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Abstract. Designing mechanical devices, called linkages, that draw a given

plane curve has been a topic that interested engineers and mathematicians
for hundreds of years, and recently also computer scientists. Already in 1876,
Kempe proposed a procedure for solving the problem in full generality, but his
constructions tend to be extremely complicated. We provide a novel algorithm
that produces much simpler linkages, but works only for parametric curves.
Our approach is to transform the problem into a factorization task over some
noncommutative algebra. We show how to compute such a factorization, and
how to use it to construct a linkage tracing a given curve.

1. Introduction

Kempe’s Universality Theorem [14], stating that any plane algebraic curve can
be drawn by a mechanical linkage with only rotational joints, surprised his con-
temporaries: his work represented a major breakthrough in a topic investigated by
mathematicians of the 19th century. In the middle of the last century, it appeared
in textbooks, for example, the ones by Lebesgue [20] and Blaschke [2]. Recently,
there was a revived interest in the problem among mathematicians and computer
scientists as we outline in the following. We would also like to mention [22] for a
historical overview and further references.

In modern terms, the procedure proposed by Kempe is a parsing algorithm. It
takes the defining polynomial of a plane curve as input and realizes arithmetic op-
erations via certain elementary linkages. In this work, we approach the question
from a different perspective. Instead of a polynomial, we start with a rational
parametrization of a curve. From this, we obtain a parametrized family of elements
of the group SE2 of direct isometries of the plane, namely a motion, whose action
on a point traces the given curve. In order to realize such a motion by a linkage, we
decompose it into a series of revolutions. By encoding motions via polynomials over
a noncommutative algebra, we reduce this task to a factorization problem. Even-
tually, we design a linkage whose rotational joints move according to the previously
obtained revolutions, yielding a device drawing the desired curve.

Requiring a rational parametrization, it is clear that our approach is less general
than Kempe’s because it cannot be applied to planar curves of positive genus. On
the other hand, the parametric setup has advantages in design processes: in the
language of robotics/kinematics, we are not just prescribing the position of the end
effector but also its orientation, in a similar way as in [25]; moreover, when one has
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to interpolate prescribed poses of the end effector, we can specify a tracing order
and have control over the speed of the motion.

Linkages obtained via Kempe’s procedure do not, in general, trace only the curve
they are designed for. More precisely, the curve is only drawn by a component
of the configuration space (also called workspace), that is, the set of all positions
reachable by the linkage. This is due to the fact that already the elementary linkages
may admit degenerate configurations, allowing the device to flip into an unwanted
component. Several solutions to this problem have been suggested [1, 6, 12, 13, 15].
The linkages produced by our method present the same issue, however, this can be
treated using the techniques presented in [1, 6]; see Remark 6.7.

Generation of linkages drawing an arbitrary curve may involve many links and
joints. This was already observed by Kempe in his foundational paper [14]: “. . .
this method would not be practically useful on account of the complexity of the link
work employed . . .”. As summarized in [6], the problem of finding upper bounds
for the number of joints needed to trace a given planar curve of degree d was first
addressed by Gao and Zhu [7, 8]. Their upper bound O(d4) was later improved
by Abbott and Barton to O(d2). Moreover, they show that this bound is optimal
in the worst case; see [1]. In this paper, we provide an algorithm that applies
to rational planar curves. Given a rational parametrization with denominator of
degree d without real roots, our algorithm produces a linkage with 4d links and
6d−2 joints (Proposition 6.8). For example, in the first part of Section 8, we apply
our technique to the parametrization of an ellipse, obtaining a linkage with 8 links
and 10 joints. In contrast, an unoptimized linkage returned by Kempe’s procedure
has 158 links and 235 joints; we are grateful to Alexander Kobel, who gave a full
implementation [16] of Kempe’s procedure using the Cinderella interactive geometry
system, for assisting us in the computation of these numbers.

In Section 2, we develop a mathematical model for linkages with only rotational
joints. In particular, we define their configuration space in terms of isometries send-
ing a fixed initial configuration to a reachable one. This differs from the commonly
used models [5, 12, 13, 15, 24].

In Section 3, we start by recalling an embedding of SE2 as an open subset of
a real projective space; see for example [11]. This allows us to introduce a non-
commutative algebra K whose multiplication corresponds to the group operation
in SE2, hence mimicking the role played by dual quaternions with respect to SE3.
More precisely, K is the even subalgebra of the Clifford algebra for SE2; see for
example [26, Section 9.2]. A polynomial with coefficients in K therefore describes a
family of direct isometries, which we call a rational motion. Consequently, we refer
to such polynomials as motion polynomials; they are the two-dimensional analogue
of the motion polynomials introduced in [10], and they are the key for turning
our geometric problem into an algebraic one. In fact, we show that linear motion
polynomials represent motions constrained by a revolute or prismatic joint. Using
the properties of the algebra K, we then deduce that a factorization of a motion
polynomial into linear factors gives rise to a decomposition of the corresponding
rational motion into simpler ones, constrained by revolute or prismatic joints.

In Section 4, we give necessary and sufficient criteria for the existence of a fac-
torization of a motion polynomial. Not every motion polynomial admits such a
factorization. However, the correspondence between motion polynomials and ratio-
nal motions is not one-to-one: for every rational motion, there is a whole equivalence
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class of motion polynomials. Moreover, the motions we are dealing with are spe-
cial, since they admit bounded orbits. Once we restrict to such bounded rational
motions, we can prove that the equivalence class of every bounded rational motion
contains a motion polynomial admitting a factorization into linear polynomials of
revolute type. We provide an algorithm for computing the smallest factorizable
polynomial in an equivalence class and one of its factorizations; see Theorem 4.15.
In this context, we would like to refer to the preprint [21], where this result is used
to show the existence of factorizations, but for motion polynomials corresponding
to rational motions in SE3.

At the beginning of Section 6, we construct from a factorization a linkage—an
open chain—such that the given rational motion can be realized as the relative
motion of the last link of the chain with respect to the first one. Open chains
have high mobility, so we have to constrain our linkage such that it performs only
the motion we are interested in. The technique we employ, called flip procedure,
is introduced in Section 5. In the remaining part of Section 6, we exploit the
properties of flips and propose our main algorithm; see Theorem 6.6.

In Section 7, we address the problem of self-collisions. For arbitrary linkages, this
is a challenging problem [5, Section 9.3]. Here, for the first time in the paper, we take
into account how linkages are physically realized. We show that self-collisions can
be efficiently detected for linkages obtained by our algorithm when links are realized
by bars. If, instead, we allow links of different shapes, we describe a construction
showing that it is possible to realize these linkages without collisions. This addresses
the open problems raised in [6, Open Problem 3.2] and [23, Section 2.3].

A popular formulation of Kempe’s Theorem states that “There is a linkage that
signs your name”. Inspired by this, in Section 8, we give an example of a linkage
drawing a calligraphic letter.

All algorithms described in the paper have been implemented by the second-
named author in the computer algebra system Mathematica. The source code, an
expository notebook, and animations for the main examples are available for free
as electronic supplementary material [17].

Here is an explanation for the fact that this contribution has six authors: we
discussed the problem of constructing linkages following a planar rational motion
in our research seminar at RICAM. After some time, the discussions and partial
solutions became the main topic of the seminar. The final result is a product
of the symbolic computation group, where each participant contributed according
to his/her own background and special skills (algebraic geometry, combinatorics,
kinematics, etc.).

2. Linkages

In this section, we define a mathematical model for kinematic objects known as
linkages. A linkage is a device constituted by rigid bodies, called links, connected
by joints, which restrict the relative position of two neighboring links. In this paper
we focus on planar linkages with revolute joints, namely linkages for which all links
move in parallel planes and whose joints allow only rotations around a point. In
our model we will not be concerned with the shape of the links—the only exception
will be Section 7—and we will suppose that joints are the only constraints for the
motion of the links. Keeping this in mind, we can represent a linkage by a graph,
whose vertices correspond to links, and where two vertices are connected by an edge
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if and only if the corresponding links are connected by a joint (for an example, see
Figure 1). We call two links neighboring if they are connected by a joint, and they
correspond to pairs of vertices connected by an edge.

J12

J23

J34

J14

J24

L1

L2 L3

L4

1

2 3

4

Figure 1. A picture of a linkage (on the left) and the correspond-
ing graph (on the right): the links L1, . . . , L4 correspond to ver-
tices, while the joints J12, . . . , J24 correspond to edges.

Since the graph does not encode how the joints constrain the motion of the links,
we need to add some extra information in order to faithfully represent a linkage.

We precede introducing this extra data with a discussion on how to describe the
configuration of a linkage, namely, the positions of all the links. There are essentially
two ways to indicate the position of a link: we can give either its absolute position
with respect to some frame of reference, or its relative position with respect to some
other link. We describe these (absolute/relative) positions by means of isometries.

Notation. We denote by SE2 the group of direct isometries of R2, i.e., maps that
preserve distances and orientation (of the standard basis of R2):

SE2 =
{
σ : R2 −→ R2 : σ is an isometry, detσ = 1

}
.

