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P L A N A R  G R O U P S  OF A U T O M O R P H I S M S  OF S T A B L E  P L A N E S  

Markus Stroppel 

(Semi-) planar groups of stable planes are introduced, and information about their size 
and their structure is derived. A special case are the stabilizers of quadrangles in com- 
pact connected projective planes (i.e. automorphism groups of locally compact connected 
ternary fields). 

1. I N T R O D U C T I O N .  

A stable plane M = (M, • )  is a non-degenerate linear space, where the point space M and 

the line space A4 carry locally compact Hausdorff topologies such that joining of points 
and intersection of lines are continuous operations. Moreover, intersection is stable (i.e. it 
has an open domain of definition), and the point space M is assumed to have positive finite 
covering dimension. According to a deep result of R. Lbwen [11], the covering dimension 
dim M is one of the integers 2, 4, 8, or 16. See e.g. [9] for basic facts and [11] for topological 
properties of stable planes (Our notion of "stable plane" is equivalent to "stabile lp-Ebene" 
in [9]). 
Let Aut (M) denote the group of continuous collineations of k4, endowed with the compact- 
open topology derived from the action on M. Automorphism groups of stable planes 

of higher dimension may effectively be studied via considering their action on invariant 
subplanes (if such subplanes exist). For this purpose, information about the kernel of such 
a restriction is required. This leads to the study of planar groups: 

(1.1) DEFINITION. 
a) A (closed) subgroup A of Aut (M) is called seml-planar, if the set Fix (A) of fixed 

points of A carries a non-degenerate, non-discrete subplane of M. If dimFix (A) > 0, 
then A is called planar. 

b) An automorphism a is called (semi-) planar if the group generated by a is (semi-) 
planar. 

The notion of subplane will be defined precisely in section 3. 
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(1.2) REMARKS. 
a) It may be conjectured that non-discrete subplanes of dimension 0 do not occur. At 

present, this has only been proved for the case where dim M _< 4 (see [9: 1.34]). 
b) In the case of compact connected projective planes, the results in this paper remain 

valid for each stabilizer of a quadrangle, although the quadrangle might generate a 
discrete subplane. Wherever the assumption of a non-discrete set of fixed points is 

needed in this paper, it can be replaced by the assumption that M is projective. 
Note that the stabilizer of a quadrangle in a projective plane is the automorphism 
group of the corresponding ternary field. Thus our results may be interpreted for 

automorphism groups of locally compact connected ternary fields. 

NOTATION. We denote the line joining the points z and y by zy, and the intersection 

point of lines X and Y by X ^ Y .  Exponential notation is used for the action of Aut (M) 
on M and M .  

ACKNOWLEDGEMENTS.  The main source of inspiration has been the treatment of 

stabilizers of quadrangles in compact connected projective planes by H. Salzmann [20: 

section 2], [21]. The author was introduced to the study of stable planes by H. Salzmann 

and R. LSwen, and also owes thanks to 1%. B5di and T. Grundh5fer for helpful comments 

and encouragement. 

2. AUTOMORPHISM GROUPS. 

For each stable plane M1, let Ant (M) denote the group of all continuous collineations, 
endowed with the compact-open topology (with respect to the action on the point space). 
According to [9: 2.9], the group Aut (M) is a locally compact, separable topological group. 

Let A be a locally compact connected group. By the Malcev-Iwasawa theorem, the (cov- 

ering) dimension of A is finite if and only if a maximal compact subgroup of A has finite 

dimension. For semi-planar groups, we prove this property in this paper. Since a semi- 
planar group can be obtained by taking the stabilizer of some quintangle (see [9: 1.34]), 

Halder's dimension formula [8] may be used to show that the dimension of Aut (M) is 
finite. 

Each locally compact connected group A is an inverse limit of Lie groups in the sense that 

there are compact normal subgroups Zi such that the factor groups A/Z i are Lie groups, 

Zi >Zi+l and ~ i 6 N  Zi = ]. If dimA is finite, we can choose the Zi such that dimZi = 0. 
Then all the A/Z i are locally isomorphic, and Zi lies in the center of A. In this case, all the 

groups A/Z i have the same Lie algebra L, and we call A of type L. We use the notation 
of Tits [25] for the simple real and complex Lie algebras. An asterisk ( " , " )  will be used 
e.g. in A* to denote an arbitrary real form of the complex Lie algebra A,,. 

For a semi-simple compact Lie group ~, there are only a finite number of isomorphism 
types of Lie groups that are locally isomorphic with ~. This may be used to derive the 
fact that A contains a compact (hence closed) subgroup locally isomorphic with q~ if any of 
the A/Z i contains the compact semi-simple group ~. Note also that connected subgroups 

of A centralize each other if and only if their images in A/Z i have this property. 
The classification of the real and complex almost simple Lie groups and their Lie algebras 
will be used without explicit quotations. The tables in [15] or [25] may serve as a source 
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for the information required. 

3. S U B P L A N E S .  

Let E c M be a set of points, and let K = (E, s be the geometry induced on E,  where s is 
the set of lines that are incident with at least two points of E. The geometry K is called a 
full subplane if E contains a quadrangle and each point that lies on two lines of $ belongs 

to E.  
Let X c M be a set of points containing a quadrangle, and let E = (E, $) be the smallest 
full subplane of M such that X g E and E is closed in M. Then <X / -= E is called the 

subplane generated by X (in M). The set E is the closure of E,  where s = (E, $) is 
the smallest full subplane of k4 such that X c_ ~.  The set E is obtained by the following 

procedure: let X0 = X, and Xi = {xy] x, y e X i } , X ~ + l  = {x I x = G^H, G, H e X i }  for 
i > 0. Then E = Ui > 0 x i .  This yields the implications 

x ~ = x  ~ ~ - = ~  ~ E ~ = E  
(3.1) ~ lx  = ~  ~ ~ l f = l  ~ ~IE= 

for any (continuous) automorphism a of M. In particular, the geometry induced on Fix (h) 
is a full closed subplane for each semi-planar group A. 

(3.2) REMARK. Note that, for each subset X c_M, the restriction map 5 ~ 5Ix is 
continuous with respect to the compact-open topologies on C(M, M)  and C(X, M),  cf. e.g. 
[13: w Ex. 1, p. 289]. In general, however, this map need not be open or closed. If, 
in particular, the set X is A-invariant for some (closed) subgroup A of Aut (M), then the 

group A]X need not be closed in Aut ((X}), and A[X need not be topologically isomorphic 
with the factor group A / K  , where K is the kernel of the restriction. The continuity of the 
restriction map, however, yields the following information about the closure T of A]X in 
Aut ((X)): 

- If A / K  is compact, then A]X is compact and hence closed in Aut ((X}). Consequently, 

the groups A / K  and A]X are topologically isomorphic. 

- If A / K  is connected, then T is connected [6: V,1.6]. 

dim A / K  = dim A IX _< dim T (apply [14: III.6] to a compact neighbourhood in A / K  ). 

