

Adding (7), (8) and (9) yields a contradiction to (10). Thus z' is not in [he imelVal (c', z).

Since z' is by assumption in (t', r), z' is in [z, t). 0

Theorem 3.1. The above procedure will correctly determine in 0 (n) time all split ver

tices in an n-vertex directed outerplanar graph in which for every edge <v, w> there is

an edge <w, v>. the graph with edge orientation removed is biconnected, and the edge

costs satisfy the generalized triangle inequality.

Proof. Correctness follows from Lemmas 3.1 and 3.2 and the fact that the costs of links

of edges <v', x'>, <x', v'>, <v, x> and <x, v> are set so as to preserve the generalized

triangle inequality and the property that there are no negative cycles. We establish the

latter fact with respect to the operation of inserting the trimmed version of L 1'(j)
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between x and x in L I'if'). The argument for handling L 2'(f') is similar. We assume

inductively that the desired properties hold, and show that the operation of setting the

new link: COStS preserves the properties.

We first derive several useful inequalities. Since the split vertices of v and v'

have not been detennined by that point in the algorithm, then it must hold that

d(v', v) + dey, x) ,;; d(y', x') + e(x', x)

and

dey, y')+ d(y', x) < dey, x)+e(x, x')

Summing (11) and (12) gives

dey, y')+ d(y', y) < e(x, x') + e(x', x)

(11)

(12)

(13)

Let u and u' be the first vertices in two triples on the trimmed version of £1 '(f). with the

oiple containing u preceding the triple containing u'. Since there are no negative cycles,

d(y',u')+d(u',y');' Oandd(v, u)+d(u, v);' O. Thus

(d(y', u') + d(u', v ' » ~ + (d(v, u) + d(u, v ) ~ ;, 0 (14)

We now consider me effect on the generalized triangle inequality. Edges whose

endpoints are not both in [x, x'] will be unaffected. It can easily be verified that the fOUf

(new) edges whose costs are set will all satisfy the generalized triangle inequality. We

consider the remaining edges. Solving (13) for d (v', v) gives

dry', y) < O+e(x, x') + (e(x, x)-d(y, v'))

= c'(v', x) + c (x', x) + c'(x, v)
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which is equivalent to

(d(v', u')+d(u', u)+d(u, v»+d(u', v')+d(v, u)

< d(u', v')+c'(v', x')+c(x, x) + c'(x, v)+d(v, u)

Subtracting (14) from the above gives

d(u', u) < d(u', v') + c'(v', xi + c (x, x) + c'(x, v) + d(v, u)

Thus edge <u', u> is a shortest path from u' to u. We derive the similar result for edge

<U, u'> as follows. Solving (13) for d (v, v'), and adding and subtracting tenns, gives

d(v, v') < (d(v, x)-d(v',x'»+c(x, x)+«c(x,x)+d(v',x')-d(v', v)-d(v, x»

= c'(v, x) + c (x, x) + c'(x', v')

where d(v', x) = d(v', v) +d(v, x). Applying (14) gives

d(u, u') < d(u, v) + c'(v, x')+c(x, x')+c'(x, v')+d(v', u')

We next argue that no negative cycles are created. Since d'(x. x') = c (x, x') and

d'(x', x) = c (x', x). no simple negative cycle is introduced that includes both x and x.

We next consider the cycle consisting of edges <v', x'> and <x', v'>. Now

c'(v',x')+c'(x,v') = c(x',x)+d(v',x)-d(v',x)

which is greater than 0, by (11). Similarly, for edges <v. x> and <x. v>.

c'(v, x)+c'(x, v) = d(v, x)-d(v',x')+c(x,x')-d(v, v')

= d(v, x)+c(x, x')-(d(v, v')+d(v',x'»

which is greater than 0, by (12). Thus no negative cycles are introduced.

With respect to trimming L 2'(/), we show that for any vertex v in the interval
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(x', X) with neighbors w and w' on the same face, if the split venex zln for (v, W, w') is in

(x, x'], then it is in (x, z J. Since z'" is in ex, x1

c(v, w')+d(w',x'),; c(v, w)+d(w, x)+c(x, x')

By the definition of z as a split venex,

c(x, x') + d(x', z) ,; d(x, z')+d(z', z)

Adding the above two inequalities gives

c (v, w') + d(w', x') + dCx', z) ,; c (v, w) + d(w, x) + d (x, z') + d(z', z)

which establishes that z'" is in (x, z].

We finally analyze the time required by the algorithm. The time to initialize

relevant lists is 0 (n). In handling each interior face, the number of list nodes deleted is

within a constant additive term of the number of times that list nodes are examined.

Constant work is involved in examining a list node. 0

We now consider how to handle an outerplanar graph in which our initial assump

tions do not hold. Suppose that outerplanar graph G with edge orientation removed is not

biconnected. For every venex v such that there is no edge <v, w> to the vertex w whose

name follows v's name numerically, insert edge <v, w> into G with cost 00. The result

ing graph G without edge orientation will clearly be biconnected. Suppose that there is

some edge <v, w> in G but no corresponding edge <w, v>. For each edge <v, w >. if

there is no edge <w, v>, insert it into G with cost 00. Clearly the only possible change to

the edge labeling information resulting from the above operations will be the inclusion

into edge labels of vertices that were not previously reachable.
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Note that any edges included in the above operations will violate the generalized

triangle inequality. We enforce the generalized triangle inequality by identifying any

edge that does not satisfy it, labeling the edge as a "pseudo-edge", and changing its cost

to be the shortest distance from the vertex representing its tail to the vertex representing

its head. We discuss how to do this efficiently in the paragraphs below. Once accom·

plished, we run our outerplanar algorithm on this modified subgraph. The edge labels

which result from this will be in general different from the edge labels for the original

subgraph. However, the original edge labels can be recovered by unioning the edge label

on each pseudo-edge into the label on the first edge in the shortest path realizing the shor

test distance from tail to head, and setting the label on the pseudo-edge to the empty

interval. If the shortest distance on the pseudo-edge is realized by two different paths,

choose the path that moves counterclockwise around the corresponding face.

We now discuss how to identify edges that violate the generalized triangle ine

quality and replace them with appropriate pseudo-edges. Recall the relation on interior

faces, and the natural tree structure based on this relation. We sweep through the tree

structure twice, processing an interior face once on each sweep. On the first sweep, we

process an interior face after all its children in the tree have been processed.

An interior face is processed as follows. Detennine the cost of the cycles visiting

precisely the vertices of the face in clockwise and counterclockwise order. For each edge

<v, w> on the clockwise cycle, do the following. If the cost of <v, w> is greater than

the cost of the counterclockwise cycle minus the cost of edge <w, v>, make <v, w> a

pseudo-edge of cost equal to the cost of the counterclockwise cycle minus the cost of

<W, v>. Perform an analogous operation for counterclockwise edges.
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The second sweep processes interior faces in the reverse order from the first

sweep, and processes interior faces in the same way.

Suppose that vertices are not named in order around the exterior face. If the

names in clockwise order comprise a constant number of consecutive sequences, then the

graph can still be handled quickly. Such a case arises with respect to the outerplanar

graphs generated in the next section. Rename the vertices in order around the exterior

face, apply OUf ourerplanar algorithm to generate edge labels, and then translate the edge

labels back to the original names. In the translation, each edge label will grow larger by

at most a constant factor.

Theorem 3.2. The above algorithm will correctly detennine in 0 (n) time all edge label

ing information in an n-venex directed outerplanar graph with real edge costs but no

negative cycles.

Proof. We first establish the correctness. After a face is processed, the cost of any edge

<v, w> on the face represents the shortest distance from v to w along a path constrained

to include only vertices that are on the face.

Recall that for each interior face I, there is an interval [x, x'] comprising the set of

vertices on faces in the subttee rooted at f, and there is a pair of edges <x, x> and

<X, x> associated with f By induction on the number of faces processed before face I

in the first sweep, the following can be established. After face jis processed, the costs on

edges <x, x> and <x', x > represent the shortest distances from x to x' and from x' to x

along paths constrained to include only vertices that are in interval [x, xl
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By induction on the number of faces processed before face fin the second sweep,

the following can then be established. Just before an interior face f is processed in the

second sweep, the COSts on edges <x, x> and <:t, x> represent unconstrained shortest

distances from x to x and from x to x. Then after processing f on the second sweep, the

cost on any edge <v. w> between vertices v and won f will represent the unconSlrained

shortest distance from v and w. This follows since the processing on the first sweep

guarantees that the shonest path from v to w need not detour off of f Onto faces that are

proper descendants of j, and the processing from the second sweep before f is processed

guarantees that the shonest path from v to w need not detour off off onto the parent off

The time bound follows since the additional time [0 enforce the triangle inequal

ity, and the time to combine shortest path infonnation from biconnected subgraphs with

shortest path information from the rest of the graph, will be 0 (n). 0

Corollary 3.1. A shortest path tree rooted at any vertex v in an outerplanar graph can be

found in 0 (n) time.