We fix an initial configuration of the linkage. Then there is a unique isometry
in SE2 that takes a certain link from its initial position to the actual one, and that
determines the absolute position of the link (see Figure 2). The relative position of
a link L2 with respect to a link L1 is defined in terms of absolute positions: if σ1

and σ2 are the isometries giving the absolute position of L1 and L2 respectively,
then the relative position of L2 with respect to L1 is given by σ2 ◦σ

−1
1 . In this way,

we have the relation (where ◦ denotes composition):

rel. pos. of L3 w.r.t. L1 = (rel. pos. of L3 w.r.t. L2) ◦ (rel. pos. of L2 w.r.t. L1).

If L1 and L2 are neighboring links, i.e., if they are connected by a joint, then the
relative position of L2 w.r.t. L1 is a rotation around a fixed point P12. The point P12

stays always the same for any configuration of the linkage, and depends only on the
joint J12 that connects L1 and L2. Hence relative positions of two neighboring links
are elements of a subgroup of SE2 that is completely specified by a single point,
the center of the rotation. Together with the previous considerations, this justifies
the following definition for a linkage.

Definition 2.1. A linkage with revolute joints is a connected undirected graph
G = (V,E), together with a map ρ : E −→ R2, such that G does not have self-
loops, i.e., all edges connect different vertices. The elements of V are called links,
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L2

L1

L2

Figure 2. The initial position of the link L2 (on the left) and
an arbitrary position (on the right): the isometry representing the
absolute position of L2 on the right is the one taking it from its
initial (dashed) position to the actual one.

while the elements of E are called joints. For a joint e ∈ E, the point ρ(e) is called
the center of rotation of e. In the following, we will always assume that V is of
the form {1, . . . , n} and that elements of E are given by unordered pairs {i, j} of
elements i, j ∈ V .

Remark 2.2. An implementation of a linkage, where links are realized by line
segments between the centers of rotation, also looks like a graph. Note that this
graph is not the same as the one in Definition 2.1, rather it is its dual.

Following our previous discussion, we model relative positions of two neighboring
links by rotations around a fixed point. We start by defining “virtual” relative
positions: the name indicates that they do not take into account all the constraints
imposed by the linkage.

Definition 2.3. Let L = (G, ρ) be a linkage, and let i, j ∈ V be links connected
by a joint e ∈ E. The set of virtual relative positions VRP(i, j) of the link i with
respect to the link j is the subgroup of SE2 of rotations around the point ρ(e).
Notice that VRP(i, j) = VRP(j, i).

We define a configuration of a linkage L as a collection of virtual relative positions
of links, satisfying the following conditions: if (i, h1), (h1, h2), . . . , (hs, i) is a directed
cycle in G, namely a sequence of pairs of links connected by a joint, starting and
ending at the same link, then the composition σi,h1 ◦ · · · ◦ σhs,i, which gives the
relative position of i with respect to itself, should be the identity.

Definition 2.4. The set of configurations of a linkage L is defined to be

Conf(L) =

{
(σk,l) ∈

∏

{i,j}∈E

VRP(i, j)×VRP(j, i) : for every directed cycle

(i, h1), (h1, h2), . . . , (hs, i) in G, we have σi,h1 ◦ · · · ◦ σhs,i = id

}
,

where
∏

denotes the Cartesian product so that (σk,l) is a tuple of size 2|E|.

This definition of configuration space is the main difference between our model
and the ones appearing in the literature [5, 12, 13, 15, 24].

Remark 2.5. The cycle conditions imposed in the definition of Conf(L) have
the following consequence: suppose that i, j ∈ V are two links connected by a
joint. Then (i, j), (j, i) is a directed cycle from i to i. Therefore if Σ = (σk,l) is a
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configuration of L, the cycle condition imposes that σi,j ◦ σj,i = id, implying that

σi,j = σ−1
j,i . Hence for every linkage L = (G, ρ), the projection

∏

{i,j}∈E

VRP(i, j)×VRP(j, i) −→
∏

{i,j}∈E
i<j

VRP(i, j)

is a bijection when restricted to Conf(L) (and an isomorphism if we consider the
projective structure on Conf(L) we will define soon), and similarly for every pro-
jection that forgets exactly one among each pair (i, j) and (j, i). Still, we chose the
above definition for Conf(L) because it does not fix an orientation of the edges,
allowing us to deal with arbitrary directed paths (see Definition 2.7).

We notice that for every i, j ∈ V connected by a joint, the subgroup VRP(i, j)
can be set-theoretically identified with the real projective line P1

R
. Under this identi-

fication, every cycle condition imposed in Definition 2.4 becomes a closed condition
in the Zariski topology, since it is given by multihomogeneous polynomials. In this
way Conf(L) acquires the structure of a projective subvariety of

(
P1
R

)
2|E|.

Definition 2.6. We define the mobility of a linkage L to be the dimension of the
configuration space Conf(L) as a projective subvariety of

(
P1
R

)
2|E|.

So far we only took into account the relative position of two neighboring links.
For our purposes, namely to construct a linkage which follows a prescribed motion,
we need to take one link (the “base”) as fixed, and consider the relative positions of
all the other links with respect to the base.

Definition 2.7. Let L = (G, ρ) be a linkage. Let Σ ∈ Conf(L) and let i, j ∈ V
be links. Let (i, h1), (h1, h2), . . . , (hs, j) be a directed path in G from i to j—which
exists, since by Definition 2.1 the graph G is connected. Then we define the relative
position of j with respect to i in the configuration Σ = (σk,l) as

RP(i, j,Σ) = σi,h1 ◦ · · · ◦ σhs,j ∈ SE2.

Notice that, because of the cycle condition, this definition is independent of the
chosen path. We define the set of relative positions of j with respect to i to be

RP(i, j) =
{
RP(i, j,Σ) : Σ ∈ Conf(L)

}
⊆ SE2.

3. Motion polynomials

As mentioned in Section 1, our goal is to reduce the main problem to an algebraic
one. We first introduce an algebraic setting for manipulating isometries, consisting
in a noncommutative R-algebra K whose multiplication corresponds to the group
operation in SE2. This is an instance of a general construction that allows to
associate a Clifford algebra to each group of isometries SEn; see for example [26,
Section 9.2]. Then we define the main object of our work, motion polynomials, as
polynomials over K.

We start by embedding SE2 in the real projective space P3
R
, with coordinates

x1, x2, y1, y2, as the open subset

U = P3
R \

{
x2
1 + x2

2 = 0
}
.

Hence U is the complement of the line x1 = x2 = 0. We do not report the explicit
equations giving the embedding, but instead describe the action of an element
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(x1 : x2 : y1 : y2) ∈ U on a point (x, y) ∈ R2:

(3.1)

(
x
y

)
7→

1

x2
1 + x2

2

[(
x2
1 − x2

2 −2x1x2

2x1x2 x2
1 − x2

2

)(
x
y

)
+

(
x1y1 − x2y2
x1y2 + x2y1

)]
.

Moreover, the group operation in SE2 becomes a bilinear map given by:

(3.2)

(x1 : x2 : y1 : y2) · (x
′
1 : x′

2 : y′1 : y′2) =
(
x1x

′
1 − x2x

′
2 : x1x

′
2 + x2x

′
1 :

x1y
′
1 + x2y

′
2 + y1x

′
1 − y2x

′
2 :

x1y
′
2 − x2y

′
1 + y1x

′
2 + y2x

′
1

)
,

where (x1 : x2 : y1 : y2) and (x′
1 : x′

2 : y′1 : y′2) represent two direct isometries
σ, σ′ ∈ SE2, respectively.

For an easier handling of the multiplication in this embedding of SE2, we in-
troduce the following notation: we write a representative (x1 : x2 : y1 : y2) of an
element of SE2 as a pair (z, w) ∈ C2, where z = x1 + ı x2 and w = y1 + ı y2 (here ı
is the imaginary unit). Then Equation (3.2) can be rewritten concisely as

(3.3) (z, w) · (z′, w′) =
(
z z′, z w′ + z′ w

)

where z, z′, w and w′ are multiplied as complex numbers, and the bar (·) is complex
conjugation. We can go further, by writing a pair (z, w) in the form z + η w, and
by postulating that η satisfies the two relations:

z η = η z for all z ∈ C and η2 = 0.

Then the multiplication we obtain is exactly the one described in Equation (3.3):

(z + η w) · (z′ + η w′) = z z′ + η
(
z w′ + z′ w

)
.

Definition 3.1. We define the R-algebra

K = C[η]/(η2, ı η + η ı).

Based on the previous discussions, we can identify elements of K with elements
of SE2. In this way the projective space P3

R
in which we embed SE2 can be thought

as the projectivization P(K) of K, considered as an R-vector space.

Notice that the algebra K is constructed in such a way that its multiplication is
a lift of the group operation of SE2: this means that if two isometries σ1, σ2 ∈ SE2

are represented by k1, k2 ∈ K, then σ1 ◦σ2 is represented by k1 · k2. More precisely,
one can prove that K is isomorphic to the even subalgebra Cℓ+(0, 2, 1) of the Clifford
algebra Cℓ(0, 2, 1) of SE2; see [26, Section 9.2].