- The factor group A / K  is abelian, nilpotent, or solvable if and only if the group T has 
the property in question. 

- If A / K  and T are Lie groups, then A]X is an analytical subgroup of T. In particular, 
the Levi complement of A[X is contained in the Levi complement of T (of. [26:2.7.3 
and 2.11.2]). 

Further information about the topologies that occur with restrictions is comprised in sec- 

tion 4. We collect some useful general information about subplanes first. 

We have the following maximum property for full closed subplanes of positive dimension: 

(3.3) LEMMA. Let E = (E, $) be a full closed subplane of M with dim E > 0. If  E c F 
and K = (F, yr) is a dosed subplane, then dim F > dim E. 
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Proof. Assume tha t  d i m E  = d i m F .  According to [11: Th.  l lc)] ,  E is open in F .  For any 

point z e F ,  choose points  z , y  e E such tha t  y ~ xz. Each of the lines zz ,  yz  meets the 
open set E in more  than  one point.  Thus  zz  and yz belong to s and hence z e E ,  since E 

is full. [] 

In a project ive plane, any quadrangle generates a projective subplane. In a stable plane, 

opposi te  sides of a quadrangle need not intersect,  and the subplane generated by a quad- 

rangle m a y  even consist of just  the quadrangle. The following result of L6wen [9: 1.33, 

1.34] shows tha t  there are always non-discrete subplanes tha t  are finitely generated: 

(3 .4)  LEMMA. Let (u, v, e) be a triangle in a stable plane. Then there is a point o and a 

neighbourhood U of u in uv such that  (o ,u ,v ,e)  is a quadrangle and that for each point 

b 6 U \ {u}, the (degenerated) quintangle (o, u, v, e, b) generates a subplane E =- (E, s that 

lies dense in itseIf. I f  dim M _< 4, then dim E > 0. 

(3 .5)  LEMMA. The/_ine pencils of stable planes are locally homogeneous. 

Proof.  Let X,  Y be lines through a point z. Choose lines G, H such tha t  g = G ^ X  and 
h = H A Y  exist, and choose z e g h \ { g , h } .  Then ~r = ~r~,G,z,H,~: L H ( ( ( L A G ) z ) A H ) z  is 
defined on some neighbourhood W of X in the line pencil, and lr is a homeomorph i sm of 

FY onto the neighbourhood W ~ of Y. [] 

(3 .6)  D E F I N I T I O N .  A full subplane B = (B, B) of a stable plane is called a Baer subplane, 

if B is a closed subset of M with dim B = �89 dim M.  

For compact  connected projective planes, this definition is equivalent with the usual one 
(i.e. tha t  each line contains at least one point of B),  see [20: 1.4], [21: 1.4]. 

(3 .7)  LEMMA. Let M = (M, J~) be a stable plane. I f  there is a Sae r  subplane 8 = (B, B) 

such that B is a (topologicM) manifold, then each line pencil of K4 (and hence each line 

and the point space M )  is a manifold. 

Proof. Choose a compact  neighbourhood V in B and a point z e M \ B. The  mapping  

~r : V ~ .M~ : b ~ bz is continuous and closed (since V is compact) .  Since there is at 

most  one line in B containing z, we may  choose V such tha t  7r is injective. Then  V is 
homeomorphic  with ]/9 = V ~, hence d i m W  = dimA4~ and 1,~ contains a neighbourhood 
of some line in Ad~ by [11: Th.  11c)]. The  assertion foUows from local homogenei ty  (3.5). 

(3 .8)  R E M A R K .  If  the point space of a stable plane has dimension _< 4, then each line 

is a manifold [9: 1.13]. If  d i m M  <8,  the assumpt ion tha t  B be a manifold is therefore 
superfluous. There  is a conjecture tha t  the point space is always a manifold (via the 
disjoint-disk property ,  see [11: Th.  9, Cor 10]), but the impact  of the disjoint-disk proper ty  
is dubious again, see [16]-[18]. 

If  the lines of M are manifolds of dimension l, then each line pencil is homeomorphic  with 
the sphere $i (see [9: 1.19]). In this case, useful information is obta ined by an application 
of Alexander duality [5: VIII ,  8.15]: 

(3 .9)  LEMMA. Let M = ( M , M )  be a stable plane whose line pencils are homeomorphic 

with $1, and let ( E , s  be a proper dosed full subplane of M with d i m E  = 2e. Then 

H l - l - q ( M ,  \ s  ~ r_f-tq(s for each q e N and each z 6 E.  

In particular, -f-It-l-e( M ,  \ E.) # O, and M ,  \ E. is not homeomorphlc with W. 

Applications of (3.9) will use the following 
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(3.10) LEMMA. Let A be a connected semi-planar group of a stable plane M = (M, M),  

write V = (F, ~ )  for the subplane induced on F = Fix (h), and let a �9 Y. I f  dim A = 
d i m M x  and AL = 11 for some line L through x, then the mapping # : A ~ Adz : A ~-~ L ~ 
is an open embedding. In particudar, Adz is homeomorphic with a sphere, and A is a Lie 
group, g AL = ]1 for each L � 9  \ Y z ,  then A contains an invoIution. 

Proof. Assume that  dimA = dimAd~, and that AL ---- :~ for some L �9  Then the 
mapping # : A ~ Adz : A H L x is a continuous injection. Restricting # to some compact 

neighbourhood, one infers from [14: 111.6] that dim A = dim A#. Now [11: Th. llc)] yields 
that  AS = L A is open in Adz. According to [12: 6.3, p. 243] or [24], the group A is a Lie 

group, and Adz is homeomorphic with ~ sphere. HAL = 1 for each line L �9 .Mz \ 5r~, we 
obtain that L A = M~ \ j r ,  since M ,  \gv, is connected. Now (3.9) applies, fielding that 
A has a non-trivial compact subgroup. O 

(3.11) LEMMA. Let/1~ _< Aut (M) be a compact group fixing some point x. I f  there is a 

line L e A d z  such that d imL ~ = dimAdz, then �9 acts transitively on Adz. 

Proof. Assume that d imL e = dimAdz. According to [11: Th. 11c)], the compact orbit 
L e is open in Adz. Transitivity follows from the fact that Adz is connected [9: 1.14]. [] 

4. R E S T R I C T I O N S .  

In this section, let M = (M, Ad) be a stable plane, and let A be a subgroup of Aut (M). 

For subsets X , Y  of M or Ad, let IX, Y] denote the set { 6 � 9  t X s c_y} and 

Cp(X) = { c  c x I c compact}, Op(X) = {u c x t v open}. 