Proof. Reverse the direction of every edge, and apply the above algorithm. For each

vertex W, put edge <u, w> in the tree if v is in the imervallabeling edge <w, u> at ver

tex u for the reversed graph. 0

4. Overview of basic approach for planar graphs that are not outerplanar

In this section we first sketch our approach to solving problem 2, i.e., solving all

pairs shortest paths in planar graphs, given a good embedding and a good face-an-vertex

covering. We then discuss two crucial features of this solution. The first is how to
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compress a hammock down to a graph of constant size, while preserving both planarity

and the distances between the vertices of attachment in the hammock. The second is the

description of a monotonicity property, and its application to the traversal of special sub-

graphs that arise in section 6.

We now sketch our basic approach, assuming we are given a good embedding

and a good face-on-vertex covering. First, we name the vertices, using the following

rule:

.
Vertex Naming Rule: Given an embedded directed planar graph G and a face-on-

venex covering P' of cardinality p', vertices are named in clockwise order around

each face of p' in turn. If a vertex is encountered more than once in traversing the

faces of F' , the vertex receives its name on the first encounter.

.
Second, we detennine a hammock decomposition of G, as discussed in section 2. Third,

we find all pairs shortest paths between every pair of attachment vertices. For efficiency,

we do this on a compressed graph that we generate as follows. For each major hammock

H, a compressed. version C (H) of H is generated, as described later in this section. Each

C (H) will be planar and of constant size. The compressed version C (G) of G is then

generated from the compressed versions of the hammocks by identifying corresponding

attachment vertices, and adding in the minor hammocks. Compressed graph C (G) will

be of size 0 (P'). We then use the all pairs shortest path algorithm for planar graphs in

[Fs2] to determine shortest distances between all attachment vertices. TIlls will take

o «p')2) time.

Fourth, for each pair of proper hammocks, we determine succinct shortest path
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information for each vertex in one hammock to aU vertices in the other hammock. We

will show how to do this in time proportional to the total size of both hammocks, which

over all pairs of hammocks will be 0 (p~n), as discussed in section 6.

Fifth, for each hammock, we determine shortest path information between ver

tices in the same hammock. This would seem to be easy. since we have a linear time

algorithm to find shortest path information in outerplanar graphs. However a shortest

path in the graph between any pair of vertices in the same hammock H may leave H at

one attachment vertex and reenter at another. We give a fast method for determining for

each vertex v in H the set of vertices u in H for which the shortest path from v to u stays

in H. We then detennine shortest path information for those paths that leave H by taking

two copies of H and treating them as a pair of different hammocks, to which the methods

of section 5 are applied. Combining shortest path information within the hammock with

shortest path information that detours out of the hammock gives the desired information.

All of this can be accomplished in 0 (n) time, as discussed in section 6.

This completes the sketch of our approach for solving problem 2. The activity in

section 5 is seen to dominate the running time of our algorithm, which is 0 (pIn).

We next discuss how to generate a compressed version C (H) of H for any ham

mock H. The basic idea is to form a subgraph of the hammock that contains shortest

paths between pairs of attachment vertices. Then replacement rules are applied to this

subgraph which iteratively reduce the number of edges. We first describe how to form

the subgraph B (H). Let al and a2 be the attachment vertices of H on facen, and a3 and

a4 the attachment vertices of H on face Ij, where a3 is adjacent to a2, and a I is adjacent
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to a4, in the corresponding ttiangulation used to generate the hammocks. Let T I be a

tree formed by taking the union of the shortest paths in H (if they exist) from a I to az

and from a 1 to u3' Let T 4 be a tree formed by taking the union of the shortest paths in H

(if they exist) from a4 to a2 and U3. using edges from T 1 to break ties. We can use our

all pairs shortest paths algorithm for outerplanar graphs to identify these trees in time

proportional to the size of the hammock. If we use the same edge labeling information to

set up T 4 as to set up T 1, this tie-breaking will be enforced. Similarly, let T 2 be a tree

formed by taking the union of the shones! paths in H (if they exist) from a 2 to a 1 and

U4, and T 3 be a tree formed by taking the union of the shortest paths in H (if they exist)

from u3 to at and a4· We initialize a graph B(H) to be the graph T 1 UTz U T 3

U T 4 U {<alo a4>' <a4, al>, <a2, a3>. <a3. a2>}. where the latter edges have

cost equal to the shonest distance between their endpoints in H. For each such pseudo

edge we associate with it the actual edge in the corresponding shortest path. For edges in

each T i • we associate the edge with itself.

We next describe how to repeatedly replace edges and delete vertices until we

have compressed B (H) as much as possible, yielding C (H). Temporarily label edges in

T I U T 4 as blue, edges in T 2 U T 3 as red, and the remaining four edges as black. If

any edge in T I U T 2 U T 3 U T 4 is identical to a black edge except for color. then

delete it. Recall the definition of an interior face from the previous section. Perform the

following operations until they can no longer be applied. Suppose that <u, v> and

<v, w> are the only two blue edges incident with venex v, and u, v, w are consecutive

vertices on the same interior face of the current B (H). Then replace <u, v> and

<v, w> with blue edge <u. w> of COSt c(u, v) + c(v, w). Associate with edge <u, w>
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the edge associated with <u, v>. If v becomes isolated by this operation, then delete it.

There is a corresponding operation for red edges. Each such test and replacement can be

performed in constant time, if B (H) is stored in the following form. Keep the edges both

to and from a vertex on the adjacency list of the vertex. Maintain each adjacency list

with edges in clockwise order around the corresponding vertex. If both <v, w> and

<w, v> are present in B (H), order edge <v, w> clockwise before <w, v> in v's list,

and <w, v> clockwise before <v, w> in w's list.

When no further compression can be done on B (H), remove edge colors, and call

[he result C (H).

Lemma 4.1. Let H be a hammock in a planar graph. with attachment vertices at> az,

a), and a4. Graph C (H) is an omerplanar graph of constant size. For any pair of attach

ment vertices ai and aj' if there is a path from ai to aj in H, there is one in the

compressed graph C (H), and the lengths of the shortest such paths are identical.

Proof. The initial version of the graph B (H) is outerplanar, and each application of an

operation leaves B (H) outerplanar. Furthennore, an application of an operation will not

change the shortest distance between any pair of attachment vertices.

We argue that the resulting graph C (H) is of constant size as follows. For each

attachment vertex ai of H, let Vi be the vertex farthest from ai that is common to the shor

test paths from ai to each of the two leaves in tree T j • Let wi be the vertex fanhest from

aj that is common to the shortest paths from the roots to aj in the two trees containing ai

as a leaf. Let V' ::; {ai, Vj, Wj Ii::; 1, 2, 3, 4}. Note that if for example VI :;:t; V 4, then the

shortest paths from al to a2 and from a4 to a3 do not share a common vertex. (This is
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shown as follows. Suppose the shortest path P 12 from at to a2 shares a common vertex

with the shortest pam P 43 from a 4 to a3. Let.x be the farthest such vertex from a 1. By

the tie-breaking rule, the shortest path from a 1 to x is a subpath of P 12. and the shortest

path from.x to a3 is a subparh of P43. Thus the shortest path from a 1 to a 3 follows P 12

from a 1 to x, and then follows P 43 to Q3. Similarly it can be shown that the shortest path

from a4 to a2 follows P 43 from Q4 to x and then follows P 12 to a2. Thus vI = 1,14 =x.)

We consider several cases.

If VI :;t:v4 and 1,12 :;t:v3. then every vertex v not in V' can have the above opera-

tions applied twice, once for blue edges and once for red edges. Thus the only vertices in

C (H) will be the at most 12 vertices in V'. Similarly, if vI * v4 and 1,12 = 1,13, then the

only vertices in C (H) will be the vertices in V', which will number at most 10, since

V 1 = V 4, which implies w3 = w2· A corresponding argument applies if the equality and

inequality are reversed in the above condition.

If v 1 = v4 and v2 = v3, then V' will have cardinality at most 8. The only vertices

in C (H) will be V', unless the following condition also holds. From faces!l and 12

-
bounding hammock H in G, if v I and W3 are not on the same face, and v3 and W 1 are not

on the same face, then the shortest path from W3 to VI and the shortest path from WI to

V3 will intersect at at least one vertex. Exactly one of these vertices (call it z) will be in

C (H). Thus in this case. at most 9 vertices will be in C (H). 0

In the next two sections we show how to determine shortest path information

between vertices in different hammocks, and between vertices in the same hammock. In

the remainder of this section we establish a property that will be particularly useful.
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First we recall the quadrangle inequality, which will be useful in the proof of the

.
property. Let WI, WZ. ul and Uz be vertices in G. If the shortest path from WI to Ul

intersects the shortest path from W2 to U2, then

To show this, let z be a common vertex on the paths. Then

d(Wl> z)+d(z, "1) = d(Wl> "1)

d(W2, z) + d(z, "2) = d(W2, "2)

By the triangle inequality

d(W2, "1) ,; d(W2, z)+d(z, "1)

Summing the above inequalities and equations yields the claimed result.

We now define the following function that that is described by our monotonicity

propeny. Let..:c and y be vertices in the graph, and f a face in the embedding of the graph.

Define

hxy(v) = d(v, x) - d(v, y)

where v is a vertex on the boundary of face f

Lemma 4.2. (Monoroniciry Property) Let.x and y be vertices and f a face in an embed-

.
de<! planar graph G. Define hxy(v) =d(v, x) -d(v, y). Let v' and v" be vertices at

which hxyO achieves a minimum and a maximum, respectively, over all vertices on f.