Remark 3.2. Looking at the construction of the algebra K, we notice that the
condition x2

1+x2
2 6= 0 for points in P3

R
representing isometries in SE2 becomes z 6= 0

when we consider elements of K. Moreover, the identity isometry is represented
in P3

R
by the point (1 : 0 : 0 : 0), hence by any purely real element of K, namely

elements of the form z + η w with z ∈ R and w = 0. From this we see that, given
k = z+η w ∈ K representing an isometry σ ∈ SE2, then k′ = z−η w represents σ−1,
since the product k k′ equals |z|2, which is purely real.

The following lemma characterizes simple subgroups of SE2 in a geometric fash-
ion: it shows that both translational and revolute motions correspond to lines in P3

R
.

Lemma 3.3. Let ℓ ⊆ P3
R

be a projective line passing through the point (1 : 0 : 0 : 0),
and define ℓU = ℓ ∩ U . Let X = ℓ ∩

{
x1 = x2 = 0

}
. Then:
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(1) if X has cardinality 1, then ℓU corresponds to a subgroup of SE2 that consists
of all translations along a fixed common direction;

(2) if X is empty, then ℓU corresponds to a subgroup of SE2 that consists of all
rotations around a fixed common point.

Proof. We analyze the two cases separately.
Ad (1): By hypothesis we have that (1 : 0 : 0 : 0) ∈ ℓ and (0 : 0 : a : b) ∈ X ⊂ ℓ for
some a, b ∈ R, not both zero. Hence the line ℓ admits the parametrization:

(λ : 0 : aµ : bµ), for (λ : µ) ∈ P1
R.

Plugging this parametrization into Equation (3.1), we see that the elements of ℓU
are translations by the vector µ/λ (a, b).
Ad (2): Again by hypothesis we have that (1 : 0 : 0 : 0) ∈ ℓ; moreover there exists
a point in ℓ which is of the form (0 : a : b : c). Since X is assumed to be empty, we
have a 6= 0, and hence the line ℓ admits the parametrization:

(λ : aµ : bµ : cµ), for (λ : µ) ∈ P1
R.

Equation (3.1) is now used to compute the fixed points of an arbitrary element of ℓ.
A direct calculation reveals that we always obtain the point (−c/2a, b/2a), which is
independent of λ and µ. Thus every element of ℓU represents a rotation around
that point. �

The description of revolutions around a point given by Lemma 3.3 enables us to
compute effectively the configuration curve of a linkage, as shown in Example 3.4.

Example 3.4. Let us consider the linkage L whose graph is depicted in Figure 3.
The linkage L is given by 4 links and 4 joints, and the map ρ is determined by:

ρ(1, 2) = u1 = (0,−3/2) ,
ρ(2, 3) = u3 = (−3/4, 9/2) ,
ρ(3, 4) = u4 = (−1, 13/2) ,
ρ(4, 1) = u2 = (−1/4, 1/2) .

1

2 3

4

u1

u3

u4

u2

Figure 3. Graph of a linkage constituted by 4 links and 4 joints,
a so-called closed 4R-linkage. The edges are labeled by points ui

in R2 that are the images of the edges under the map ρ.

We compute the configuration set of L and its dimension as a projective variety.
Since we have 4 joints, it will be a projective subvariety of

(
P1
R

)
4 (here, rather than

Conf(L), we are considering one of its projections, but as noticed in Remark 2.5 we
get an isomorphic object). In order to do so, we use the structure of projective lines
of the subgroups of SE2 of rotations around a fixed point ensured by Lemma 3.3.
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One can explicitly compute a parametrization for each line ℓi ⊆ P3
R

corresponding
to rotations around ui for all i ∈ {1, . . . , 4}, obtaining:

center parametrization of line
(0,−3/2) (λ1 : µ1 : −3µ1 : 0)
(−3/4, 9/2) (λ3 : 2µ3 : 18µ3 : 3µ3)
(−1, 13/2) (λ4 : µ4 : 13µ4 : 2µ4)
(−1/4, 1/2) (λ2 : 2µ2 : 2µ2 : µ2)

where (λi : µi) ∈ P1
R

for all i ∈ {1, . . . , 4}. Notice that, in accordance with
Lemma 3.3, none of the lines ℓi intersects the line {x1 = x2 = 0}. Recall from Def-
inition 2.4 that, in this case, a configuration for L is a 4-tuple (σ1,2, σ2,3, σ3,4, σ4,1)
of direct isometries that satisfies the cycle condition σ1,2 ◦ σ2,3 ◦ σ3,4 ◦ σ4,1 = id.
Each of the isometries σk,l gives a point on one line ℓi, and in our projective model
of SE2 composition corresponds to multiplication according to Equation (3.2). If
we perform these computations, we see that the composition σ1,2 ◦ σ2,3 ◦ σ3,4 ◦ σ4,1

corresponds to a point (F1 : F2 : F3 : F4) ∈ P3
R
, where all Fi are multihomogeneous

polynomials in the variables (λ1 : µ1), . . . , (λ4 : µ4) of multidegree (1, 1, 1, 1). Notic-
ing that the identity element of SE2 is represented by the point (1 : 0 : 0 : 0) ∈ P3

R
,

one realizes that the cycle condition is equivalent to

rk

(
F1 F2 F3 F4

1 0 0 0

)
= 1.

Hence, as a subvariety of
(
P1
R

)
4, the configuration set Conf(L) is given by the zero

set of the polynomials F2, F3, F4. A computer algebra computation shows that this
is a one-dimensional variety with two components.

We introduce now one of the main concepts of this paper, namely the notion of
motion polynomial. Intuitively, a motion can be described as a curve in the space
of direct isometries. In our case, we want such a curve to be defined by a rational
parametrization.

Definition 3.5. A rational motion is a map φ : R −→ P3
R

given by four polynomials
X1, X2, Y1, Y2 ∈ R[t] such that X2

1 +X2
2 is not identically zero.

Notice that, as a function between algebraic varieties, a rational motion is in
particular a rational map, not defined on the set of common zeros of the polynomials
X1, X2, Y1 and Y2. Moreover, taking into account the projective model of SE2 we
introduced, the condition on X2

1 +X2
2 ensures that for all but finitely many t ∈ R

we have φ(t) ∈ SE2.

Definition 3.6. Let φ be a rational motion given by (X1, X2, Y1, Y2). The polyno-
mial P (t) = Z(t)+ ηW (t) ∈ K[t], where Z = X1 + ıX2 and W = Y1 + ıY2, is called
a motion polynomial encoding the motion φ. The polynomials Z and W are respec-
tively called the primal and secondary part of P , denoted by pp(P ) resp. sp(P ).

Next we want to connect motion polynomials with rational curves. For this
purpose it is helpful to rephrase the action of SE2 on R2 shown in Equation (3.1) in
the following way: we identify a point (x, y) ∈ R2 with the element u = x+ ıy ∈ C;
if σ ∈ SE2 is represented by an element z + η w ∈ K, then the action of σ on u is
given by

uz+η w =
u z2 + zw

|z|2
.
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Using this formulation of the action, it is easy to prove the following result.

Proposition 3.7. Let ϕ : R −→ R2 be a rational parametrization of a real curve,
which means that ϕ is of the form

ϕ(t) =

(
f(t)

h(t)
,
g(t)

h(t)

)

for some real polynomials f, g and h. Then the orbit of the origin under the motion
given by the motion polynomial P = h+ η (f + ıg) is exactly the image of ϕ.

Let P1 and P2 be two motion polynomials. Because of the algebraic properties
of K, the polynomial P = P1P2 defines a motion that is the composition of the mo-
tions determined by P1 and P2. More precisely, for every t ∈ R, the isometry P (t)
is the composition of the isometries P1(t) and P2(t). This shows how important
the factorization of a motion polynomial is in our framework: it provides a decom-
position of a motion into simpler ones.

We saw in Lemma 3.3 that rational motions whose image is a line in P3
R

are
translational motions or revolutions. Hence linear motion polynomials encode this
kind of motions. It follows that, if we are able to factor a motion polynomial into
linear ones, then we can decompose a rational motion into revolutions and trans-
lational motions. Later we will consider a suitable subclass of motion polynomials,
so that only the first situation occurs.

Remark 3.8. Let φ : R −→ P3
R

be a rational motion and let P (t) ∈ K[t] be the
corresponding motion polynomial, so P = Z + ηW with Z,W ∈ C[t]. We notice
that, although Z and W have coefficients in C, the polynomial P gives by definition
a real curve in P3

R
, namely a curve described by real equations. Therefore, if R ∈ R[t]

is a nonzero real polynomial, then one can check that RP ∈ K[t] provides the same
curve in P3

R
as P .

Example 3.9. The rational motion given by the polynomial t + η is a vertical
translational motion. Indeed, its image in P3

R
is parametrized by (λ : 0 : µ : 0), so

that we are in case 1 of Lemma 3.3. In contrast, the motion polynomial P (t) =
t + ı gives a revolution around the origin (0, 0). This is an instance of case 2 of
Lemma 3.3, using the parametrization (λ : µ : 0 : 0).