We consider the following topologies on A: 

a) The compact-open topology T derived from the action on M is generated by the 

subbase {[C, U 1 I C �9 Cp(M), U �9 Op(M)}. 
b) For each fixed point o of A, the topology To is generated by the subbase 

{ r e ,  U7 ] C �9 Cp(Mo),  V �9 Op(Mo)} 
(i.e. the compact-open topology derived from the action on Ado). 

c) For any two fixed points p,q of A, the topology Tp,~ is generated by the subbase 

{re, v11 c � 9  x A d 0 , v � 9  x 
(i.e. the compact-open topology derived from the action on Adp x A, tq). 

d) For each fixed line L of A, the topology T M \ L is generated by the subbase 

{ /c ,  Vl I o �9 Cp(M \ L), U �9 Op(M \ L)} 
(i.e. the compact-open topology derived from the action on M \ L). 

Our aim is to show that the topologies To and T coincide in the case where A is a semi- 
planar group (this is analogous to the result of T. Grundh6fer [7:p.297 (in the proof of 
the corollary)] for the case of compact (possibly disconnected) projective planes). Since 

each of the considered topologies makes A a topological semi-group, it suffices to consider 
the neighbourhoods of 1. 

(4.1) REMARK. The actions of A on Ado, Adp x Adq and M \ L  are continuous with 
respect to T ,  and we infer that TO,Tp,q and TM\  L axe contained in T (cf. [13: w 7-6, Ex. 
s, p. :sg]). 
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(4.2) LEMMA�9 If  A t~xes two points p, q, then Tp g Tp,q. 

Proof. The set { [C x 79, W] I C e Cp(Mp), 7) e Cp(.Mq), W e Op(Mp x M q ) }  forms a sub- 
base for 7-p,q (cf. [6: Ex.1, p. 264]). The sets Mp and J~4q axe A-equivariantly embedded 
in 2t4p • Mq via Lp : L ~ (L,pq) and Lq : L ~-+ (pq, L),  respectively. This yields that 

(4.3) LEMMA. The topology T~,q is generated by the subbase 

{ [c • 79,u • v]I c e Cp(Mp), 7) e Cp(Mq),u e Op(Mp), v e Op(Mq)} 

In particular, Tp u ~ is a subbase for 7-p,q. 
ProoL Assume that 1 e [C • 3P, W]. There are open neighbourhoods U, Y of C, 7:) in 
A4p, A4q, respectively, such that U • is contained in W. Consequently, the neighbourhood 
[C x 7),/ . /x ];] is contained in [C • 79,W]. Since b( • )2 is open in A4p • A4q, we obtain 
the first part of the assertion. The equality [C x 79,b/ x V] = [C,L/] n [79,'P~ yields the 

second part. [] 

(4.4) LEMMA. I f  p, q are two fixed points of A and L = pq, then Tp,q ~_ 7 M \  L. 

Proof. Let C e C p ( M \ L )  and U 6 O p ( M k L )  such that : I e [C ,U 1 (i.e. Co_U). For 
each point c 6 C, there are compact neighbourhoods b/c,)2c of pc, qc in 2r .Mq, respec- 
tively, such that Wc = L/c x 'Pc consists of pairs of intersecting lines and that Wc = 
{GAH I (G, H) e We} is contained in U. The mapping 

a : rn ~ (pro, qm) : M \ L -+ .Adp X .Mq 

is a continuous open injection, hence We is a compact neighbourhood of c in M \ L. Since 
�9 n W ,  C is compact, there is a finite number of points ca,. .  ,cn such that C c_ Ui=a c~. Conse- 

quently, [C, U] _3 [']in__] jigS,, U] ~ 1. Now [We, U] = [Wc, V~], and ~i~1 [Wc,, U] belongs 

to ~,q. [] 

(4.5) LEMMA. I r A  is semi-planar, then 7"0 = 7-p,q for each choice o , p , q ~ F i x ( A )  such 

that p :/= q. 
Proof. Assume first that o = p. Let [C x 79,b/ x )2] be a Tp,q-neighbourhood of 1 (cf. 
(4.3)). In particular, the set 79 is contained in )2. We may assume that 7:) r Adq (otherwise 
[C x 79,U • 'P] = ~C,b/] eTp) and even that the closure of Y is a proper subset of M q  

(since Adq is a regular space). Now there is a line H that is fixed by A, does not pass 
through p or q and meets each line in Y. On the open set lW = {L e Mq I L meets H} 
we define the local projectivity # : L H (L^H)p .  Now # commutes with A (since p, q 
and H are fixed by A) and is a homeomorphism of In] onto the open subset W ~ of Mi~. 
This yields that g79,v] = [z) . ,v .]  e%, ~ d  [C x 79,U x V] e%. Therefore Tp,q c_7-p and 
the assertion follows from (4.2) for the case where o = p. If o 7~ p, we conclude that 

=TO,. = ~  = ~ , ~  = ~ .  o 

(4.6) PROPOSITION. I r A  is semi-planar, then T = To for each tixed point  o of A .  

Proof. Let [C, U] be an element of T.  For each point c 6 C, there axe two fixed points Pc, qc 
of A and a compact neighbourhood Dc of c such that the line Lc = pcqc and De are disjoint. 
Since C is compact, there is a finite number of points ca , . . .  ,c~ such that Co_ ~i~a D~. 
Hence I t ,  U] ~_ [']i%1 [Wc,, U]. But [Dc,, U] e T M \ L~, c_ 7-p~,,q,, = To (according to (4.4) 

and (4.5)),  ann we have shown that 7" _c To. Since To c 7" (cf. (4.1)),  the assertion fonows. 
[] 
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5. T H E  L O W  D I M E N S I O N S .  

In the case of stable planes of dimension at most 4, subplanes and (semi-)planar groups 

are well understood. According to [9: 1.34], there are no non-discrete closed full subptanes 

of dimension 0 (i.e. each semi-planar group is actually planar), and the possible planar 

groups are known explicitly: 

(5 .1)  T H E O R E M .  Let A be a semi-planar group of  a stab/e plane MI = (M, .L4). 

a) H dim M -- 2, then A is trivial. 

b) H dim M -- 4, then A consists of at most two elements. 

Proof. By the maximum property (3.3) and (3.4), we have that  dim Fix(A) -- 2 and 

dim M -- 4 whenever A is not trivial. In this case~ each non-trivial element of A is 

an involution by [10: 1.6] and reverses orientation on the line pencil in any fixed point. 

Consequently, the product  of two non-trivial elements is trivial, and A ~ Z2. [] 

(5 .2)  COROLLARY.  Let A be a connected semi-planar group of a stable plane M = 

(M, J~ ), and c 6 M \ F i x  (A). Then the subplane generated by Fix (A) u c A has dimension 

8 at least. 

W a r n i n g .  There may be non-continuous planar collineations (e.g. the coUineations that  

are induced on the projective plane over the field C of complex numbers  by non-continuous 
automorphisms of C). These need not be involutions, nor do they always commute.  

6. C O M P A C T N E S S .  

For compact  connected projective planes, it seems reasonable to conjecture tha t  each 

semi-planar group (even each stabilizer of a quadrangle) is compact.  No example of a non- 

compact  semi-planar group is known, but there is still no general proof of compactness. 