Then hxy(-) is nondecreasing on the clockwise sequence of vertices of jfrom v' to v", and

nonincreasing on the clockwise sequence of vertices of j from v" to v'. If x is on f, then
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hryCo) realizes a minimum at x, and if y is on f, then hxyO realizes a maximum at y.

Proof. We assume that hxy(v') < hxy(v"), since otherwise the lemma holds trivially.

"
Consider a set of all pairs shortest paths for G such that if for any pair of paths, and any

two vemces u and w, if u precedes w in both paths, then the subpaths from u to w are

identical. This can be enforced by assigning each edge a unique index, and breaking ties

lexicographically.

Consider any vertex v different from v'. Suppose that the shortest path from v to y

intersects the shortest path from v' tox. Then we claim that h;xy(v) = hry(v'). By the qua-

drangle inequality,

d(v,x)-d(v,y):> d(v',x)-d(v',y)

Since hxyO realizes a minimum at v',

d(v',x)-d(v',y):> d(v, xl-deY, y)

which together imply that hryO realizes a minimum at v. If the shortest path from v to x

intersects the shortest path from v'to y, then by a similar reasoning hxy(v) = h;r;y(v').

Since we assumed that h;r;y(v') < h;r;y(v"). by the above we can conclude that the

shortest paths from v' to x and y do not intersect shortest paths from v" to y and x. respec-

tively.

Now choose a venex v 1 on face f that is different from v' and v", and such that

hxy(V 1) > hxy(V'). The above implies that shonest paths from v 1 to x and y do not inter-

sect shortest paths from v' to y and x, respectively. Then either the shortest path from v 1

to y intersects the shortest path from v" to x. or the shortest path from v 1 to x intersects
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the shortest path from v" to y.

Let v2 be a vertex in the sequence of vertices on face /between v" and vI that

does not contain v'. We shall show that hxy(Vt) :S:hxy(V2)' Suppose the shortest path

from v I to y intersects the shortest path from v" to x. Then the shortest path from v2 to.x

must intersect either the shortest path from v 1 to Y or the shortest path from v" to x. If it

intersects the shortest path from v" to x, then because of the manner in which ties

between shortest paths are broken, the rest of the shortest path from v2 to x will follow

the rest of the shortest path from v" to.:t, and thus must intersect the shortest path from v 1

to Y anyway. Let the shortest path from v2 to x intersect the shortest path from v 1 to y, at

vertex z. By the quadrangle inequality.

which is the desired result. If the shortest path from v I to x intersects the shortest path

from v" to y, then a similar argument establishes that the shonest path from V2 to y must

intersect the shonest path from VI to x, leading again to h.xyCv d:5; h.xyCV2).

Ifx is on faceJa minimum for hxyC·) is achieved atx. since

hx,(v) = d(v,x)-d(v,y)

;, dey, x)-(d(v, x)+d(x, y)) = -d(x, y) = hxy(x)

A similar argument applies if y is on f 0

We define a related function as follows.

hxy(v) = d(x, v) -d(y, v)

By reversing the direction of all edges in the graph, and then applying the above lemma,
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we nore that the function hry(v) also possesses the Monotonicity Property.

Consider a graph in which p' = 2, and the two faces in It and /2 share two ver

tices,.x and y, in common. Consider the two components C 1 and C 2 separated by the

pair x and y. Note that each component is outerplanar. We take advantage of the mono

tonicity property in a procedure MON_LABEL that generates labels for routing from one

component through x or y to the other component. Let v be in one component, and u in

the other. The shortest path from v to u will be through x if

dey, x)+d(x, u) < d(v, y)+d(y, u)

which holds if and only if

hxy(v) = d(v, xl-deY, y) < dey, u)-d(x, u)

The basic idea behind the application of the property is to simultaneously walk through

one component and through the other component, using the hry and hyx functions, as

though one wanted to merge twO ordered lists of values.

Shortest paths from vertices in one component to vertices in the another com

ponent can be computed in linear time as follows. We first compute the values hxy(v) for

all vertices v and return a list of vertices in each component ordered by hxy(v), and do the

same for hyx(u), This is accomplished by doing the following in each component Cit

i = 1, 2. Run the outerplanar algorithm from the previous section to generate the edge

labels. Detennine the shortest path trees rooted at .x and y as follows. Temporarily

reverse the direction of edges, run the outerplanar algorithm on the result, and then select

for each vertex v *".x the edge <w, v>, where .x is in the label for edge <v, w> for the

reversed graph. Once the shortest path lrees have been found, traverse each tree and
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store at each vertex v the distances d(v, x) and dey, y). For each vertex v form the

difference h:ry(v) =d(v, x) -deY, y). By the Monotonicity Propeny, this difference is

monotonically nondecreasing as v moves around either face from x to y. Merge the list

of vertices on each of the faces It and 12, in order of nondecreasing value h:ry(v), yield

ing a list Ii of vertices v for component Cj • We assume that the first entry on h is x.

Temporarily reverse the direction of all edges in the component, reverse the roles of x

and y, and repeat the above. The result will be to compute hy.r(u) =d(y, u) -d(x, u),

along with the list h of vertices U, ordered by nondecreasing hp.(u).

For each vertex v in component Cil i ;::: I, 2, define Sx(v) to be the set of vertices

in component C 3-i whose shortest path from v goes through x, and Sy(Y) to be the set of

vertices in C3-i whose shortest path goes through y. The set S;:c(v) (and also set Sy(v» is

the union of two sets of vertices, each set containing consecutive vertices on one of the

faces f 1 and f 2. Assume that the vertices are named. according to the vertex naming con

vention. It follows that each set SAy) (and also set SyCv» can be described. as the union

of at most four intervals.

We finally describe the simullaneous walk: through both components. For

i = 1, 2, we then examine the vertices v of component Ci, in order of nondecreasing

value hxy(v), and simultaneously examine the vertices U of component C 3- i in order of

nondecreasing value hy;r;(u). This is done as follows. Initialize Sy to the empty set, and

Sx to be the intervals describing vertices in component C3-i- Set v to the first entry on h.

and u to the first entry on i3-i' While hxy(v) ~ hyx(u), delete u from Sx, insert u into Sy,

and reset u to the next vertex on list i3-i _ When hxy (v) < hyx(u), set Sx(v) to Sx, set Sy (v)
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to 5y • and reset v to the next vertex on list Ii. If the sets Sxev) and Syev) are each main-

lained as the union of two sets of vertices when insertions or deletions are performed, the

work performed between consecutive resettings of u and v will be constant For any ver-

tex v not equal to.x or y, the edge <v, w> incident from v that contains x in its edge label

for its component will receive the set Sx(v) into its label. The edge incident from v that

contains y is handled similarly. This completes our description of procedure

MON LABEL.

.
Lemma 4.3. Let G be an embedded planar graph in which there is face-on-vertex cover-

ing of cardinality 2, with its n vertices named according to the vertex naming convention.

.
Suppose these two faces share two vertices that separate G into two components. Pro-

cedure MON_LABEL generates edge labels for any vertex in one component to vertices

in the other component in 0 (n) time.

Proof. By Theorem 3.2, the time to generate edge labels within each component is

o (n). Note that while vertices around the border of a component (as opposed to a face

It or 12) are not necessarily named in order, the names in clockwise order comprise a

constant number of consecutive sequences. By the remark preceding Theorem 3.2, this

involves additional expense of at most a constant multiplicative factor. The time to com-

pute shortest path trees rooted at.x and y is 0 (n). since the time to identify all appropriate

edges <w, v> is proportional to the total size of all edge labels, which is 0 (n). The

creation of the lists Ii and h by merging will take 0 (n) time. and the routine to search

these lists will also take 0 (n) time. 0
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5. Handling shortest paths between two hammocks

In this section we give an algorithm to generate shonest path information between

vertices in two different hammocks. assuming that distances between their vertices of

attachment are known. Our approach is based on computing information about certain

constrained shortest paths. and then combining it to yield information about less and less

constrained shortest paths, culminating with unconsttained shortest paths. We firSt give a

utility routine whose output is used in generating infonnation about highly constrained

shonest paths. Then we define information for various levels of constrained shortest

paths. Finally, we show how to generate information about less constrained shortest

paths, given information about more constrained shortest paths.

We first give a utility routine that produces very basic infonnation. Let H be a

hammock with attachment vertices G 1. G2. G3, G4. and let x be a vertex not in H. Let

N (x, H, Gj) be the set of vertices in H such that a vertex y is in N (x, H, Gj) if and only if

y is in H and a shortest path from x to y goes through Qj, but no shortest path from x to y

goes through any Gj for j < i. Suppose the shortest distances are given from x to each of

Q 1, Q2. G3, and G4· We describe a procedure to detennine the sets N (x, H, Gj), for

i = 1, ... ,4. First generate graph H' from H by introducing vertices Xj, i = 1•...• 4,

and edges <.xi, Gj>, i = 1•... , 4, with cost equal to the shortest distance from x to Gi in

the original graph.

Next we label each vertex in H' with the shortest distance to the nearest Xj as fol

lows. First identify shortest path trees in H'rooted at each Xj. For each Xi, i = 1. 2, 3, 4,

traverse its shortest path tree, labeling a venex v with i and the distance from Xi to v if the
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distance to v is smaller than its preVIOUS distance. Note that the vertices In each

N (x, H, aj) will be the union of two sets of vertices, each set contiguous along one face

of the hammock. Since vertices are named in order around each face, N (x, H, aj) can be

described by the union of four intervals. It is easy to traverse the edges along each face

bounding the hammock, fanning succinct descriptions of the four sets. Call the above

procedure ATTACH_CLAIM.