Example 3.10. Consider the following product of two linear motion polynomials:

(t+ ı)︸ ︷︷ ︸
rotation around

a point

· (t− ı+ η)︸ ︷︷ ︸
rotation in the opposite

sense, around another point

= (t2 + 1) + η (t− ı).︸ ︷︷ ︸
this is a translation, since

there is no imaginary part in t2+1

In this case the translational vector is given by 1
t2+1 (t,−1). This vector changes

with t and describes a circle. Hence we get a circular translation (see Figure 4).

In Example 3.10, we see that the factorization of a motion polynomial into linear
polynomials provides a decomposition of the described motion into revolutions.
However, in Example 3.11 we see that this is not always possible.

Example 3.11. Let us consider an elliptic translational motion:

P (t) = (t2 + 1) + η (at− bı), a, b ∈ R.

We try to factor P into two linear polynomials P1, P2 ∈ K[t]. First notice that the
primal parts of P1 and P2 should be factors of (t2 + 1), so they have to be of the
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t=±∞

t=1

t=0

t=−1

Figure 4. The trace of the point (0, 0) under the circular transla-
tion given by the motion polynomial (t2 +1)+ η (t− ı) is depicted
via a dashed line. The action of the motion on the black triangle
highlights the fact that we have a purely translational motion.

form t± ı. Thus we have only two possibilities:
{

pp(P1) = t+ ı
pp(P2) = t− ı

{
pp(P1) = t− ı
pp(P2) = t+ ı

By a direct computation one can prove that none of those two choices gives a
factorization if a 6= b, thus P cannot be factored into linear polynomials.

On the other hand, we show now that if we multiply P by a real polynomial R
we can achieve a factorization. Recall that, by Remark 3.8, the polynomials P
and RP describe the same motion. In this case we take R = t2 +1. Hence we need
four linear polynomials P1, . . . , P4 to factorize RP , and again pp(Pi) = t ± ı. We
make the following ansatz:

(3.4)
P1 = (t− ı) + η w1,
P2 = (t+ ı) + η w2,

P3 = (t+ ı) + η w3,
P4 = (t− ı) + η w4.

Imposing P1 · · ·P4 = RP gives a linear system in the wi, namely:

(3.5)

{
w1 + w2 + w3 + w4 = a,
w1 + w2 − w3 − w4 = b.

Each solution of the system 3.5gives rise to a factorization of the polynomial RP .
If, instead, we take the following ansatz:

P1 = (t+ ı) + η w1,
P2 = (t− ı) + η w2,

P3 = (t+ ı) + η w3,
P4 = (t− ı) + η w4.

one can check that the corresponding linear system does not admit any solution.

In the next section, we consider the factorization problem in a more systematic
way. We will see that, once we restrict to a certain class of motion polynomials, all
situations can be treated as we did in Example 3.11: in general a motion polyno-
mial P cannot be factored into linear polynomials in K[t], but it is always possible
to find a real polynomial R such that RP can be factored.

We end this section by defining precisely what we mean by saying that a linkage
realizes a given rational motion. Recall from Definition 2.7 that, given two links i
and j of a linkage L, we can define the set RP(i, j) of relative positions of the link j
with respect to the link i, and this is a subset of SE2. Furthermore, recall that the
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set Conf(L) of configurations of L has the structure of a real projective variety. We
are going to use some concepts and results coming from real algebraic geometry:

(i) every projective space Pn
R

is a real affine variety, namely there exists an
embedding ξ : Pn

R
→֒ Rk for some k ∈ N, and ξ

(
Pn
R

)
is the zero set of a

collection of real polynomials; see for example [3, Theorem 3.4.4];
(ii) a subset X ⊆ Rk is called semialgebraic if it can be described as the set of

points satisfying a disjunction of conjunctions of polynomial equalities and
inequalities; see for example [3, Definition 2.1.4];

(iii) a subset X ⊆ Pn
R

is called semialgebraic if its image under any embedding
ξ : Pn

R
→֒ Rk as in (i) is a semialgebraic set in the sense of (ii).

Lemma 3.12. Let L be a linkage and let i, j be links of L. Then, under the
projective embedding of SE2, the set RP(i, j) becomes a semialgebraic subset of SE2.

Proof. Let (i, h1), . . . , (hs, j) be any directed path from i to j. Consider the map
F : Conf(L) −→ SE2 sending a configuration Σ = (σk,l) to σi,h1

◦· · ·◦σhs,j . One can
check that RP(i, j) coincides with F (Conf(L)). Moreover, if we write the map F
in terms of the projective coordinates of Conf(L) and SE2, then F is given by real
polynomials. Hence, because of a general result in real algebraic geometry (see for
example [3, Theorem 1.4.2]), the set RP(i, j) is semialgebraic. �

In the following definition, and later in this paper, the word “component” will
always stand for “irreducible component” with respect to the Zariski topology.

Definition 3.13. Let L be a linkage and let φ : R −→ P3
R

be a rational motion.
We say that

(1) L weakly realizes the motion φ if there exist links i and j of L such that
φ(R) ⊆ RP(i, j).

(2) L strongly realizes the motion φ if there exist links i and j of L such that

φ(R) ⊆ RP(i, j) and φ(R) is a component of RP(i, j), where (·) denotes the
Zariski closure in RP(i, j).

Remark 3.14. Notice that in case 2 of Definition 3.13 we allow the given variety
of relative positions to have several components, and we ask that only one of them
coincides with the Zariski closure of the image of the given rational motion, which is
irreducible by construction. This situation occurs in the example given on the right
of Figure 5, since the variety of relative positions between base and end effector has
two components (see Lemma 5.5).

4. Factorization of motion polynomials

Motivated by the considerations we made in the previous section, we address
the problem of factorizing a motion polynomial P = Z + ηW ∈ K[t] into linear
factors. We restrict our attention to monic polynomials, i.e., to polynomials P
whose leading coefficient is 1, which implies that degW < degZ.

Given a monic polynomial P ∈ K[t], our ultimate goal is to write it in the form
P = P1 · · ·Pn, where n = degP and degPi = 1 for all i. If P = Z + ηW and
Pi = Zi+ηWi, then Z = Z1 · · ·Zn. Hence the primal part of each Pi has to be one
of the linear factors of the factorization of Z over C[t]. We start by a few definitions
and results characterizing monic motion polynomials that split into linear factors.
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Figure 5. Two linkages that both realize the motion given by(
t+ ı− 3η

)
·
(
t+ 2ı+ η(18 + 3ı)

)
, discussed in Example 3.4. The

base is painted in black and the end effector in white. The depicted
position is reached at t = −2. The linkage on the left has two
degrees of freedom and thus weakly realizes the given motion as
the relative position between base and end effector. The linkage
on the right has mobility one and provides a strong realization of
this motion.

Definition 4.1. Let z = (z1, . . . , zn) ∈ Cn. We define the following polynomials:

Qi(z) = (t− z1) · · · (t− zi−1)(t− zi+1) · · · (t− zn) for i ∈ {1, . . . , n}.

Hence we have that degQi(z) = n− 1 for all i.

Remark 4.2. Let Z ∈ C[t] and let z = (z1, . . . , zn) be a fixed permutation of the
roots of Z. Then the polynomials Qi(z) have a non-trivial gcd if and only if the
polynomial Z admits a pair of complex-conjugate roots α and α (this includes the
case of multiple real roots).

Lemma 4.3. Let P = Z + ηW ∈ K[t] be a monic motion polynomial, and let
z = (z1, . . . , zn) be a fixed permutation of the roots of Z over C. Then P admits
a factorization P = P1 · · ·Pn, where Pi(t) = (t − zi) + η wi with wi ∈ C, if and
only if W lies in

〈
Q1(z), . . . , Qn(z)

〉
C
, i.e., in the C-linear span of the polynomials

Q1(z), . . . , Qn(z).

Proof. Suppose that P ∈ K[t] admits a factorization into linear factors:

P (t) =
n∏

i=1

(t− zi + ηwi) =
n∏

i=1

(t− zi) + η
n∑

k=1

( k−1∏

j=1

(t− zj)

)( n∏

j=k+1

(t− zj)

)

︸ ︷︷ ︸
= Qk(z)

wk.

Such a factorization exists if and only if we can choose w1, . . . , wn ∈ C such that∑n
k=1 wkQk(z) matches the prescribed η-part of P (t) = Z(t) + ηW (t), namely if

and only if W ∈
〈
Q1(z), . . . , Qn(z)

〉
C
. �

Lemma 4.4. Let P ∈ K[t] be a monic motion polynomial and suppose that Z =
pp(P ) has no pair of complex-conjugate roots. Then for every permutation z =
(z1, . . . , zn) of the roots of Z, the polynomial P admits a factorization P = P1 · · ·Pn

with pp(Pi) = t− zi for all i.
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Proof. We fix a permutation z of the roots of Z, and we denote Qk = Qk(z) for
all k. From Lemma 4.3, we know that P = Z + ηW admits a factorization if and
only if W ∈

〈
Q1, . . . , Qn

〉
C
. Clearly, this is always possible (for arbitrary W ) if the

following matrix Mn ∈ Cn×n is non-singular:

Mn =




〈t0〉Q1 · · · 〈t0〉Qn

〈t1〉Q1 · · · 〈t1〉Qn

...
...