Several rather complicated compactness criteria have been stated for the projective case 

(e.g. [2h 2.2-2.4]). In the case of stable planes, we can prove the following: 

(6 .1)  P R O P O S I T I O N .  Let M be a stable plane. Any  dosed  subgroup of  Aut (M) that 

acts trivially on a Baer  subplane B = (B, B) is compact. 

Proof. Assume that  a non-compact  group A satisfies the hypotheses of the proposition. 

Let (o ,u ,v)  be a triangle in I]. According to (4.6), the group A is homeomorphic to its 

restriction A[j~d o. By the Arzela-Ascoli theorem [13: 7-6.1, p. 290], there are a sequence 

of lines Ln eJvlu and a sequence of automorphisms An eA  such that  l imLn = ou but ou 

is no cluster point of the sequence L~-.  Choose J e J~dv \ By such that  J^ou  exists. There 
are compact  neighbourhoods O of o in ov and U of u in uv such that  J intersects each 
line is, where t e O, s e U. Pu t  D = (B n U) • (B n O). Since B is closed in M,  the set 
D is compact,  and d i m D  = d imB.  Now the mapping # : D ~ .tv~u : (8, t) ~-~ (StAJ)u 

is a closed continuous injection (recall that  J e B). From [11: Th. 11c)] we obtain that  
D ~ is a neighbourhood in A//~, and we may assume that  {Ln [ n e N} c__ D r.  For each pair 

(s,~, t , )  e D with L,~ = (sn, t,~) i' we have that  l im(s. ,  t . )  = (u, o). Since ou is not  a cluster 

point of L~n ~, the sequence (JALn) ~" = (sntn^Ln) x" = ~n~n- �9 ^r;~,,,, converges to u. Hence 
lim J~-  = ~,v. 

According to (3.5), there are fines GeB~ ,  H e B o  and a point z e o u n B  such that  ~r = 
~r,,a,z,g,v is a homeomorphism of some neighbourhood )/V of uv in .h4, onto a neighbour- 
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hood of ov in J~4v. We may  choose J e W and put K = j r .  Since v, G, z, H belong to 

B, they are fixed by A, and A centralizes ~r. Hence l i m K  ~" = (uv)  '~ = or. For d e B n u v  

near u, the line (d,o) ~ and the point (d ,o)~AK exist, and there are points p e u v  n B  and 

q r  n B  such that  (d,o)V = (pq^K)u .  Now from ((d,o)~)A- = (do^JX , )u  we have that  

l im((d ,o) , )~-  = du = uv.  On the other hand, we obtain from ((d,o)~) x" = (pq^KA")u  

that  lim((d, o)~') ;~ = qu. This contradiction proves the proposition. [3 

Typically, Baer subplanes occur with planar involutions (see [23: 3.7] for a proof): 

(6.2)  LEMMA. Let a be an involutory  automorphism of a stable plane M = (M,  A/f). I f  

Fix (a )  contains a quadrangle, then the geometry F~ = ( f i x ( a ) , ~ ' ~ ) i n d u c e d  on Fix (a )  

is a Baer subplane. 

In the case of eight-dimensional planes, we obtain 

(6 .3)  P R O P O S I T I O N .  Let M = (M, M )  be a stable plane with d i m M  = 8. I f a  connected 

subgroup A of  Aut (M) leaves invariant a Baer subplane 8 = ( B , B )  and induces a semi- 

planar group on 8,  then A acts trivially on B, and A is a compact  abelian group with 

dim A < 1. 

Proof. According to (5.1), A acts trivially on 8. Let ( o , u , v )  be a triangle in B. The 
restriction of A to A/to is effective, and the lines that  are fixed by A form a subset home- 

omorphic with S2 in .~4o. According to Richardson's classification of actions on the 4- 

sphere [19], the group A has no orbit of dimension > 2 in .s For x e uv \ B ,  we infer that  

dim ~ t  = dim(xo)A < 1. Since (B u { z } / =  k4, this yields that  A~ = 1 and dim A _< 1. 

(6 .4)  COROLLARY.  Let A be a semi-planar group o f  an eight-dimensionM stabIe plane, 

and let a be an involution contained in A. Then the ident i ty  component  o f  the  centralizer 

CA(a) is compact ,  and dimCA(a)  _<1. 

(6 .5)  REMARK.  Let us state one of the typical applications of results on semi-planar 

groups, namely that  the dimension bound in (6.3) restricts the possibilities for semi-simple 

groups of automorphisms of eight-dimensional stable planes: If such a group centralizes 

a planar involution a,  then it acts almost effectively on F~, inducing one of the almost 

simple Lie groups listed by L6wen [10]: 

PSL3C, PSU3C, PSU3C(1), 

PSLsR, SL2C, PSL2C ~ ~4R(1) ~ SOsC, 

SU2C, SO3R, SL2R, PSL2R -~ ~3R(1), or a covering of PSL2R. 

(6 .6)  LEMMA. Let  A be a connected semi-planar group of  M, and let O = (D,:D) and 

E = (E,  C) be two A-invariant Baer subplanes such that D n E carr/es a Baer subplane o f  

D and Fix (A) c_ D n E .  Then A is abelian, and dim A _< 2. 

Proof. We may  assume that  dim M = 16. Since dim D n E _< 4, the set Fix (A) has dimen- 

sion 2 or 4 by (3.4). Thus F = (Fix(A)) equals G -- ( D n E / ,  or F is a Baer subplane 

of G. Now (6.3) yields that  A induces an abelian group of dimension < 1 on D and E, 
respectively. On the other hand, the kernel of the restriction to D acts effectively on E, and 
vice versa. Therefore A is the direct product  of these kernels, and the assertion follows. [] 

In a way, the number  of commuting involutions restrains the size and structure of compact  

(Lie) groups. Hence the following will be useful: 
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(6.7) LEMMA. Let A be a semi-planar group, and let a, f le  A be two commuting involu- 

tions. Then Fix (a) # Fix (fl), and the identity component of CA(a, fl) is an abelian group 

of dimension <_ 2. 

Proof. By (5.1), we need only consider 8- and 16-dimensional planes. But here a theorem 
by P. Smith [22] applies to the action of (a,/3) on the line pencil in some fixed point, 
namely: for l > 2, there is no action of Z2 • 72 on a homotopy 2/-sphere such that the set 
of fixed points forms an/-sphere. Now let �9 be the centralizer CA(a,/3). Then the fixed 
planes Fc~ and F~ are qbinvariant Baer subplanes, and (6.6) applies. [3 

(6.8) COROLLARY. If  a compact connected non-trlvial Lie group A _< Aut (M) acts triv- 

ially on some Baer subplane, then A is isomorphic wlth SOaR or SU2C. 

Applying this result inductively, starting from (5.1), we obtain: 

(6.9) COROLLARY. Let O be a compact Lie group of rank r > 1 acting effectively as a 

semi-planar group of a stable plane K4 = ( M,  A4 ). Then dim M >_ 2 r+a . 