Lemma 5.1. Given a hammock H with attachment venices ai, i = 1, ... , 4, vertex x not

in H, and shortest distances from x to the ai, procedure ATTACH_CLAIM will generate

the four sets N (x. H, ai) in 0 (n') time, where n ~ is the size of H.

Proof. By Corollary 3.1, each of the four shortest path trees can be determined in 0 (n')

time. Traversing the shortest path trees, and then generating the sets N (x, H. aj). will

each take 0 (nj time. 0

As before, let H be a hammock, and x a venex not in H. Let N R(x, H, aj) be the

set of vertices in H such that a venex y is in NR(x, H, ad if and only if y is in H and a

shortest path from y to x goes through aj, but no shortest path from y to x goes through

any aj for j < i. Sets NR(x, H, aj) can be computed in a fashion similar to that of

N (x, H, aj), by reversing the direction of every edge. Note that given shortest distances

between all attachment vertices in the graph, and shonest distances from any vertex x to

the attachment vertices of its hammock, it is easy to compute, in constant time, shortest

distances from x to the attachment vertices of any hammock.

We now discuss the information for various types of constrained shortest paths.

We start by defining this information from the least constrained to the most constrained.
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We present this information in the fonn of sets. Let HI and H 2 be distinct hammocks.

Let v be a vertex in HI, and <v, w> an edge in HI_ Let M o(v, W, H 2) be the set of ver

tices u in H 2 whose shortest paths from v to u include edge <v. w>. In defining these

sets Mo, as in subsequently defining sets M I , M 1 • and M 4 , we assume that ties in the

lengths of paths are broken in the following way to yield shortest paths. Among various

choices of paths of shortest length, the preferred path will go through an attachment ver

tex of H 1 of smallest possible index, and given that through an attachment vertex of H 2

of smallest possible index, and given that will be consistent with the shortest path infor

mation generated by our ourerplanar algorithm within each of H 1 and H 2-

Let x I be an attachment vertex of HI- Let M 1(v, w, H 2, X t> be the set of ver

tices u in H 2 whose shortest paths from v to u go through vertex x I and include edge

<v, w>. ClearlyMo(v, w, H 2) is the union ofM1(v, W, H2,X1) overall choices ofXl'

Let Y1 be a second attachment vertex of HI' For vertices u in H 2, we term as

type 1 constrained shortest paths those paths from v to u that are shortest subject to the

constraint that they go through either x 1 or Y1. Let M 2(v, w, H2, x 1, Y 1) be the set of

vertices u in H 2 whose type 1 constrained shortest paths from v to u include edge

<v. w> and vertex x 1. A vertex u is in M 1(v, w, H2, Xl) if for each attachment vertex

Yl ¢Xl ofH 1,uisinM2(v, w, H 2,XI,Yd·

Let X2 and Y2 be attachment vertices in H 2 . Recall that for attachment vertex y

in hammock H and vertex x not in H, N(x, H, y) is the set of vertices in H whose shortest

paths from x go through y. For vertices u in H 2, we term as type 2 constrained shortest

paths those paths from v to u that are shortest subject to the constraint that they go
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through either both xl andXl orbothYl andyz. LetM4(v, w, Hz,XI'Yl,xl,yz)be

the set of vertices u in N(x I> H 2, Xz) n N 011, H 2. yz) whose type 2 constrained shor

test paths from v to u include edge <v, w> and vertices Xl and x2. Then

M2(V, W, Hz. xl. Yl) is the union of M 4(v, W, Hz. Xl. Yl, X2. Y2) over all choices of

x2 and yz for which v is in NR(xl, HI, Xl) n NR(yz. HI. Y1).

We now show how the Mj sets can be generated, once certain NCo ... -) sets have

been computed. We start with infonnation about the most constrained shortest paths, and

work lOward the least constrained shortest paths. We can generate

M4(V, W, H2, XI> Ylo X2. yz) as follows. Each set N(x, H, y) can be computed using

procedure ATTACH_CLAIM. Generate the graph G(Xt, Yt. X2, yz) induced on

N(x 10 Hz, xz) U N(y1' Hz, Yz) U NR(xz, H 10 Xl) U NR(yz, H 10 Y 1), with the edges

<Xl, X2>, <xZ. Xl >, <Yl, Y2>. and <Yz. Y 1> added. of cost equal to the length of the

corresponding shortest paths. Perform procedure MON_LABEL to generate edge labels

for this graph. For edge <v. w> incident from vertex v in NRexz.H1.XI)

nN
R

(Yz.H"Yl), intersect its Jabel with Next> Hz,xz) nN(YI,H2,yz) and with

the label on the end of edge <x I, xz> incident at x 1.

Once all sets M 4eV, W, Hz, x" YI, xz, Y2) are generated, then set operations can

be performed to yield all sets Mzev, w. Hz, Xl, Y I), then all sets M 1ev, W, Hz. Xl), and

finally all sets Moev. w. Hz). Each set generated should be represented in the compact

interval notation. Once all sets Moev, w, Hz) have been computed for all v in HI, a

similar computation will yield all sets M oeu, W, HI).

Theorem 5.1. Let HI and H2 be hammocks of sizes nl and n2, resp., in an embedded
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.
graph G. Given shortest distances between the vertices of attachment of H I and Hz. the

above procedure generates edge labels for any venex in one hammock to any vertex in

the other hammock in 0 (nl +nz) time.

Proof. We first address the correctness of the set computation. It is clear that

Mo(v, w, Hz) is the union of M1(v, w, Hz, Xl) over all choices of Xl' It is also clear

that a vertex u is in M 1 (v, w, H 2. XL) if for each attachment vertex Y1 '* X 1 of HI, U is

We next argue is the union of

M 4(V, w, Hz, Xl, Yl. X2. Y2) over all choices of X2 and Y2 for which v is in

from v to x 2 goes through x 1. Since v is in N R (y 2. HI. Y 1), the shortest path from v to

Y2 goesthroughYI' ConsideravertexuinM4(v, w, H2,Xl,Y1>Xl,YZ). Sinceuisin

NeXt, Hz, X2). if the shortest path from v to u goes through Xl, it goes through x2'

Since u is in N (y I, H 2, Y2), if the shortest path from v to u goes through YI, it goes

through Y2. Thus unioning over M 4(V, W, H 2• Xl, Y1. X2, Y2) for all choices of X2 and

Y 2 is a correct approach.

The computation of each M 4 set is correct, since the graph G(Xlo YI, X2, Y2)

contains the appropriate vertices.

We next address the time complexity. Given aU relevant sets N(x, H, y), each

set Mo(v, w, H 2) can be computed in constant time. Each label generated by perfonn-

ing procedure MON_LABEL will be the union of at most 6 sets of vertices, each contigu-

ous along one of the faces of hammocks HI and H2. The computation on graph
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G(Xl,Yt.XZ.YZ) need only be performed when N
R

(X2,H 1,Xt)

nN
R

0'2, H" y,),,0 and N(x" H2, X2) nN0'" H 2, Y2) "0. In this case the ver

tices in the graph are the union of at most six sets, each contiguous along one of the four

faces of the hammocks. Any edge label generated by procedure MON LABEL will be of

the same type. The intersection of this label with N (xl, Hz. Xl) (} N(y I. H 2. Y2) will

be the union of at most two sets of vertices, each contiguous along a face of Hz. The

intersection of this result with the label on <Xl. X2> will yield a set again of the same

type. Since a set of contiguous vertices on a face can be described by the union of at

most two intervals, M 4 (v, w, Hz. x \0 Yl. Xl. Y2) will be at most four intervals.

Each intersection operation involves a constant number of intervals, and hence

can be perfonned in constant time. There are 16 choices of pairs x2. Y2. Unioning the

corresponding labels can be done in constant time. There are 3 choices for YI, and the

intersection of a conStant number of intervals can be done in constant time. For all v in

HI, the number of each type of set M 0, M I, M 2. M 4. will be proportional to the total

outdegree of HI. or O(nd. For all u in Hz, the number of each type of set will be

o (nz). Thus the total time for the above procedure will be 0 (n 1+ n2)' D

6. Handling shortest paths between vertices in one hammock

In this section we give an algorithm to generate shortest path information between

vertices in the same hammock, assuming that distances between its vertices of attach

ment are known. This problem is easy if shortest paths between vertices in the hammock

do not leave the hammock. It is also possible to determine efficient!y the information for

shortest paths constrained to leave and reenter the hammock, using the methods of the
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previous section. The challenging pan is determining efficiendy for every pair of ver

tices v and u whether the shortest path from v to u stays in the hammock or leaves and

reenters the hammock. OUf approach is to detennine for each each vertex v the set of

vertices of vertices u such that the shortest path from v to u remains in the hammock.

The key idea in the appropriate subproblem is to perfonn a search of the hammock dur

ing which we determine the shortest distance between many pairs of selected vertices v

and u. Using a special-purpose deque allows this to be accomplished in time linear in the

size of the hammock.