〈tn−1〉Q1 · · · 〈tn−1〉Qn


 .

Here 〈ti〉Qk denotes the coefficient of ti in the polynomial Qk. Notice that the
matrix entries are, up to sign, elementary symmetric polynomials in the zi and zi.
We now exhibit that the determinant of Mn is nonzero under the assumptions on
the roots of Z. Indeed, we find that

(4.1) det(Mn) =
∏

1≤i<j≤n

(
zi − zj

)
,

which follows, as a special case, from Lemma 3 in [18] (by substituting Ak = −zk,
Bk = −zk−1, and by extracting the coefficient of

∏n
i=1 X

i−1
i ). A similar deter-

minant evaluation is given in [19] where the zi appear without conjugation. Since
det(Mn) is very much reminiscent of the Vandermonde determinant, it is no surprise
that (4.1) can also be proved in an analogous fashion. �

Corollary 4.5. Let z = (z1, . . . , zn) ∈ Cn such that gcd
(
Q1(z), . . . , Qn(z)

)
= 1.

Then 〈
Q1(z), . . . , Qn(z)

〉
C

=
{
W ∈ C[t] : deg(W ) < n

}
.

Proof. The gcd condition implies that z has no pair of complex-conjugate roots, as
noticed in Remark 4.2. The statement is then a direct consequence of Lemma 4.3
and Lemma 4.4. �

Since the gcd of the polynomials Qi(z) introduced in Definition 4.1 plays an
important role for the factorization of motion polynomials, we make some effort to
describe it precisely (Lemma 4.6, Corollary 4.7, Proposition 4.10); for this purpose
the combinatorial notion of matching will be introduced. At the same time we aim
at a nicer characterization of those secondary parts in Lemma 4.3 that ensure the
existence of a factorization; the result is presented in Proposition 4.12. To simplify
the proofs of Propositions 4.10 and 4.12, we formulate the somewhat technical
Lemma 4.9.

Lemma 4.6. Let α, β ∈ C with α 6= β 6= α, and let z = (z1, . . . , zn) ∈ Cn and z̃ =
(z1, . . . , zj−1, β, zj , . . . , zn) ∈ Cn+1 for some j ∈ {1, . . . , n+1}. Then the multiplic-
ities of the roots α and α in gcd

(
Q1(z), . . . , Qn(z)

)
and in gcd

(
Q1(z̃), . . . , Qn+1(z̃)

)

are the same.

Proof. First observe that Qk(z) and Qℓ(z̃) have the same multiplicities of α and α,
where ℓ = k if k < j and ℓ = k+1 if k ≥ j. On the other hand, the polynomial Qj(z̃)
has no such counterpart among the Qk(z), but its multiplicities of α and α are
greater than or equal to those in its (one or two) neighbors Qj−1(z̃) and Qj+1(z̃).
The claim follows. �
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Corollary 4.7. Let x ∈ Cm and y ∈ Cn with xi 6= yj 6= xi for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n. If z ∈ Cm+n is an arbitrary interlacement of x and y, i.e.,
there are 1 ≤ i1 ≤ · · · ≤ im ≤ m + n and 1 ≤ j1 ≤ · · · ≤ jn ≤ m + n with
{i1, . . . , im} ∩ {j1, . . . , jn} = ∅ such that zik = xk, 1 ≤ k ≤ m, and zjk = yk,
1 ≤ k ≤ n, then

gcd
(
Q1(z), . . . , Qm+n(z)

)
= gcd

(
Q1(x), . . . , Qm(x)

)
· gcd

(
Q1(y), . . . , Qn(y)

)
.

Proof. This is a direct consequence of Lemma 4.6. �

Definition 4.8. Let z = (z1, . . . , zn) ∈ Cn. A set

M ⊆
{
(i, j) : 1 ≤ i < j ≤ n and zi = zj

}

is called a matching of z if for all (i1, j1), (i2, j2) ∈ M we have i1 6= i2 and j1 6= j2.
(Note that for each z ∈ Cn there is a bipartite graph with at most 2n− 2 vertices
such that the matchings in that graph and the matchings of z are in bijection.)

Lemma 4.9. Let z = (z1, . . . , zn) ∈ Cn, let G = gcd
(
Q1(z), . . . , Qn(z)

)
, and let

g = degG. For a matching M of z define H(M) :=
∏

(i,j)∈M (t − zj). Then the

following statements hold:

(1) For any matching M of z we have H(M) | G.
(2) There is a matching M of z such that H(M) = G.
(3) There are indices 1 ≤ i1 ≤ · · · ≤ in−g ≤ n such that, setting z̃ =(

zi1 , . . . , zin−g

)
, we have Qk(z̃) = Qik(z)/G for all 1 ≤ k ≤ n − g and

gcd
(
Q1(z̃), . . . , Qn−g(z̃)

)
= 1.

Proof. For (1) we show that H(M) divides Qk(z) for any matching M of z and for
any k ∈ {1, . . . , n}. Indeed, by rewriting

H(M) =
∏

(i,j)∈M

(t− zj) =

( ∏

(i,j)∈M
j>k

(t− zj)

)( ∏

(i,j)∈M
j≤k

(t− zi)

)

the claim follows, since Qk(z) has precisely the roots z1, . . . , zk−1, zk+1, . . . , zn.
For (2) and (3) note that the statements trivially hold for G = 1, so we assume

now that G 6= 1. Using Corollary 4.7 the proof is reduced to the case where
z ∈ {α, α}n for some α ∈ C. If α ∈ R then we have Q1(z) = · · · = Qn(z) =
(t − α)n−1 = G and we can choose M = {(1, 2), (2, 3), . . . , (n − 1, n)} and ik = k
for 1 ≤ k < n. Hence from now on we assume α 6= α.

Both assertions (2) and (3) are proved in parallel by an inductive argument on
the degree of G, so in the following we show how to reduce the given scenario to one
with smaller g. The main difficulty here is to pick an index j such that deleting zj
from z yields a gcd of smaller degree. We distinguish three cases and assume w.l.o.g.
that zn = α (case A) resp. z1 = α (cases B and C).

Case A: There exists an index j such that #α(zj , . . . , zn) ≤ #α(zj , . . . , zn)
where #α denotes the number of occurrences of α. In this situation we set z̃ =

(z1, . . . , zn−1) and G̃ = gcd
(
Q1(z̃), . . . , Qn−1(z̃)

)
. By induction hypothesis there

exists a matching M̃ for z̃ such that H(M̃) = G̃. Because of the assumption on
the number of α’s and α’s, there must be an index i ∈ {j, . . . , n − 1} with zi = α

that does not occur as the first entry of any pair in M̃ . Hence M := M̃ ∪ {(i, n)}

is a matching for z and we have H(M) = (t − α)H(M̃). Since by (1) we have
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H(M) | G, we obtain (t− α)G̃ | G. Next observe that Qk(z̃) = Qk(z)/(t− zn) for
all 1 ≤ k < n and hence

G̃ = gcd
(
Q1(z̃), . . . , Qn−1(z̃)

)
=

1

t− α
gcd

(
Q1(z), . . . , Qn−1(z)

)
.

From the definition of G it follows that G | (t−α)G̃, and thus G = (t−α)G̃ = H(M).

Case B: There exists an index j such #α(z1, . . . , zj) ≤ #α(z1, . . . , zj). The
reasoning in this case is completely analogous to case A, setting z̃ = (z2, . . . , zn).

Case C: Neither case A nor case B applies, which means that for all indices j we
have #α(z1, . . . , zj) > #α(z1, . . . , zj) and #α(zj , . . . , zn) > #α(zj , . . . , zn). Note
that in this situation we automatically have z1 = zn, which w.l.o.g. we assumed to
be α. Now there exists no entry in z whose removal would yield a gcd of degree
degG − 1. We circumvent this problem by setting z̃ = (z1, . . . , zj−1, zj+2, . . . , zn)
where j is the largest index such that zj = α; in particular j < n. The rest
is analogous to the previous reasoning. As before, we may assume that there

exists a matching M̃ of z̃ with H(M̃) = G̃ = gcd
(
Q1(z̃), . . . , Qn−2(z̃)

)
. Since

#α(z1, . . . , zj) > #α(z1, . . . , zj) there exists an index i < j with zi = α such that

i does not appear as the first entry of any pair in M̃ . In order to extend M̃ to
a matching for z we need some relabeling; for this purpose we define τ(a) = a if
a < j and τ(a) = a+ 2 otherwise. Then

M :=
{(

τ(a), τ(b)
)
| (a, b) ∈ M̃

}
∪ {(i, j), (j, j + 1)}

is a matching for z and H(M) = (t − α)(t − α)H(M̃); hence (t − α)(t − α)G̃ | G.
A simple calculation shows that Qk(z̃) = Qk(z)/

(
(t−α)(t−α)

)
for k < j and that

Qk(z̃) = Qk+2(z)/
(
(t− α)(t− α)

)
for k ≥ j. Thus we get

G̃ =
1

(t− α)(t− α)
gcd

(
Q1(z), . . . , Qj−1(z), Qj+2(z), . . . , Qn(z)

)
.