The structure theorem on compact connected groups [2: App. I, no. 3, Prop. 2] provides 
the following information: For each compact connected group ~ there is an epimorphism 
~r : C • S --+ ~, where C is a compact connected abelian group, and S is a direct product of 
(possibly infinitely many) compact almost simple Lie groups. Note that the commutator 
subgroup of r equals S ~r, and that C '~ is the identity component of the center of ~. In the 
sequel, we will use this to derive information about the size and the structure of compact 
connected semi-planar groups. 

(6.10) LEMMA. Let �9 be a compact abelian semi-planar group of M = (M,  M ) .  Then 

dim ~ < �89 dim M. 
Proof. Choose a triangle (o,u,v)  in Fix(Ca). If there is a point c~uv such that the set 
F ix(~)  uc e generates M, then ~oc = ~e = ~ and d i m ~ <  �89 by (3.11). If, on the 
other hand, the set Fix(~)  uc e generates a Baer subplane for each eEuv \F ix (~ ) ,  then 
dimce < �88 dimM. Choosing d e u v  outside the subplane generated by Fix(~)  u c e, one 
infers that Ce,d = 1 and d im~ < �89 dimM. [3 

(6.11) LEMMA. Let �9 be a compact connected semi-planar group o/'M = (M, A/f). /s the 

commu{ator subgroup ~' has rank 2, then ~ = ~' ,  and �9 is isomorphic with the compact 

exceptional Lie group of type Ga(-14) ,  the group SU3C, or SO4R. 
Proof. If ~'  has rank 2, then there is a subgroup isomorphic with SOaR • SOAR. Since 
this is an abelian group of dimension 2 containing two commuting involution% the identity 
component of the center of ~ is trivial by (6.7), and �9 = ~'.  

i) Each semi-simple compact group of rank 2 is isomorphic with the compact exceptional 
Lie group of type G2(-14) or locally isomorphic with one of the groups SOsR, SU~C or 
SOdR. The two-fold coveting group Spin 4 of SOdR has three central involutions. Each of 
the groups SO5 R, SO3 R • SUn C and S03 R x SO~ R contains a pair of commuting involutions 
whose centralizer is more than 2-dimensional. By (6.7), only the case that �9 --- PSU~C 
remains to be excluded. 

( - 1 ) . S i n c e  ii) Assume that ~ _~ PSUaC. In SU~C, each involution is a conjugate of -11 

the center of SU~C has order 3, the canonical epimorphism onto �9 is a one-to-one mapping 
of the involutions. Hence the involutions of r form a single conjugacy class. Let a be an 
involution of ~, and P,T its centralizer in ~, where :E ~ SUaC is the commutator subgroup 
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and T = S02R is the center of C~(a).  Since P,T is maximal in if, the global stabilizer of 
F~ equals ST.  By (6.9) and (6.7), the group ST  induces a group isomorphic with SO3R or 
SO2R on F~. In both cases, an involution is induced on F~. Using (3.4), we infer that 
is p lan~ .  For each point z �9 Fix (a)  \ Fix (~), we obtain that Fix (if) u {z} generates Fa, 
and (~T)z equals the kernel of the action on Fa. 

iii) We determine the stabilizers of lines through a point o e Fix (if): Let L e Mo be a line 

that is moved by ~. Then there is a line H that is fixed by ff such that H meets L in a 
point z # o. Since H is fixed by ~, the stabilizer ffz = ~L has dimension >_ 1 by (3.11). 

Consequently, we may assume that a �9 f t , ,  and z �9 F~. Combining this with ii), we infer 
that each stabilizer of a line through o that is moved by ~ is a conjugate of ~L = ffz. Now 

Bredon's results [3], [4] yield that L ~ is a sphere. The exact homotopy sequence shows 
that ~rl(~) ---- 7fl(~L) = 0 ,  a contradiction. [] 

(6.12) LEMMA. Let �9 be a compact connected semi-planar group ofM = ( M , M ) .  If  

dim Z (~) # 0, then dim ~ '  < 3, and dim �9 < �89 dim M. 

Proof. By (6.10) and (6.11), we may assume that ~ '  has rank 1. Consequently, the 
group ~ '  is isomorphic with SOaR or its covering SU2C. In the first case, there are two 
commuting involutions in ~ ' .  From (6.7) we infer that d imZ(~ )  = 1, and dim~___4. 
H �9 ---- SU2C, then the involution ~r �9 ~ '  centralizes ~. Let c be a point on a line that 
is fixed by �9 such that e is moved by both ~r and the identity component of Z (~). H 
(Fix (~) uc  z(~)> = M, then ~ is trivial and dim~, < �89 d i m M  by (3.11). If, on the other 

hand, the set Fix (~) u c z(~) generates a Boer subplane B of M, then Z (~) leaves invariant 
both B and F~. According to (6.6), dim Z (~) < 2, and dim �9 < 5. [] 

(6.13) THEOREM. Let ~ be a non-trivial compact connected semi-planar group os 
stable plane M = ( M, ]vt). 

a) I f  dim M --- 8, then r _~ SOAR, ~ ~ SO2R or ~ is an abelian non-Lie group. In any 

case, dim �9 _< 3. 

b) f f  dim M = 16, then ~ is isomorphic with one of the groups 

G2(-14), SU3C, SO~R, U2C, SU~C, SOAR, SO2R • SO2R, SO2R, 
or 4~ is a non-Lie group of dimension < 7. 

Proof. The assertions for the case where d i m M  = 8 follow from (6.4), (6.9) and (6.10). If 
d i m M  = 16, combine (6.11), (6.12) and (6.7). [] 

(6.14) Remark. Note that the Lie groups listed in (6.13) are subgroups of the auto- 
morphism groups SOaR of Hamilton's quaternions and G~(-14) of Cayley's octonions, 
respectively. 

7. S E M I - P L A N A R  G R O U P S  OF E I G H T - D I M E N S I O N A L  P L A N E S .  

In this section, let M = (M, .M) be an eight-dimensional stable plane (unless stated other- 
wise), and let A be a connected semi-planar group of M, with F = (F, gV), where F = 
Fix (h). Choose a triangle (o, u, v) in F. We are going to derive a bound for the dimension 
of A. Unfortunately, this bound exceeds the bounds in the "classical situation"; i.e. our 
bound is greater than the dimension of the stabilizer of a quadrangle in the projective 
plane over Hamilton's quaternions. No example for such a semi-planar group is known, 
however. On the other hand, the bound obtained for planar groups is sharp. 
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(7 .1)  LEMMA.  Let E = ( E,  s be a proper dosed full subplane of  positive dimension with 

F c_ E.  Then dim c h -< 2 t'or each point c e E n ou. 

Proof. Since the  assert ion is t r ivial  if E = F ,  we may  assume tha t  dim F = 2 and 

dim E = 4. For  c e (E  n ou) \ F ,  we have tha t  E = ( F  u {e}), and Ac acts t r ivial ly on E. By 

(6.3), the  iden t i ty  component  of the global stabil izer AE acts tr ivial ly on E and therefore 

equals the ident i ty  component  of Ac. In lpar t ieu la r  , AE and Ac have the same dimension. 