We first address a simple case in which a shortest path leaves and reenters the

hammock H, and show that it can be accommodated by a minor modification of the ham

mock. Suppose the shortest distance from v to u in G is realized by a path P that leaves

and reenters H through attachment vertices at the same end. i.e.• P would leave and

reenter through vertices at and a4. or alternatively through az and a3. To handle such

cases, just augment H with edges <aI. a4>. <a4, at>. <az. a3>. and <a3. az> of

cOStS equal to the lengths of the corresponding shortest paths in G.

The harder case to handle is when any shortest path P that realizes the shortest

distance from v to u leaves H through an attachment vertex at one end and reenters H at

the other end. Then a portion of the shortest distance information between vertices in H

arises from edge labels for shortest paths within H. The rest of the information arises

from edge labels for shortest paths between vertices in two copies of H. The challenge is

to detennine when to use each type of information. Our approach is to determine for

each vertex v in H a set UH(V) of vertices u such that the shortest path from v to u is con

tained in H. We shall show that such a set is the union of two sets of vertices. each of
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which is contiguous along one of the faces bounding H. Thus each set UH(v) has a con

stant size description. Then the appropriate portions of edge labels for shortest paths

within H can be unioned with the appropriate portion of edge labels arising from shortest

paths leaving H and reentering H.

We show how to form the sets UH(v). Let aj be one attachment vertex of H, and

Qj be an attachment vertex at the other end of H, i.e., j '# 5-i. For each vertex v in H let

UJIjj(v) be the set of vertices u such that the distance from v to u in H is no longer than

the shortest distance from v to u along a path that leaves H at ai and reenters Hat aj' We

shall show in Lemma 6.1 that the set UHij(V) is the union of two sets of vertices, each of

which is contiguous along one of the faces bounding H. (In fact, each contiguous set of

vertices contains. if it is not empty, the attachment vertex on its face at the same end of

the hammock as ai.) For each vertex v, the set UH(v) is the intersection of the sets

UHij(V) over all valid choices of i and j. Since each of these sets can be described in con

stant space, the intersection can be formed in constant time.

We describe how to form the sets UHij(V) for all vertices v in H and for fixed i

and j. The key insight, which we show in Lemma 6.2, is that if we scan vertices v in

order along one face that bounds the hammock, starting from the end of the hammock

containing aj, the set UHij(v) loses vertices in a monotonic fashion. Thus the last vertex

in UHij(V) on each face moves monotonically toward the end of the hammock containing

aj as vertex v moves toward that end along its face. Thus we perform a coordinated

search, bringing along enough information to compute shortest distances between v and

vertices that are candidates for the last vertex in UHij(V) on each face. We are able to

perform this search in time proportional to the size of H by using a special-purpose deque
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and the edge labels to perform a search of H.

We now discuss the generation of the sets UHij(V) in detail. For simplicity of

description we assume that i = 1 and j = 3, i.e., we are considering paths that leave Hat

a 1 and reenter H at Q3. Let face f I be the face containing a I and a 2, and face f 2 be the

face containing Q4 and Q3· For any particular choice of i and J, v can be on either 11 or

f2, and we can detennine the vertices of UlIij(v) on either of the faces 11 or 12- The

description of our algorithm is instantiated for v on face fl. and for finding the last vertex

in UHij(v) on the face f2' The three other cases can be handled in essentially the same

way. We initialize v to a2. and find all pairs shonest distances in H from v to all vertices

in H. We also initialize u to be the vertex in Ullij(v) closest to Q3 on face f2- It takes

time proportional to the size of H to find such a vertex, using the shortest path algorithm

for outerplanar graphs. As the result of the initialization, we associate the set of vertices

from u to a4 on face 12 with vertex v. The set should be represented in compact fonn, as

the union of a minimum number of intervals. This form will be of constant size.

Also as a pan of the initialization, we set up a deque with heap order [OT] to aid

in the search of H. The deque will contain the edges in the shortest path from v to u, as

we move both v and U in H. Each edge <v, w> has a cost associated with it. as well as a

label S (v, w) in compact fonn, encoding shortest path information in H. One of the

implementations of the deque with heap order in [OTJ runs in amonized constant time

for the deque operations and constant time for the min operation. The deque of [OT] will

perform just as well if the min operation is any associative operation with no inverse.

We thus define the min operation on two subsets. each described as the union of a

minimum number of subintervals, to be the intersection of these subsets, also described
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as the union of a minimum number of subintervals. Since the deque represents a shortest

path from v to U, U must appear in the min taken over all edges in the deque. In addition,

we maintain in a straightforward way a value that is the sum of the costs of the edges in

the shortest path from v to u.

We use the deque in our search as follows, handling in tum each venex in addi

tion to v on face fl' While v is not a l. we do the following. First, advance from v to the

next vertex v' towards a 1 on face fl' Second, use edge labels [0 search from v' towards

U, slopping when we fITst encounter a vertex t in the shortest path from v to u. Third, we

modify the deque. Delete from the deque all edges from v to t, in order from the edge

incident from v to the edge incident to t. Then insert the edges from v' to t, in order start

ing with the edge incident on I and finishing with the edge incident from v'. Fourth, set u'

to u. Fifth, we advance u' as necessary along face /2 towards a4. until u' is in UHij(V').

We discuss in a moment how this advancing operation is done. Sixth, we reset v to v',

and u to u', and associate the set of vertices from u to a4 on face /2 with vertex v. Once

v == a I, the particular case we have described is handled.

We discuss how the advancing operation is perfonned, in which we advance u'

along face 12 as necessary towards a4 until u' is in UHij(V'). While u' is not in UHij(V'),

we do the following. First, let un be the next vertex from u' towards a 4 on face /2,

Second, while un is not in the min for the path, delete non-dummy edges from the end of

the path. Third. extend the path to un, using the edge labels in H to search for un. Note

that the removal of the end of the path, and also the extension of the path can be carried

out by deque operations. Fourth, set u' to un. At this point, we are ready once again for

while-test involving u'. Once u' is in UHij(V'), the advancing operation is complete.
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We note that the test to detennine if u' is in UHij(v') can be implemented as fol

lows. For vertices v and u in H, let dH(v. u) be the length of a shortest path from v to u

that is constrained to stay in H. We must compare dH(V', u') with dH(v', ad + deal, a3)

+ dH(a3, u'). The value dH(V', u') will be the total cost of all edges on the path. The

values dH(V'. a I) can be precomputed for all vertices v' in H in time proportional to H,

and similarly for dH(a3. u'). The value d (a 1, a3) is available from the previous all pairs

shortest paths computation on the compressed graph C (G). The test itself will take con

stant time.

We call the above procedure for generating the UHij(V) sets procedure

UVSEARCH. The correctness of procedure UVSEARCH depends on several properties.

Recall the quadrangle inequality: For vertices WI. w2. ul and u2, if the shortest path

from WI to u 1 intersects the shortest path from w2 to U2, then

The first propeny establishes our characterization of UHij(V).

Lemma 6.1 Let H be a hammock in graph G. Let x =Qi and y =Qj be attachment ver

tices at opposite ends of H. Let v and u be vertices in H, with u on face f, one of the two

faces that bound H. If vertex u is in UHij(V), then so are all vertices on face f from u to

the attachment vertex on face f that is at the same end of the hammock as Qj.

Proof. Let u' be any vertex on face f from u to the attachment vertex on face f at the

same end of the hammock as ai. We have two cases. In the first case, if u and u' are on

face f, and if v comes between u' and u on this face, then the shortest path in H from v to
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x intersects the shortest path in H from y to u'. Then by the quadrangle inequality,

Since there are no negative cycles in the graph,

o ,; d(x, y) +duty, x)

Summing these yields

du(v, u'),; du(v, x)+d(x, y)+du(y, u')

which is the desired result.

In the second case, if u and u' are not on face I, or they are but v does not come

between u' and u on this face, the shortest path in H from v to u intersects the shortest

path in H fromy to u'. By the quadrangle inequality we get

du(v, u') + duty, u) ,; du(v, u) + duty, u')

du(v, u) ,; du(v, x)+d(x, y)+du(y, u)

Summing these yields

du(v, u') ,; du(v, x)+d(x, y)+du(y, u'),

which is the desired result. 0

The second property establishes our characterization of the monotonic loss of ver

tices from UHij(v) as v recedes toward ai.

Lemma 6.2 Let H be a hammock in graph G. Let x = aj and y = aj be attachment ver-
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rices at opposite ends of H. Let v and u be vertices in H, with v on face f, one of the two

faces that bound H. If u is not in UUij(v), then u is also not in UHij(v') for any vertex v'

on face f between v and the attachment vertex on face f that is at the same end of the

hammock as ai.

Proof. By Lemma 6.1, u cannot be on face f between v and the attachment vertex on this

face at the same end of the hammock as ai_ Thus the shortest path in H from v ro.x inter

sects the shortest path in H from v' to u, for any vertex v' on face f between v and the

attachment vertex on this face at the same end of the hammock as ai_ By the quadrangle

inequality we get

Since u is not in UHij(V),

Summing these yields

dl/(v', u) > dl/(v', x) +d(x, y) + dl/(Y. u),

which is the desired result. D

Lemma 6.3 Let H be a hammock in graph G. Let aj and aj be attachment vertices at

opposite ends of H. Procedure UVSEARCH forms the sets UHij(V) for all vertices v in H

in time linear in the size of H.