Again, this is sufficient to conclude that G = (t − α)(t − α)G̃ = H(M), which
concludes the proof. �

Proposition 4.10. Let z = (z1, . . . , zn) ∈ Cn and let M be a matching of z of
maximal size, and let Q1(z), . . . , Qn(z) be as in Definition 4.1. Then we have

G := gcd
(
Q1(z), . . . , Qn(z)

)
=

∏

(i,j)∈M

(t− zj)

(where the gcd is assumed to be a monic polynomial).

Proof. In Lemma 4.9 part (1) it was shown that the product on the right-hand
side, which we denoted by H(M), divides G for any matching M . For the other
direction we have to argue that the maximality of M implies that G | H(M),
or equivalently, that G ∤ H(M) implies that M is not maximal. From Lemma 4.9
part (2) it follows that there exists a matching M ′ of z such that H(M ′) = G. Note
that |M ′| = deg(G). Thus, if G ∤ H(M), which means that deg(H(M)) < deg(G),
then M is not maximal because |M | < |M ′|. �

Example 4.11. Let Z = (t − α)r(t − α)r+1 for some α ∈ C \ R. In the following
table we consider different permutations z ∈ {α, α}2r+1 of the roots of Z; to each
permutation we give the gcd G = gcd

(
Q1(z), . . . , Qn(z)

)
and a matching M of

maximal size that witnesses G:
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permutation G M

(α, . . . , α, α, . . . , α) (t− α)r {(1, r + 1), (2, r + 2), . . . , (r, 2r)}
(α, . . . , α, α, . . . , α) (t− α)r {(1, r + 2), (2, r + 3), . . . , (r, 2r + 1)}
(α, α, α, α, . . . , α, α) (t− α)r(t− α)r {(1, 2), (2, 3), . . . , (2r, 2r + 1)}

The cases displayed above are the extreme ones: indeed, it is easy to see that
r ≤ deg(G) ≤ 2r. Moreover, for any G = (t − α)i(t − α)j with 0 ≤ i, j ≤ r
and i + j ≥ r there exists a permutation z that produces exactly this gcd G.
These considerations lead to interesting combinatorial questions—e.g., how many
permutations of a given set of roots are there that produce a prescribed gcd—which,
however, are irrelevant for our purposes.

Proposition 4.12. Let z = (z1, . . . , zn) ∈ Cn and W ∈ C[t] with degW < n.
Then

W ∈
〈
Q1(z), . . . , Qn(z)

〉
C

⇐⇒ W ∈
(
Q1(z), . . . , Qn(z)

)
· C[t],

where
(
Q1(z), . . . , Qn(z)

)
· C[t] is the ideal of C[t] generated by Q1(z), . . . , Qn(z).

Proof. The claim is equivalent to the following statement:

(4.2)
〈
Q1(z), . . . , Qn(z)

〉
C

=
(
Q1(z), . . . , Qn(z)

)
· C[t] ∩ C[t]<n,

where C[t]<n denotes the set of complex polynomials of degree less than n. Note
that the containment “⊆” is trivial. Let G = gcd (Q1(z), . . . , Qn(z)). If G = 1,
then by Corollary 4.5 we have

〈
Q1(z), . . . , Qn(z)

〉
C
= C[t]<n, which implies Equa-

tion (4.2). On the other hand, if G is non-trivial, Equation (4.2) is equivalent to

(4.3)
〈
Q̃1, . . . , Q̃n

〉
C

=
(
Q̃1, . . . , Q̃n

)
· C[t] ∩ C[t]<n−g,

where Q̃i = Qi(z)/G and g = degG. By Lemma 4.9 part (3), there exists z̃ =

(zi1 , . . . , zin−g
) such that gcd

(
Q1(z̃), . . . , Qn−g(z̃)

)
= 1, and Qk(z̃) = Q̃ik for all k.

Hence, by Corollary 4.5 we have
〈
Q1(z̃), . . . , Qn−g(z̃)

〉
C
= C[t]<n−g. This implies

Equation (4.3), since
〈
Q1(z̃), . . . , Qn−g(z̃)

〉
C

⊆
〈
Q̃1, . . . , Q̃n

〉
C
. �

Recall that our goal is to decompose a given motion into a sequence of revolu-
tions, by factorizing a corresponding motion polynomial. For this purpose we have
to restrict the domain of motion polynomials we are working with: for example,
there is no hope to write a motion whose orbits are unbounded as the composition
of revolutions, since the orbits of revolutions are always bounded. In particular, if
we consider a rational bounded curve, then it can be given by a parametrization
ϕ = (f/h, g/h) for some real polynomials f, g and h with deg h ≥ max{deg f, deg g}.
The boundedness of the curve implies that h has no real roots. The limit of ϕ(t)
for t → ∞ gives a point in R2, which can be translated to the origin. Then we even
have deg h > max{deg f, deg g}. If we further assume that h is monic, then also
the motion polynomial P = h+η (f + ıg) is monic, and by Proposition 3.7 it traces
the image of ϕ. This motivates the following definition.

Definition 4.13. Let P = Z+ηW be a motion polynomial in K[t]. We say that P
is bounded if it is monic and if Z does not have real roots. Notice that the motion
given by a bounded motion polynomial is a map defined for all t ∈ R.
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Let P (t) = t − k be a bounded linear motion polynomial. Then the motion
described by P admits exactly one fixed point Q (independent of t), since P rep-
resents a revolution around Q (see Lemma 3.3). We start by determining the fixed
point (x, y) of an isometry z + η w ∈ K, employing the notation u = x + ıy used
before:

u = uz+η w ⇐⇒ u =
u z2 + zw

|z|2
⇐⇒ u =

zw

|z|2 − z2
=

w

z − z
.

It follows that for every t ∈ R the isometry t− k has the same fixed point as k (in
accordance with Lemma 3.3).

Definition 4.14. Let k = z + η w ∈ K with z ∈ C \ R, then we denote the fixed
point of the isometry represented by k by

χ(k) =
w

z − z
.

We are now ready to state and prove the main result of this section:

Theorem 4.15. Let P ∈ K[t] be a bounded motion polynomial. Then there exists
a real polynomial R ∈ R[t] such that RP can be factored into linear polynomials.

Proof. If P is of the form P = SP̃ with S ∈ R[t]\R and P̃ ∈ K[t], then we can apply

the theorem to P̃ obtaining R ∈ R[t] such that RP̃ factors; thus also RSP̃ = RP
factors. Hence we may assume that P does not have non-constant real factors.

Let P (t) = Z(t) + ηW (t) and let R̃ = gcd(Z,Z). The desired polynomial (of

minimal degree) is obtained by R = R̃/ gcd(R̃,WW ). Using Lemma 4.3 and
Proposition 4.12, the proof is reduced to showing that there exists a permuta-
tion of the n roots of RZ (counted with multiplicities) such that the corresponding
G = gcd(Q1, . . . , Qn) divides RW . To this end write

Z =

h∏

i=1

(
(t− αi)

ri(t− αi)
si
)
, ri ≥ si ≥ 0, ri > 0,

where αi ∈ C are pairwise conjugate-distinct, i.e., αi 6= αj and αi 6= αj for i 6= j.
Note that in the special case s1 = · · · = sh = 0 we get R = 1, in agreement with
the fact that in this case already P itself factors by Lemma 4.4. On the other hand,
we have always deg(R) ≤ deg(P ), and equality is attained when ri = si for all i
and gcd(Z,W ) = 1.

Define Ri := (t− αi)(t− αi) and write R̃ =
∏h

i=1 R
si
i . Next let ui and vi be the

multiplicities of αi and αi in W , i.e.,

W = W̃ ·
h∏

i=1

(
(t− αi)

ui(t− αi)
vi

)

for some polynomial W̃ ∈ C[t] such that gcd(W̃ ,R1 · · ·Rh) = 1. By introducing
the quantity mi := min{si, ui + vi}, the polynomial R can be written as

R =
R̃

gcd(R̃,WW )
=

h∏

i=1

Rsi−mi

i ,
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and hence

RZ =

h∏

i=1

(
(t− αi)

ri+si−mi(t− αi)
2si−mi

)
,

RW = W̃ ·
h∏

i=1

(
(t− αi)

ui+si−mi(t− αi)
vi+si−mi

)
.

In order to construct an admissible permutation, the roots αi, αi are arranged as
follows: (

αi, . . . , αi︸ ︷︷ ︸
si−min{si,vi}

, αi, . . . , αi︸ ︷︷ ︸
ri+si−mi

, αi, . . . , αi︸ ︷︷ ︸
si−min{si,ui}

)
.