Pu t  ~ : (E  nou)  • A --~ ou : (z, A) ~-+ z ~- . Restr ic t ing z / to  some compact  ne ighbourhood,  

we obta in  from [14: III.6] tha t  there  exists be ou such tha t  d i m b ~ -  _> d i m A  + 2 - 4 = 

d i m A  - 2, where b ' -  = ~(x ,A)  z ~-1 = b~. Now there is ~ e A  such tha t  b~e E nou ,  and 

E = ( F u  {b6}). We may  assume tha t  ~ = ~. F rom 

= I = =  ',eAE} 

we infer tha t  AE is locally homeomorphic  with bn- .  

This yields tha t  dim A~ = dim AE > dim A - 2, hence dim e ~t _< 2. [] 

(7 .2)  COROLLARY.  I f  F is contadned in some Baer subplane B of  M, then d i m A  <3. 

Proof. According to [9: 1.34], we have tha t  dim F ___ 2, and ( F  u {c}) = B for each c e B \ F .  

Now dim Ac < 1 by (6.3), and from (7.1) it follows tha t  dim A < 3. [] 

(7 .3)  P R O P O S I T I O N .  I r A  is a planar group of an eight-dimensional plane, then dim A _< 3. 

Proof.  By (7.2), we need only consider the case where F is a maximal  subplane and 

d i m F  = 2. For  each line Le,ado\Yro,  there is a line H e 5  r tha t  meets L such tha t  

L ^ H  ~ o. Since ( F u { L ^ H } )  = M, we obta in  tha t  AL = 1 and dimA_<4. If d i m A  = 4, 

we infer from (3.10) tha t  A is a Lie group containing an involution. This contradic ts  (7.2). 
[] 

(7 .4)  LEMMA.  Let ~ be a connected, non-trivial subgroup of  A. Then d i m C A ( ~ )  _<3. 

Proof. Let E = ( F i x ( ~ ) , C ) ,  and let ~' be the centr~Uzer of �9 in A. For each line 

L e A d o  \Y:o, there  is a line H e . T  tha t  meets L such tha t  LAH ~ o. By (5.2), we have 

tha t  ( F  u z ~) = M. Consequently,  the stabil izer qL is trivial,  and dim r _< 4. If d im �9 = 4, 

then (3.10) yields tha t  ~ is a Lie group containing an involut ion a .  But now F __. F~ and 

dim A _< 3, a contradict ion.  [] 

(7 .5)  P R O P O S I T I O N .  I f  A is semi-simple, then it is even almost simple, and dim A _< 3. 

Proof. If A is semi-simple,  but  not  almost  simple, then choosing a one -pa ramete r  subgroup 

P in one of the  almost  simple factors one obtains tha t  dim CA(P) _> 4 in contradic t ion  to 

(7.4). Each almost  simple group of dimension greater  than  3 contains a compact  semi- 

simple group and thus  an involution. So (7.2) proves the assertion. [] 

(7 .6)  T H E O R E M .  (Rigidi ty proper t ies  of eight-dimensional  planes) 

Let A be a non-trivial semi-planar group of  an eight-dimensional stable plane. Then 

dim A + dim Fix  (A) _< 5. 

Proof.  According to (6.3) and (7.5), we may  assume tha t  A is not semi-simple and contains 

no involutions.  Hence there is a minimal  abel ian connected normal  subgroup ;= of A. From 

the Malcev-Iwasawa theorem we infer tha t  .~. is ei ther compact  or homeomorphic  (and then 

isomorphic)  wi th  some vector  group W. In the compact  case, the ident i ty  component  of A 
acts t r ivial ly on E, and dim A _< 3 by (7.4). H .~. ~ W,  the same lemma yields tha t  t _< 3, and 
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that the centralizer CA(P) of each one-parameter subgroup P of E has dimension at most 3. 

Now CA(P) = CA(p) for each p e P \ 1, and dim A/CA(p)_< t, with equality holding only if 

A acts transitively on F~ \ 1. If t = 3, then each group acting transitively on E \ ]1 contains a 
covering group of SO3R and thus an involution. This yields that dim A < dim CA(p)+2 _< 5, 

and the theorem is proved. [] 

Combining this with (6.8), we obtain: 

(7.7) COROLLARY. Le~ A be a semi-planar group of a 16-dimensionaJ stable plane M. 

If  a semi-simple subgroup A of A leaves invariant some Baer subplane containing Fix (h) 

(in particular, if A centralizes an involution a e A), then A is the product of at most two 

almost simple factors of dimension 3. H A is not a/most simple, then at least one of the 

factors is isomorphic wi~h SU2C. 

8. S E M I - P L A N A R  G R O U P S  OF 1 6 - D I M E N S I O N A L  P L A N E S .  

In this section, let A be a connected semi-planar group of a stable plane M = (M, A4), 

where d i m M  = 16. Let V = (F ,Y)  with F = Fix(A), and let (o,u,v) be a triangle in F. 

(8.1) LEMMA. H there is a A-invariant Baer subplane B containing Fix (A), then dim A ___ 12. 
If A is a Lie group, this bound reduces ~o 8. 

Proof. The kernel K of the restriction of A to B is compact by (6.1), and d imK <_ 7. If K is 

a Lie group, we have even dim K _< 3 by (6.8). According to (7.6), the group A/K induced 
on B is at most 5-dimensional. [] 

(8.2) LEMMA. I f  there is no A-invariant Baer subplane containing Fix (A), then for each 
c e M \ F, the stabilizer Ac is a Lie group. 

Proof. According to (5.2), we have that (FocA> = M for each point c e M \ F .  Let Z be 

the center of A. Since the stabilizer Zc acts trivially on c A, we have that  Zc --- 1 and infer 

that Ac - A~/Z c = A~Z/z is a subgroup of the Lie group A/Z. [] 

(8.3) COROLLARY. I f  dim A > 12, then for each c 6 M \ F the stabilizer A~ is a Lie group. 

(8.4) LEMMA. Let �9 be a non-trivial, connected subgroup of A. Then dimCA(~) _<11, 
or dimA = 12. 

Proof. It suffices to consider the case where dim A > 12. Let c be a point that  is moved by 
~. According to (8.3), the stabilizer A~ is a Lie group. Since (CA(~))c acts trivially on 
(FocA),  we conclude that dim(CA(~))~ _<3 by (6.8), and hence dimCA(~) _<11. [] 

S e m i - s i m p l e  g roups .  

A locally compact connected group A is called semi-simple if it has no non-trivial closed 

connected abelian normal subgroup. In particular, the center of a semi-simple group has 
dimension 0. If A is semi-simple and the factor group A / Z  (A) is simple, then A is called 

almost simple. Each semi-simple group is a product of almost simple factors that centralize 
each other. 