Proof. We claim that UVSEARCH never deletes an edge from the deque and then later

reinsens it. This can be seen as follows. Consider three vertices v. v' and v" appearing
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on the face containing al and a2. with v' between v and at. and v" between v' and ai_

Consider three vertices u, u' and u" appearing on the face containing a4 and a3. with u'

between u and a 4, and u" between u' and a4. If the shortest paths from v to u and from

v" to u" share an edge, then the use of edge labels ensures that this same edge will be on

the shortest path from v' to u'.

Thus every edge in the hammock is added to the deque at most once, at either the

front or the rear of the path. Every edge in the hammock can be deleted at most once,

and will be deleted from either the front or the rear of the path. As discussed already, the

deque with heap order structure of [OT] supports amortized constant deque operations,

and a constant time for the min operation. Thus insening and deleting edges will take

time proportional to the size of the hammock.

Whenever the cost of the path from v' to u' is accessed, or a min operation is per

formed, progress is made, either in the form of a deletion from the deque, or advancing u'

toward a 1. Each such operation can be performed at most once for each edge or vertex

in the hammock. Since each such operation takes conStant time, the total time for han

dling such tests will be proportional to the size of the hammock.

The time for perfonning the searches for u" among the edge labels can be

accounted as follows. The vertices along the face containing a3 and a4 are visited in

order from a3 to a 4. If edges around each vertex are stored in clockwise order according

to an ourerplane embedding, then the edges can be scanned in order, without backtrack

ing, to find the label containing the cUtrent u", starting from the edge whose label con

tained the previous u". This implies that each interval in an edge label is scanned just a
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constant number of times. Thus the time is proportional to the total size of all edge

labels, which is proportional to the number of vertices in H. D

.
Theorem 6.1. Let H be a hammock of size n 1 in an embedded graph G. Given shortest

distances in G between the vertices of attachment of H, the above approach generates

edge labels for any vertex in H to any other vertex in H in 0 (n 1) time.

Proof. Lemmas 6.1 and 6.2 establish the correctness of our approach for computing the

sets UHij(v). Since the set UH(V) is the intersection over a number of such sets, UH(V) is

the union of two sets, each of which is a set of contiguous vertices along a face bounding

H.

Lemma 6.3 shows that the search to determine the sets UH(v) for all vertices 'V in

H will require time linear in the size of H. By Theorem 3.2, determining information for

shortest paths constrained. to remain in H will take 0 (n 1) time. By Theorem 5.1, deter-

mining information for shortest paths constrained to detour out of H will take 0 (n 1)

time. Combining this information will take constant time per edge in H. Thus the total

time will beO(nt). 0

We have now given all the pieces of our algorithm as discussed in section 4.

.
Theorem 6.2. Given a planar embedding G and a face-an-vertex covering of cardinality

p', our algorithms compute all pairs shortest paths in 0 (p'n) time.

Proof. Given the face-on-vertex covering, a hammock decomposition can be determined

in 0 (n) time. The compressed graph C (G) can be detennined in 0 (n) time, and all
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pairs shortest paths solved on it in 0 «p')2) time, using the algorithm in [Fs2]. Shortest

path infonnation between vertices in Hi, and all other vertices can be determined in

a (p'ni + n) time, by Theorem 5.1. Summing over all proper hammocks gives 0 (p'n)

time. By Theorem 6.1, shortest path information between vertices in the same hammock

Hi. of size nit can be found in 0 (nj) time, or 0 (n) time over all hammocks. 0

7. Determining an appropriate face·on-vertex covering

In this section we briefly give a solution to problem 3. Given a planar embedding

,
G of an undirected planar graph G. we show how to generate a face-on-venex covering

whose cardinality is no more than twice the cardinality of a minimum face-on-vertex

,

covering for G. We find such a covering by using an approximation algorithm based on

techniques found in [B]. We first recall several definitions from [B]. A vertex is on level

,
I if it is on the exterior face in G. A cycle of level i vertices is called a level i face if it is

an interior face in the embedded subgraph induced by level i vertices and consistent with

, ,

the embedding of G. By an induced embedded subgraph being consistent with G, we

,
mean that the embedded subgraph can be extended to yield G by adding vertices and

, ,

edges. For each level i face f. let Gf be the embedded subgraph of G induced by all ver-

, ,

tices inside fin G. All vertices on the exterior face of Gf are level i+1 vertices.

We sketch the method of [B], which is a generic approach for approximation

algorithms for cenain NP-hard problems on planar graphs. The approach guarantees a

solution within a fixed degree of closeness to optimal. in time that is the product of n

times an exponential in the inverse of the degree of closeness. Let k be a small positive
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integer greater than 1, to be chosen subsequently. The idea is to consider k different

"partitions" of an embedded planar graph. For each panition, solve a panicular hard

problem exactly on each subgraph. and union the solutions on the subgraphs together.

Then take as the approximate solution the solution to one of the k partitions that is closest

in cost to optimal. The exact notion of partition depends on the particular problem being

handled. In general a partition is created by repeatedly peeling off vertices in a number

of levels to create a subgraph, with every subgraph except the first and the last having

exacdy k levels, and the first and the last having no more than k levels.

We instantiate this approach for our problem. For j = 0, I, . .. and

. .
r = 1, 2, ...• k, let Gjr be the embedded subgraph of G containing every face in G

incident on a vertex in level i, where k U-1)+r < i '5:. kj +r. Let all vertices on levels

.
kU-l)+r < i '5:.kj+r be called required vertices of Gjr • The general dynamic program-

ming algorithm in [B] can be adapted to find a minimum cardinality subset F jr of faces

.
of Gjr . (We omit the details of this adaptation; it is a relatively straightforward adapta-

tion.) LetFr be the union of Fjr over j ~ O. Choose F' to be a set among F r of minimum

cardinality.

Let the restricted face· on-vertex covering problem be the problem of finding a

minimum cardinality face-on-vertex covering for an embedded graph in which certain

faces are required to be in the covering, other faces are not allowed to be in the covering,

and certain vertices are not required to be covered. We note that the above approxima-

tion algorithm can easily be modified to yield a restricted face-on-vertex covering of car-

dinality at most (k+l)/k times the minimum cardinality.
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.
Lemma 7.1. Let G be an embedded planar graph, and k > 1 a positive integer. There is

an 0 (gkn) time approximation algorithm that generates a restricted face-on-venex cover-

.
ing for G whose cardinality is at most (k+ 1)1k times the cardinality of a minimum res-

trieted. face-on-venex covering.

.
Proof. For each r, the set of embedded subgraphs Gjr collectively contain all vertices of

.
G. Thus Fr will be a covering of the required vertices, containing faces required to be in

the covering, and excluding faces not allowed to be in the covering.

Consider an optimal face covering F*". In a fashion consistent with [BJ, we argue

that IF'I ,; IF* I(k+l)/k. For r = I, 2, ... , k, let b, be the number of faces in F* that

contain vertices from both levels kj+r and kj+r+l for some j. Since L ~ = l br ~ IF* I,

there is some r', 1 ~ r' $: k, such that br' :::;;; IF* IIk. Then a (not necessarily optimal) face

.
covering of Gjr will consist of faces in F* that are incident with required vertices on lev-

els kU-l)+r'+l through kj+r'. Taken over all j the tota! number of such faces is

IF' I(l+lIk).

The adapted dynamic programming algorithm from [B] will take 0 (S'nj,) time

. .
on graph G jro where njr is the number of vertices in Gjro For each r, the sum of njr over

all j is 0 (n). Thus the algorithm runs in 0 (S'n) time. 0

Note that if IF I < k, then r achieves the minimum.

8. Determining an appropriate embedding and an appropriate covering

In this section we address problem 4. Given an undirected planar graph G, but no
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.
embedding of G. we show how to generate an embedding G and a face-on-vertex cover-

ing, such that the cardinality of the covering is at most four times the cardinality of a

minimum face-on-vertex covering over all possible embeddings. Our approach is based

on decomposing G into triconnected. components. We initialize a set to hold these com-

pancots, and then handle elements of the set one at a time recursively. Handling a com-

ponent corresponds to running the algorithm in the last section in several variations, and

based on the relative performance for the variations. choosing a gadget to substitute into

a component that shared two vertices with it. The choice of component can encode an

ambiguity as to the embedding, which is resolved as the recursion is unwound. Once we

have given an algorithm for solving problem 4, we conclude the section by claiming the

main result of the paper.

As mentioned in the introduction, there are planar graphs for which one embed-

ding has a face-on-venex covering of cardinality 2, while another embedding has only

face-on-venex coverings of cardinality B(n). A family of such graphs is represented in

Figure Sa, where the number n of vertices is 2 more than a multiple of 3, and n ~ 11. The

graph can be viewed as consisting of (n-2)/3 pieces in the shape of pie slices, with all

slices the same, except for the middle one of the three shown. A minimum face-on-

venex covering for this embedding contains (n-2)/3 faces. We shall exhibit an embed-

ding of this graph that has a face-on-venex covering of cardinality 2.

We first discuss the use of triconnected components. We use the linear-time algo-

rithm of [HTI] to decompose G into triconnected components. Each triconnected com-

ponent will be either a bond, a polygon. or a triconnected graph, and will consist of
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actual edges from G and virtual edges representing portions of G that were split off. Any

virtual edge in a component will have a corresponding virtual edge in some other com

ponent. The decomposition into triconnected components of the graph in Figure 5a is

given in Figure 5b. Each vinual edge is drawn as a dashed edge, and placed next to its

corresponding edge.