The assumption on P ensures that if si > 0 then ui = 0 or vi = 0; indeed, if si, ui, vi
were all strictly positive then Ri would be a common real factor of Z and W . Then
mi = min{si, ui} + min{si, vi}, and hence the previous multiplicities agree with
those in RZ.

The final permutation is obtained as an arbitrary interlacement of all arrange-
ments for 1 ≤ i ≤ h. Proposition 4.10 then implies that

G =

h∏

i=1

(
(t− αi)

si−min{si,vi}(t− αi)
si−min{si,ui}

)
.

Since si−min{si, vi} ≤ ui+si−mi and si−min{si, ui} ≤ vi+si−mi, we conclude
that G divides RW . �

Algorithm 1 FactorMotionPolynomial

Input: P = Z + ηW ∈ K[t] a bounded motion polynomial such that Z and W
have no common factor in R[t] \ R.

Output: a polynomial R ∈ R[t] and a tuple (k1, . . . , kn) of elements of K such that
(t− k1) · · · (t− kn) = R(t) · P (t).

1: Factor Z(t) over C, obtaining Z =
∏h

i=1(t− αi)
ri(t− αi)

si with ri ≥ si ≥ 0.
2: Initialize q = empty (the empty tuple).
3: For i = 1, . . . , h Do

4: Set ui = maxj
(
(t− αi)

j | W
)

and vi = maxj
(
(t− αi)

j | W
)
.

5: Set mi = min{si, ui + vi}
6: Set ω =

(
αi, . . . , αi︸ ︷︷ ︸
si−min{si,vi}

, αi, . . . , αi︸ ︷︷ ︸
ri+si−mi

, αi, . . . , αi︸ ︷︷ ︸
si−min{si,ui}

)
.

7: Set q = concatenate(q, ω).
8: End For

9: Set R =
∏h

i=1

(
(t− αi)(t− αi)

)si−mi
.

10: Set n = length(q).

11: Set Qj =
∏j−1

l=1 (t− ql)
∏n

l=j+1(t− ql) for all j ∈ {1, . . . , n}.

12: Compute {wj}
n
j=1 such that RW =

∑n
j=1 wjQj using linear algebra.

13: Set kj = qj − η wj for all j ∈ {1, . . . , n}.
14: Return

(
R, (k1, . . . , kn)

)
.
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The proof of Theorem 4.15 immediately gives rise to a factorization algorithm
for motion polynomials, called FactorMotionPolynomial. It produces one single
factorization for a given polynomial P , although there could be many for the follow-
ing reasons: first, there may be several admissible permutations of the roots of RZ,
and second, the choice of the coefficients {wj} in Step 12 may not be unique, since
the polynomials {Qj} need not be C-linearly independent.

5. The flip procedure

The procedure described in this section will be crucial for the construction of
linkages with mobility one. It is inspired by similar techniques—involving the inter-
change of factors in a factorization of a quadratic motion polynomial—used in [9]
and [10].

Lemma 5.1. Let k1, k2 ∈ K be such that pp(k1) 6= pp(k2). Then there exists a
unique pair (k3, k4) ∈ K2 such that:

(1) pp(k3) = pp(k2) and pp(k4) = pp(k1);
(2) (t− k1)(t− k2) = (t− k3)(t− k4) as polynomials in K[t].

Proof. Let us suppose that ki = zi + η wi for i ∈ {1, 2}. We make the ansatz

k3 = z2 + η w3 and k4 = z1 + η w4,

where w3 and w4 are elements of C to be determined. The condition

(t− k1)(t− k2) = (t− k3)(t− k4)

is equivalent to the linear system(
1 1
z1 z2

)(
w3

w4

)
=

(
w1 + w2

z1w2 + z2w1

)
,

which has a unique solution, since by hypothesis the determinant of the matrix is
different from zero. �

Definition 5.2. Let k1, k2 ∈ K be such that pp(k1) 6= pp(k2). Then we define
Flip(k1, k2) = (k3, k4), where (k3, k4) ∈ K2 is the pair from Lemma 5.1.

Definition 5.3. Let k1, k2 ∈ K be such that pp(k1) 6= pp(k2). Starting from
this data, we define a linkage FlipLinkage(k1, k2) = (G, ρ) via the algorithm
FlipLinkage. The situation is summarized in Figure 6.

Algorithm 2 FlipLinkage

Input: k1, k2 ∈ K such that pp(k1) 6= pp(k2).
Output: FlipLinkage(k1, k2).

1: Define V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4), (1, 4)} and set G = (V,E).
2: Define (k3, k4) = Flip(k1, k2).
3: Define ui = χ(ki) for all i ∈ {1, . . . , 4}.
4: Define

ρ(1, 3) =
(
ℜ(u1),ℑ(u1)

)
ρ(2, 1) =

(
ℜ(u2),ℑ(u2)

)

ρ(3, 4) =
(
ℜ(u3),ℑ(u3)

)
ρ(4, 2) =

(
ℜ(u4),ℑ(u4)

)

5: Return (G, ρ).
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1

3 4

2

u1

u3

u4

u2

Figure 6. The graph of the linkage FlipLinkage(k1, k2), where

k1, k2 ∈ K satisfy pp(k1) 6= pp(k2). The edges of the graph are
labeled by the images of the map ρ.

Lemma 5.4. Let k1, k2 ∈ K with pp(k1) 6= pp(k2). Let (k3, k4) = Flip(k1, k2).
Then ∣∣χ(k1)− χ(k2)

∣∣ =
∣∣χ(k3)− χ(k4)

∣∣.
If, in addition, z1, z2 6∈ R and χ(k1) 6= χ(k2), then the following holds:

∣∣χ(k1)− χ(k2)
∣∣ 6=

∣∣χ(k1)− χ(k3)
∣∣.

Proof. Let k1 = z1+η w1 and k2 = z2+η w2. Then the condition (t−k1)(t−k2) =
(t− k3)(t− k4) implies that k3 = z2 + η w3 and k4 = z1 + η w4 with

w3 =
(z2 − z2)w1 + (z1 − z2)w2

z1 − z2
and w4 =

(z1 − z2)w1 + (z1 − z1)w2

z1 − z2
.

A direct calculation shows that
∣∣χ(k3)− χ(k4)

∣∣ =
∣∣∣∣

w3

z2 − z2
−

w4

z1 − z1

∣∣∣∣ =
∣∣∣∣

w1

z1 − z1
−

w2

z2 − z2

∣∣∣∣ =
∣∣χ(k1)− χ(k2)

∣∣

as claimed. The second claim is also obtained via a direct computation. �

Lemma 5.4 implies that the linkages produced by the algorithm FlipLinkage

have the shape of a (possibly degenerated) antiparallelogram; see the right part of
Figure 5 for an example. We now introduce the notion of flip mobility to exclude
some degenerated cases, namely the ones where the antiparallelogram is in fact a
square.

Notation. Let k1 = z1 + η w1 and k2 = z2 + η w2 be two elements of K. We say
that the condition FM(k1, k2) (which stands for flip mobility) holds if and only if

z1, z2 6∈ R, z1 6= z2, z1 6= z2, χ(k1) 6= χ(k2).

Lemma 5.5. Let k1, k2 ∈ K such that FM(k1, k2) holds. Then the linkage L
obtained by FlipLinkage(k1, k2) has mobility one and the configuration curve has
two components C1 and C2. Moreover, the natural maps C1 −→ VRP(i, j) and
C2 −→ VRP(i, j) are isomorphisms for every two neighboring links i and j.

Proof. Since the linkages obtained via FlipLinkage are constituted by four bars,
this is a well-known result; see for example [4, Table on p. 426]. One can also prove
the statement using the notions we introduced in Section 2 as follows. We set L =
FlipLinkage(k1, k2), and denote (k3, k4) = Flip(k1, k2). Recalling Definition 2.6,
our goal is to prove that Conf(L) is a one-dimensional variety. One notices that

Conf(L) ∼=
{
(λ1 : µ1), . . . , (λ4 : µ4) : f12(λ1, µ1, λ2, µ2) = f34(λ3, µ3, λ4, µ4)

}
,
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where
f12 : P1

R
× P1

R
−→ P(K)

(λ1 : µ1), (λ1 : µ1) 7→ (λ1 − µ1 k1)(λ2 − µ2k2)

and analogously for f34. Under our hypotheses, the images of f12 and f34 are two
smooth quadrics whose intersection is a curve with two components. This proves
the first part of the statement. For the second, one proves that natural projections
Conf(L) −→ VRP(i, j) become isomorphisms once restricted to each of the two
components. �

Remark 5.6. Results in Example 3.4 are particular instances of Lemma 5.5. One
can in fact check that in that case L = FlipLinkage(k1, k2), where k1 = ı − η · 3
and k2 = −2ı− η (2 + ı).

6. Construction of linkages

In this section, we show how to construct a linkage with mobility one that traces
an algebraic curve described by a rational parametrization. Based on the results
of Section 4, we first describe an algorithm which takes a bounded motion polyno-
mial P and constructs a linkage weakly realizing P (see Definition 3.13).

Algorithm 3 ConstructWeakLinkage

Input: P ∈ K[t] a bounded motion polynomial.
Output: (G, ρ) a linkage weakly realizing P .