(8.5) LEMMA. The non-compact exceptional simple reM Lie groups of type G2(2) cannot 

act as semi-planar groups. 

Proof. Such a group contains involutions whose centralizer is locally isomorphic with 
SL2R x SL2R. This contradicts (7.7). [] 
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(8.6) P R O P O S I T I O N . / f  A is almost simpIe and dimA > 10, then A is isomorphic with 

the compact exceptional simpIe Lie group of type 02(-14) .  
Proof. Each simple group of type A~ = D~ or C~ contains a semi-simple compact Lie 
group of rank 2, and the corresponding subgroups isomorphic with S02R • S02R have 
3-dimensionai centralizers. Each complex almost simple group of rank > 2 contains a 
subgroup isomorphic with C • x C • where C • is the multiplieative group of the field of 

complex numbers. So (6.7) excludes the almost simple groups A with dim A > 10, except 
the compact group of type G2(-14) and the non-compact groups of type G2(2). The latter 

cannot occur by (8.5). [] 

(8.7) LEMMA. I f  A is semi-simple, but not almost simple, then there is a factor ~ of A 

such that ~ / Z ( @ )  ~ PSL2R, or A is isomorphic with S04R. 

Proof. Assume that there is no factor t~ with ~ / Z  (~)  ---- PSL2R. Then each factor contains 

a subgroup that is locally isomorphic with SU2 C. Since these groups contain involutions, 
we obtain from (7.7) that each factor is locally isomorphic with SU2C, and (6.13) yields 

the assertion. [] 

(8.8) THEOREM. I r A  is semi-simpIe, then A - G2(-14),  or dimA _< 10. 

Proof. According to (7.7), (8.6) and (8.7), only the case remains where A = El~,,2E3E4, 
where each factor Ei is almost simple, and dim Ei = 3. According to (7.7), there is no 
A-invariant Baer subplane containing F,  and Ac is a Lie group for each c e M \ F by (8.2). 

Choose c on a line of F such that c is moved by some one-parameter subgroup P in E4, 
and put k9 = CA(P). Then dimk~ = 10, and dimk~c>_2. Since the identity component 
of ~2c is a compact connected Lie group acting trivially on the Baer subplane generated 
by F u cP~ we obtain that it is isomorphic with SU2C by (6.8). Hence at least one of the 

factors El is compact and contains an involution a. The centralizer of a in A contains a 
semi-simple group with 3 almost simple factors in contradiction to (7.7). [] 

G r o u p s  t h a t  are  not  s emi - s imple .  

Assume now that A is not semi-simple, and that d imA>12.  By definition of semi- 
simplicity, there is a non-trivial connected abelian normal subgroup E of A. Choosing 

minimal, we obtain from the Malcev-Iwasawa theorem that E is either compact or 

homeomorphic (and then isomorphic) with some vector group R t. If E is compact, the 
connected group A acts trivially on .~., and dimA _< 12 by (8.4). Hence .~ ~ R t, and by 

minimality A acts irreducibly on ~. (via conjugation). 

(8.9) LEMMA. Fix (E) = F,  aad dim F < 4. 
Proof. If d imFix(E)  - 8~ then A leaves invariant a Baer subplane, and dimA_<12 by 
(8.1), contrary to our hypotheses. If dimFix(~.) _<4, then A acts trivially on Fix(E) by 

(5.1), hence Fix (E) = F. [] 

(8.10) LEMMA. The group ~ acts freely on M \ F,  and dim E _< 7. 
Proof. For each c e M \ F ,  the stabilizer E~ acts trivially on (F u c~'). According to (5.2), 
this subplane is at least 8-dimensional, and .~ is compact by (6.1). But compact subgroups 
of E - R t are trivial, so E acts freely. The bound for the dimension of E follows from (3.10). 

[] 

For the remainder of this section, choose c e ou \ F, and let F be the identity component 
of the stabilizer A~. According to (8.3), F is a Lie group. 



Stroppel 197 

(8.11) LEMMA. I f  a and fl are two commuting involutions in F, then dim Cr (a )  _< 2, or 

Cr (a )  contains a normal subgroup that is isomorphic with SU2C, and dim Cr (a )  _< 4. 
Proof. According to (6.7), the involution /~ induces a planar involution on Ha, and 

Fix (a) n Fix (~) carries a Baer subplane D of F~. From [9: 1.34] (cf. (1.2a)) we ob- 

tain that  d i m F > 2 .  Consequently, D = (Fu{c}) .  Thus Cr (a )  acts trivially on D and 

leaves invariant Fa. The kernel K of the restriction of Cr (a )  to Fa is a compact Lie group, 

hence the identity component of K is isomorphic with S02R or SU2C by (6.8). According 
to (6.3), a group of dimension _< 1 is induced on F~. [] 

(8.12) REMARK. Note that Lemma (8.11) does not hold in general: each stabilizer of a 
quadrangle in the Moufang plane over Cayley's octonions contains a subgroup isomorphic 
with SO4R. The proof of the lemma shows, however, that this cam only occur if the 

centralizer has a set of fixed points of dimension _< 2. 

Choose a minimal connected F-invariant subgroup II of E and a non-trivial element p 

of II. For the subgroup P - R generated by p, we have that Cr(p) =: Cr(P) .  This 
group acts trivially on (F u cP). Hence the identity component @ of Cr(P)  is a subgroup 
of SU2C by (6.8), and d i r e r <  d i m C r ( p ) +  d i m I I < 3  + t_<10. On the other hand, we 
have that d imF = dimA - dim cA >_ 13 -- 8 = 5. From these bounds we obtain that 

d imII  >_ d i m P -  d imCr(p)  >_2. 

(8.13) LEMMA. dimII  >_ 4. 

Proof. Assume that p = d i m I I < 3 .  Then d imCr(p)  >5 - 3 = 2. Thus the identity 

component @ of Cr(p) is isomorphic with SU2C. If the reductive group k~ acts non- 

trivially on II, then II is the direct sum of P and some k~-invariant subspace of dimension 
> 3. This contradicts the assumption that p <_ 3. Therefore k~ centralizes If, and F/k~ acts 
almost effectively and irreducibly on II. 

If p = 3 then F / ~  cannot be solvable. We obtain that 3 = d i m P / ~  = d i m F / C r ( p ) .  

Therefore, F acts transitively on lI \ :~. This yields that F / C r ( I I  ) contains a subgroup ~] 

isomorphic with SOAR, which acts in the usual way on II ~ R s. Now d i m ~ / C $ ( p )  = 1, 

in contradiction to the fact that dim Cr(p) = 3. 

There remains the case where p -- 2 and dim F -- 5. Via the adjoint representation, 
the group �9 acts completely reducible on the Lie algebra G of F. Let C be a ~-invariant 
complement of the Lie subalgebra corresponding to ~2. Then dim C < 2, and �9 acts trivially 
on C. Consequently, the group F is the product of ~ and the identity component | of 
Cr (~) .  In particular, the central involution a of �9 lies in the center of F. Again, (9 
acts transitively on 1I\ 1. Since the centralizer Cr(p) is compact, we obtain that  (9 is 
isomorphic with the multiplicative group C • of the field of complex numbers. Therefore, 

the 5-dimensional group F contains commuting involutions and centralizes one of them. 
This contradicts (8.11). [] 

(8.14) COROLLARY. The action o f f  on II is effective. 