Our algorithm uses a notion of extended components of a graph G, which are

modified triconnected components of G. Sets of extended components are defined r e c u r ~

sively as follows. The set of triconnecred components of planar graph G is a set of

extended components of G. Let r be a set of extended components of G, with Irl > 1.

Then r' is a set of extended components of G, of cardinality Ir I -I, defined as follows.

Let C I be an extended component in r that contains some number of actual edges and

precisely one virtual edge e, and let C 2 be the extended component in r that contains the

virtual edge e' corresponding to e. Then l' = r - {C 1, C2} u {C3}, where C 3 is a com

ponent generated when edge e' in C 2 is replaced by anyone of the gadgets in Figure 6.

(Our definition allows an arbitrary choice of gadget. Of course our algorithm will make a

particular choice of gadget. This choice will be discussed subsequently.) Note that the

components in any set of extended components are in one-to-one correspondence with

the components in a set of components obtained when certain of the triconnected com

ponents of G are merged back together. Thus the components in the set of extended

components can be merged together to yield a planar graph G'. (Because of the replace

ment by gadgets, G' will in general be different from G.) A set of extended components

of the graph in Figure 5a is given in Figure 7a, and a second set is given in Figure 7b.

The designation "can't use" in certain faces of some of the gadgets refers to the
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restriction that when a component is embedded in the plane, the corresponding face can-

not be used in the face-on-venex covering. Note that each gadget is symmetrical with

respect to reflection about the axis through the top and bottom vertices. Thus for any

extended component that was not initially a bond, there are at most two nonequivaleot

embeddings of this component, one a reflection of the other, in which anyone particular

face is the exterior face.

We now give a recursive procedure to determine a good embedding and a good

face-on-venex covering. We assume as input a data sttucture containing a set r of

extended components of G, arranged in lists according to the number of virtual edges in

each. At the top level of recursion, r will be the set of triconnected components of G. If

r contains exactly one extended component C 1. we generate an embedding and a face-

on-vertex covering of C 1. as discussed below. If r contains more than one extended

component. choose an extended component C I that has exactly one virtual edge e.

Remove C 1 from the set. handle it, and modify the component C 2 that contains the

corresponding virtual edge e'. Component C 2 is modified by replacing vinual edge e' by

one of the four gadgets shown in Figure 6, generating a resulting set of extended com-

ponents i'. We discuss the rule for the choice of gadget below. The algorithm is applied

recursively to r, and the resulting embedding and face-an-vertex covering is finally

modified to reflect the processing of C 1.

We discuss how to handle the component C 1. Suppose C 1 was not initially a

.
bond. Choose one of the two embeddings C 1 of the component, using a linear-time

planarity testing algorithm [!IT2, ET, BL]. If C 1 does not contain a virtual edge, then
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A

use the approximation algorithm from the last section on the embedded component C 1.

using the parameter k = 4. If C 1 does contain a virtual edge. let f 1 and f 2 be the faces

incident on the vinual edge. Run four versions of the approximation algorithm from the

A

last section on the embedded component C 1. again using the parameter k = 4. In the first

version require both 11 andf2 to be used. In the second require /1 to be used andf2 not

to be used. In the third require f 2 to be used and f I not to be used. In the fourth require

neither to be used. In all four problems, the endpoints of the vimJal edge are not required

to be covered. Let Pl. P2. P3 and P4 be the respective number of faces in the face-on-

venex coverings generated. (If no covering is possible given the restrictions, then take

the number of faces to be 00.) Without loss of generality, assume P2 $ P3.

. If P 1 ~ min{ P2, P4}, then the solution to the first problem is preferred in an

approximation. since including /1 and /2 in the covering can only help in covering ver-

tices in other components. Replace the corresponding virtual edge in C2 with the gadget

of type 3 in Figure 6. Note that the middle two faces in this gadget are excluded from

being used in any face-on-venex covering of an embedding of C 2 . This then forces the

two faces on either side of this gadget"to be in the face-on-venex covering.

If P2 ~min{Pl-I.P4}, then the solution to the second problem is preferred.

This follows since including!l can only help as compared with the solution to the founh

problem, and including!2 later to help cover vertices in other components would boost

the total cost only to P2+I ~ P 1. Replace the corresponding virtual edge in C 2 with the

gadget of type 2 in Figure 6. This forces one of the two faces on either side of the gadget

to be in any face-an-vertex covering.
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If P4 ~ min{ P 1-2, p2-1}. then the solution to the fourth problem is preferred.

This follows since including one of II and /2 later to help cover vertices of other com

ponents would boost the total cost only to P4+1 $.P2. and including both of It and /2

later would boost the cost to P4+2 $. P 1- In this case, replace the corresponding vinual

edge with the gadget of type 1 in Figure 6.

When none of the above conditions hold, we have that P 1 = P4+1 $. P2. In this

case, we would like to use either the solution to the first or the fourth problem, depending

on which is more advantageous. We replace the corresponding virtual edge with the

gadget of type 4 in Figure 6. Note that the top and bottom interior faces are not allowed

to be used in the face-on-venex covering. This means that either the middle interior face

is used, or both outside faces will be used. Using the outside faces corresponds to choos

ing the solution to the first problem, while otherwise not using both outside faces

corresponds to choosing the solution to the founh problem. This ambiguity about which

solution to use is left unresolved until the procedure returns back from the recursion.

This concludes the description of how to handle a component that was not initially a

bond.

Suppose component C 1 was initially a bond. In the worst case. there will be

many different possible embeddings for C 1. We describe how to generate an embedding

that has a face~on-vertex covering of minimum cardinality, subject to restrictions on how

many faces bounding a virtual edge are to be contained in the covering. For c o n v e n i ~

ence, we view any edge in C I that was an actual edge in the original bond as a gadget of

type 1. An embedding will be specified by giving a cyclic ordering, around one of the

vertices originally in the bond, of the gadgets in C 1, along with the virtual edge, if
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present. First have all the gadgets of type 1, then all gadgets of type 4, then one gadget

of type 2 if there is one, then all gadgets of type 3, and then the remaining gadgets of

type 2. If there is no vinual edge, then the above embedding is sufficient. If there is a

virtual edge, then we generate three different embeddings, each dependent on how many

faces next to the virtual edge would be required to be used in the covering. If both such

faces are, then put the virtual edge after the gadgets of type 3. If exactly one such face is,

then put the virtual edge in front of all gadgets. If no faces next to the virtual edge are to

be included in the covering, then put the virtual edge after the first gadget in the list. A

minimum cardinality face-on-vertex covering of each embedding can be generated. by a

straightforward greedy algorithm.

Lemma 8.1. Let C 1 be a component that was originally a bond. Suppose either C 1 con-

tains no virrual edge, or C 1 contains a vinual edge and an embedding is required to have

exacdy i faces incident on the virtual edge, where i is 0, I, or 2. The above algorithm

,

gives an embedding C 1 that has a minimum cardinality face-on-vertex covering when-

ever such an embedding exists.

Proof. Suppose C I contains no virtual edge. One face will be needed for each gadget of

type 3 or type 4, and every two gadgets of type 2. Furthennore, if there are no gadgets of

type 2, and at least one of type I, then one additional face will be needed. It is easy to

verify that the embedding given has a face-on-vertex covering of this size.

When there is a virtual edge in C I, the proof involves verifying a number of

cases. Let gj be the number of gadgets of type j in C 1. We note that if g 2 + g3 + g 4 > 0

and g1 + g4 + g 2 < 2. then there will be no embedding with both of the faces incident on



69

the vinual edge nor used. If either 84=1 and 81 +82+83=0, or 83 >0 and

g 1 + g2 + g 4 = 0, then there will be no embedding with exactly one of those faces not

used. 0

We complete the discussion of how to handle a component that was initially a

bond. If C 1 contains no virtual edge, then an embedding and a minimum face-on-vertex

covering have been determined. Otherwise, let P 1. P2 and P4 be the number of faces in

a minimum cardinality covering when respectively 2, I, 0 faces incident on the virtual

edge are included in the covering. Perform the comparisons between PI, P2. and P4 as

described earlier, substituting the selected gadget in place of the corresponding virtual

edge in some component C 2.

We now illustrate how to handle components. Consider the set of triconnected.

components in Figure 5b. Consider each component that has precisely one virtual edge.

For each of these components, the solutions generated by the algorithm of section 7 for

the various problems will have P 1 = 2, pz = P3 = I, andp4 undefined. Since pz ::;;P 1-1,

each such component will be replaced by a gadget of type 2. The resulting set of

extended components is shown in Figure 7a. The solutions generated by the algorithm of

section 7 for the component shown in the middle slice of Figure 7a for the various prob

lems will have PI = 2, pz = P3 = 2, and P4 = 1. Since P 1 = P4+1 ::;;P2, the component

will be replaced by a gadget of type 4. The solutions generated by the algorithm of sec

tion 7 for the components shown in the other slices of Figure 7a for the various problems

will have PI =2, P2=P3=1, and P4 undefined. Thus these components will be

replaced by gadgets of type 2. The resulting single component is shown in Figure 7b.

The face-on-vertex covering generated by the approximation algorithm in section 7 is
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shown in Figure 8a. Note that the cardinality of the covering is the smallest possible.