Proof. We have that (F u c n> = M by (7.4). [] 

Any closed connected irreducible subgroup A of GLnR is the product of its semi-simple 
commutator  group A ~ and the identity component Z of its center (see [1: Chap. I, w 

no. 4, Proposition 5]). Applying Schur's Lemma, we obtain that Z is isomorphic with a 

subgroup of the multiplicative group C x of the field of complex numbers. Therefore we 
h ave  
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(8.15) COROLLARY. The commutator subgroup F' o f f  is a semi-simple linear Lie group 

with dim F' _> 6, and the identity component Z of the center of F is isomorphic with a 

connected subgroup of C • 

(8.16) LEMMA. The commutator group F' is almost sirnple. 

Proof. Assume that  F' = Ez E2 is not almost simple. Then each of the Ei contains a 
subgroup isomorphic with SO~R. Therefore there axe commuting involutions, and El is 
isomorphic with SU2C by (8.11). But now the central involution of Ez lies in the center 

of F', in contradiction to (8.11). [] 

(8.17) LEMMA. The commutator group F' is not isomorphic with SO3C. 

Proof. We assume that F' = S03C, and consider the linear action of F' on II (via conju- 

gation). 

i) Since the involution ~ = -1 does not belong to the center of r ' ,  we conclude that 
1 

there is a non-triviai decomposition II = A O A - ,  where .4 = Cn(a)  and C~lA_ = - 1 .  There 

a r e s i m i l a r d e c ~ 1 7 6 1 7 6 1 7 6  ) a n d T = a ~ ' s i n c e - 1  

a , ~ , 7  belong to the same conjugacy class. If P = A n B  is not trivial, then the set F u c  p 
generates a Baer subplane (cf. (5.2)), and both a and ~ act trivially on this subplane. 

According to (6.7), this is impossible, and we infer that P = 1. Since a and fl commute, we 
conclude that we have the (a,fl}-invaxiant direct decomposition II = A~Bq~C, and A, B, C 

are permuted transitively by certain elements of F t (recall that a ,f l ,  7 axe conjugate). Now 
the inequality 4 _< dim II = 3 �9 dim A < 7 yields that dim II = 6. 
ii) The centralizer Cr(a)  is the product of Z and the 2-dimensional group Cr,(a) .  Since 

the identity component of Cr,(~) is abelian, we conclude from (8.11) that  dim Cr (~) ___ 2. 

Therefore Z = L 

iii) Let N be a compact normal subgroup of A such that dim N = 0 and A/N is a Lie 

group. Via the adjoint representation, the reductive group F /N  acts completely reducibly 

on the Lie algebra L of A/N. This means that there is a (vector space-) decomposition 

L = G ~ P ~ R, where G and P axe the Lie subMgebras corresponding to P /N  and I I /N  , 
respectively. From dim(G ~ P)  = d imFII  = 12 we infer that R # 0. Since Z = 1, 
the group F / N  acts non-trivially on R, and direR>_4. Now dimA -- d i m L > 1 6 ,  and 
dim c A = dim A - dim F >_ 10, a contradiction. [] 

(8.18) LEMMA. The commutator group F ~ is isomorphic with SU3C. 

Proof. The group F' is a connected almost simple linear Lie group, and 6 _< dimY' < 10. 
According to (7.7), there is no central involution. The only groups with these properties 
are SO3C --- PSL2C - ~4(1), SL3R, SU3C, PSU3C, SU3C(1), PSU3C(1), SOhR, ~5(1) 
and ~5(2). The group S03C has been excluded by (8.17). The group SOhR contains an 
involution which is centralized by S04R. Each of the non-compact groups in question 
contains a pair of commuting involutions such that one of them has a centralizer that 
does not fit the description in (8.11). Therefore all these groups are excluded, and only 

SU3C and PSUsC remain. Each linear representation of PSU3C has degree >_ 8. Thus, the 
assertion follows from (8.10). [] 

(8.19) PROPOSITION.  Let A be a connected semi-planar group of a stable plane M = 

(M, A4), where dim M = 16. I f  dim A > 12 then A is semi-simple, or A is isomorphic with 
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ASU~C (i.e. the semi-direct product of SU~C with C a, where SU3C acts in the natural 

way). 

Proof. Assume that  A is not semi-simple. There is a subgroup TI I  of A where H --- W, 

4 _< t <_ 7, and T = SU3C. Each non-trivial linear representation of SU3C has degree _> 8 or 
is equivalent to the natural representation on C 3. Therefore the action of T is equivalent to 
this representation. Let Z be the identity component of the centralizer CA(T), and let �9 be 
a subgroup of T that is isomorphic with T 2. From (6.7) we infer that Z - ]1. We consider 

the Lie group A/N (for some compact normal subgroup N such that dim N = 0). Via 
the adjoint representation, the semi-simple group T acts completely reducibly on the Lie 

algebra L of A/N and leaves invariant the subalgebras U and P corresponding to T / N  and 

H / N  , respectively. Now there is a T/N-invariant  vector space R such that L, considered 

as a vector space, is the direct sum U @ P ~ R. We infer that dim R <_ 2. Consequently, 
T / N  acts trivially on R, and R corresponds to Z. This yields that R = 0 and A --- TH. [] 

(8.20) REMARK. Using a more elaborate compactness criterion (see [21]) H. Salzmann 
excluded the group ASU3C in the case of projective planes. Our at tempts to generalize 
this criterion to the ease of stable planes did not succeed, however. 

We summarize our results. 

(8.21) THEOREM. (Rigidity properties of 16-dimensional planes) 

Let A be a semi-planar group of a stable plane M = ( M , M ) ,  where d i m M  -- 16. 

a) Either dimA _< 12, or the identity component of A is isomorphic with the compact 

exceptional Lie group of type G2(-14)  or the group ASU3C. These two groups are 

both 14-dimensionM. 

b) I f  dim Fix (A) = 8, then A is compact, and dimA <_ 7. 

e) I f  dim Fix (A) = 4, then dim A _< 11. 

Proof. i) Assertion b) follows from the compactness criterion (6.1) and (3.11). 

ii) Assume the situation of c). If there is a A-invariant Baer subplane B, then A induces 

a group of dimension _< 1 on B. The kernel of the restriction to B has dimension _< 7 by 
b). Hence we may assume that there is no such subplane. Consequently, the stabilizer A, 
is a Lie group for each x E ou \ Fix (A). Now the set Fix (A) u {~} generates a subplane E 
of dimension 8 at least, and A, acts trivially on E. By (6.8), we conclude that dim A, _< 3 
and dimA _< 11. [] 
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