This must necessarily be so since the cardinality of this covering is less than k.

We finally discuss how to return from the recursion, and resolve ambiguous

choices for the embedding. Thus we discuss how to modify the solution for r' to yield a

,

solution for r. The embedded graph G' for r contains the gadget that was substituted in

place of component C 1. Replace the gadget with component C 1 minus its virtual edge.

If the gadget is of type 2, choose the reflection of C 1 that forced the choice of the gadget

originally. Union the covering of C 1 into the covering for the embedding being con-

structed.. If the gadget is of type 4, choose the covering of C 1 that is consistent with the

way the vertices of the gadget were covered.

Theorem 8.1. The above approximation algorithm generates an embedding of G and a

face-on-venex covering of cardinality at most four times the cardinality of the minimum

covering over all possible embeddings.

Proof. The proof is by induction on the number of extended components of G. Suppose

there is just one extended component. If the component was not initially a bond, then

there are just two embeddings, which are reflections of each other. Our algorithm uses

the approximation algorithm from section 6, that is guaranteed to get within a factor of

(k+1)/k = 5/4. If the component was initially a bond, then by Lemma 8.1 our algorithm

identifies an embedding that allows for a minimum face-on-venex covering, and finds

this covering.

Suppose there is more than one extended component. We assume as the induc-
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tion hypothesis that our algorithm gets within a facror of 4 on any graph with fewer

extended components. Given a graph G, let p (0) be the minimum number of faces in

any face-on-venex covering of any embedding. Let F* be a face-on-vertex covering for

G that is of cardinality p (0). For extended component C 1 of G that has one virtual edge,

let F*' be a minimum cardinality subset of F* needed to cover ail vertices in C 1 except

the endpoints of the vinnal edge. Let P (C 1) he the cardinality of F*'.

Let p' be the minimum of the Pi. i = I, 2, 3, 4. for component C 1. Let G' be the

graph resulting after our algorithm deletes component eland substitutes a gadget in

place of a virtual edge in component C2 . Let peG) be the cardinality of a covering gen

erated by our algorithm.

Supposep(C) ~ 3 . This means that min{Pl,P2,P4} ~ 3 . Consider the case in

which PI'; mint P2, P4}' We have P (G')';p (G) - (P 1-2), since PI is the minimum.

Thus p(G) ';Pl - 2 +p(G') ';p 1 - 2 + 4p (G'), by the induction hypothesis. Substitut

ing, we getp(G) ';Pl -2 + 4(p (G)-PI-2) ';4p(G), since PI ;"2. Consider the case in

which P2 ,; mint PI-I, P4}· We have P (G')';p (G) - (P2-1), since P2 is the minimum,

and P,-2;"P2-!. Thus p(G) ';P2-I+p(G') ';p2-1+4p(G'), by the induction

hypothesis. Substituting, we get p(G) ,; P2 - I + 4(p (G)-p,-I) ,; 4p (G), since P2 ;" !.

Consider the case in which P4 ,; mint P 1-2, P2-1}. If P4 ,; 2, then P (G')';p (G) - P4,

since P1-2 :? P4 and P2-1 ~ P4, and P I and P2 are the smallest possible values, not

approximations. Thus peG) 5.P4+P(G') 5.P4+4p(G'), by the induction hypothesis.

Substituting, we get p(G) ';P4+4(P(G)-P4) ,; 4p (G). If P4 =3, then

P (G')';p (G) - P4 +1, since Pel ';p 1-2. Thusp(G) ';P4+ p(G') ';P4+ 4p (G'), by the
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Substituting, we get p(G) ';P4+4(P(G)-P4+1)

=4p (G) - 3P4 + 4 < 4p(G).

Suppose p (C) > 3. Since at most two faces in p*' cover venices not in C, p (G')

,; p (G) -p (C) +2. Then p(G) ';p' + p(G') ';p' + 4p (Gi, by the induction hypothesis.

Substituting, we get p(G)'; (5/4)p (C) + 4(p (G) -p (C) + 2) = 4p (G) - (1l/4)p (C) + 8

,; 4p (G). 0

We suspect that the constant of 4 can be improved by careful analysis. We c o m ~

plete our running example by seeing how the embedding and face-on-vertex covering in

Figure 8a is expanded to yield a good embedding and face-on-vertex covering for the

graph in Figure 5a. For each gadget of type 2 substituted into Figure 7a to yield Figure

7b, we replace the gadget by its corresponding component. Note that we are careful to

use the appropriate reflection of components replacing gadgets of type 2. Also note that

since the gadget of type 4 had both outside faces in the covering, both outside faces of

the component are included. Since these components are rather simple, no faces other

than outside faces were in their coverings. The resulting graph, embedding, and covering

are shown in Figure 8b. Substituting for gadgets in Figure 8b gives the original graph of

Figure Sa, along with an embedding and a face-on-venex covering. The covering is of

cardinality 2, the best possible for this family of graphs.

We are now able to claim the main result of the paper.

Theorem 8.2. Let G be a directed planar graph, with n vertices, and real-valued edge

costs but no negative cycles. Let p be the minimum cardinality of a face-on-venex cov

ering over all planar embeddings of G. Our algorithm constructs compacted routing
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tables for all pairs shonest paths in G in 0 (pn) time.

Proof. The result follows directly from Theorems 6.2 and 8.1 0

9. Verifying the triangle inequality, and another encoding

It is possible to detennine all edges violating the triangle inequality in time that is

better than O(pn) whenever pis o(n). The time will be O(n +p2), as we now show.

Perfonn all the portions of our algorithm except for finding edge labels between vertices

in different hammocks. For each edge <v, W >, test if w is in the interval labeling edge

<v, w> in the hammock containing <v, W>. An edge <v, w> violates the mangle ine

quality if and only if the test fails.

Theorem 9.1. Let G be a directed planar graph, with n vertices, and real-valued edge

COStS but no negative cycles. Let p be the minimum cardinality of a face-on~venex cov

ering over all planar embeddings of G. All edges that violate the generalized triangle

inequality can be determined in 0 (n + p2) time.

Proof. Since each edge is in some hammock, it is not necessary to find shortest path

information for two venices in different hammocks. The time to perform all the portions

of our algorithm except for finding edge labels between vertices in different hammocks is

o (n +p2). Given the edge label infonnation withiDt hammocks, the time to perfonn

each test is constant per edge, or 0 (n) overall. 0

We know of no class of graphs for which the current best algorithm for verifying

the generalized triangle inequality is faster than the current best algorithm for solving all
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pairs shortest paths. The class of planar graphs with a minimum cardinality face-on

vertex covering of size p appears to be no different, if we allow an alternative encoding

of all pairs shortest paths information.

The encoding consists of all pairs shortest distances and shortest paths in the

compressed graph C(G), edge labels in each hammock H, the sets UH(v) for all vertices

v in each hammock H, and shortest distances between each vertex in H to the attachment

vertices of H.

Given this encoding. the first edge <y, w> on a shortest path from v to u is deter

mined as follows. Suppose v and u are in the same hammock H. If u is in UH(V), then

the shortest path from v to u stays within H. Thus <v, w> is the edge incident from v

with u in its edge label. If u is not in Ul/(v), or if v is in hammock H and u is in ham

mock H' ::j:. H, then we consult the distance information. (If v and u are in the same ham

mock H, but u is not in UH(v), then let H' =H in the following.) Let al. a2. a3 and a4

be me attachment vertices of H, and b I , b2• b 3 and b 4 be the attachment vertices of H'.

Choose i and j to minimize dey, aj) + d(aj, bj ) + d(bj • u). If v ;t: ai. then edge <v, w>

will be the edge incident from v with ai in its edge label. If v = ai. then <v. w> will be

the first edge in a shortest path from ai to bj in C (G).

Theorem 9.2. Let G be a directed planar graph, with n vertices, and real-valued edge

COStS bur no negative cycles. Let p be the minimum cardinality of a face-an-vertex cov

ering over all planar embeddings of G. The above encoding of all pairs shortest path

information can be computed in 0 (n +p 2) time.

Proof. The above encoding can be generated by perfonning all the portions of our
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algorithm except for finding edge labels between vertices in different hammocks. This

requires rime 0 (n + p 2). 0

While this encoding can be generated in general more quickly than compact rout-

ing rabies, it obviously cannot be used in place of compact routing tables for poim-to-

point message routing in a network.
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Figure 1. An embedded graph with a face-an-vertex covering of five faces shown as shaded.



Figure 2. An undirected embedded graph generated from the graph in Figure I,

with faces not in the face-on-vertex covering triangulated.
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Figure 3. A hammock decomposition for the embedded graph in Figure I,

with the attachment vertices emboldened.
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Figure 4. A directed outerplanar graph.
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Figure 5. An example for detennining a good embedding:

<aJ an embedded planar graph, and

(b) its decomposition into triconnected components.
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Figure 6. The gadgets that can substitute for a component.
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Figure 7. Sets of extended components generated by:

(a) replacing cenain components in Fig. 5b , and

(b) replacing all components except the largest one.
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Figure 8. Expanding the embedding and face covering:
(a) a face covering for the extended component in Fig. 7b,

(b) a face covering when each gadget in Fig. 7b is expanded, and
(c) a good embedding and face covering for the graph in Fig. 6a.
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