1: Compute S ∈ R[t] of maximal degree, monic, such that S divides P .
2: Compute R, (k1, . . . , kn) = FactorMotionPolynomial(P/S).
3: Set ui = χ(ki) =

wi

zi−zi
, where ki = zi + η wi, for every i ∈ {1, . . . , n}.

4: Set V = {1, . . . , n+ 1} and E = {(1, 2), (2, 3), . . . , (n, n+ 1)}.
5: Set G = (V,E).
6: Set ρ(i, i+ 1) =

(
ℜ(ui),ℑ(ui)

)
∈ R2 for every i ∈ {1, . . . , n}.

7: Return (G, ρ).

Proposition 6.1. Algorithm ConstructWeakLinkage is correct.

Proof. The linkage L constructed by the algorithm ConstructWeakLinkage is an
open chain, so its configuration space is isomorphic to

(
P1
C

)
n−1, where n− 1 is the

number of joints of L. Let φ : R −→ P3
C

be the motion corresponding to RP . We
consider links 1 and n, and we prove that φ(R) ⊆ RP(1, n), namely that L weakly
realizes RP according to Definition 3.13. In our situation we have that

RP(1, n) =
{
σ1,2 ◦ σ2,3 ◦ · · · ◦ σn−1,n : σi,i+1 ∈ P1

C

}
.

Now we fix an arbitrary t ∈ R and we take σi,i+1 to be the isometry given by t− ki
for all i ∈ {1, . . . , n − 1}. Then we see that φ(t) ∈ RP(1, n), so the statement is
proven. �

Suppose that we are given a rational parametrization of a bounded curve. As we
saw in Proposition 3.7, starting from it we can construct a bounded polynomial P
such that the curve is the orbit of the origin in R2 under the motion described
by P . Then the algorithm ConstructWeakLinkage returns a linkage L that weakly
realizes P . However, this is rather unsatisfactory, since the configuration space
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of L is, in general, a variety of high dimension. Our goal is to obtain a linkage with
mobility one, providing a strong realization of P . The main idea is to “rigidify” L,
which by construction is an open chain, by introducing additional links and joints,
forming antiparallelograms. At the level of graphs, this corresponds to extending
the linear graph of L to a 2×n ladder graph (see Figure 7). To do so, we pick a linear
motion polynomial t − l, which will constitute the first “step” of the ladder, and
then apply the flip procedure iteratively to complete the ladder. In the following,
we investigate how l ∈ K has to be chosen so that the resulting linkage has mobility
one.

Definition 6.2. Let k = (k1, . . . , km) be a tuple of elements in K, and let l ∈ K.
Define

l1 := l, (k̃i, li+1) = Flip(li, ki) for all i ∈ {1, . . . ,m}.

Then we say that the condition IFM
(
l,k

)
(which stands for iterated flip mobility)

holds if and only if FM(li, ki) holds for all i ∈ {1, . . . ,m}.

In order to prove that the algorithm we propose works, we have to show that
it is always possible to find an element l ∈ K such that the iterated flip mobility
condition holds. For this we use a property of the flip construction.

Definition 6.3. Given an element k = z + η w ∈ K with z 6= 0, we define inv(k)
to be the element z− η w ∈ K. Recalling Remark 3.2, we have that k represents an
isometry σ, and inv(k) its inverse σ−1. Moreover, if z 6∈ R, then t − k represents
an isometry for every t ∈ R, and t− inv(k) the inverse isometry.

Lemma 6.4. Let k1, k2 ∈ K be such that pp(k1) 6= pp(k2) and pp(k2) 6∈ R. Let
(k3, k4) = Flip(k1, k2). Then we have that

(
inv(k3), k1

)
= Flip

(
k4, inv(k2)

)
.

Proof. Notice that the fact that pp(k2) 6∈ R implies that the element (t − k2)
represents an isometry for all t ∈ R. From Definition 6.3 one has that the inverse
isometry is represented by

(
t− inv(k2)

)
. The two situations are depicted below:

•
t−k2 // •

•

t−k1

OO

t−k3

// •

t−k4

OO • •
t−inv(k2)oo

•

t−k1

OO

•
t−inv(k3)
oo

t−k4

OO

(k3, k4) = Flip(k1, k2)
(
inv(k3), k1

)
= Flip

(
k4, inv(k2)

)

A direct computation shows the desired result. �

Lemma 6.5. Let k = (k1, . . . , km) be a tuple of elements in K such that pp(ki) 6∈ R
for all i ∈ {1, . . . ,m}. Then there exists l ∈ K with pp(l) 6∈ R such that IFM

(
l,k

)

holds.

Proof. Following the notation of Definition 6.2 we have that pp(li) = pp(l) for all
i ∈ {1, . . . ,m}. Hence, in order to ensure that IFM

(
l,k

)
holds, we need to choose l

such that pp(l) 6= pp(ki) and pp(l) 6= pp(ki) for all i ∈ {1, . . . ,m}. From now on,
we fix such a value for pp(l). The other situations we should keep away from are
the ones where χ(li) = χ(ki). Since pp(li) is now fixed, the condition χ(li) = χ(ki)
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becomes a linear equation for sp(li), which always admits a unique solution ŵi ∈ C.

Let us define l̂i = pp(l) + η ŵi. Using Lemma 6.4 repeatedly (namely i − 1 times)

starting from the pair
(
l̂i, inv(ki−1)

)
, we obtain an element hi ∈ K such that

χ(li) 6= χ(ki) ⇐⇒ l 6= hi.

Summing up, for every fixed value of pp(l) different from all
{
pp(ki)

}m

i=1
and all{

pp(ki)
}m

i=1
, there are finitely many values for sp(l) that should be avoided for

IFM
(
l,k

)
to hold. Thus we can always find an l ∈ K with the claimed properties.

�

We are ready to present the algorithm ConstructStrongLinkage. Figure 7
shows the labeled graph produced by the algorithm.

Algorithm 4 ConstructStrongLinkage

Input: P ∈ K[t] a bounded motion polynomial.
Output: (G, ρ) a linkage strongly realizing the motion induced by P .

1: Compute S ∈ R[t] of maximal degree, monic, such that S divides P .
2: Compute R, (k1, . . . , kn) = FactorMotionPolynomial(P/S).
3: Choose l ∈ K such that IFM

(
l, k

)
holds.

4: Set l1 = l and (k̃i, li+1) = Flip(li, ki) for all i ∈ {1, . . . , n}.
5: Set

ui = χ(ki)

ũi = χ(k̃i)
vj = χ(lj)





for every i ∈ {1, . . . , n}
for every j ∈ {1, . . . , n+ 1}

6: Set V = {1, . . . , 2n+ 2}.

7: Set E =
{
(i, i+1), (n+1+i, n+2+i), (j, n+1+j) for all i ∈ {1, . . . , n} and j ∈

{1, . . . , n+ 1}
}

.

8: Set G = (V,E).
9: Set

ρ(i, i+ 1) =
(
ℜ(ui),ℑ(ui)

)

ρ(n+ 1 + i, n+ 2 + i) =
(
ℜ(ũi),ℑ(ũi)

)

ρ(j, n+ 1 + j) =
(
ℜ(vj),ℑ(vj)

)





for every i ∈ {1, . . . , n}
for every j ∈ {1, . . . , n+ 1}

10: Return (G, ρ).

1

n+2 n+3

2 3

n+4

n+1

2n+2

u1

v1

ũ1

v2

u2

ũ2

v3 vn+1

· · ·

· · ·

Figure 7. The labeled graph of the linkage returned by the algo-
rithm ConstructStrongLinkage.
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Theorem 6.6. Let P be a bounded polynomial in K[t] and let φ : R −→ P3
R

be the
rational motion induced by P . Let us denote by L the linkage obtained by applying
ConstructStrongLinkage to P . Then L strongly realizes the motion φ.

Proof. Let K be the configuration space of L = (G, ρ). As in the statement of
Lemma 5.5, we are going to prove that for any two neighboring edges i and j of G,
every irreducible component of K is isomorphic to RP(i, j). This will prove that K
has dimension one, which means that L has mobility one.

Recall from Definition 2.4 that K is the collection of configurations Σ = (σk,l)
satisfying the equations imposed by the directed cycles of G. First of all, notice that
in the definition of K one can consider only those equations imposed by “square
cycles”, namely directed cycles of the form:

h • // • h+ 1

��
(n+ 1) + h •

OO

• (n+ 1) + (h+ 1)oo

In fact, one can easily see that all other equations belong to the ideal generated
by these ones. Let us now introduce the following notation: for h ∈ {1, . . . , n} we
denote by sq(h) the set

{(
h, h+1

)
,
(
h+1, (n+1)+(h+1)

)
,
(
(n+1)+(h+1), (n+1)+h

)
,
(
(n+1)+h, h

)}
.

We define πsq(h) to be the projection

πsq(h) : K −→
∏

(r,s)∈sq(h)

VRP(r, s) .

Then the image of πsq(h) is contained in the configuration space Ch of a flip linkage,

which by Lemma 5.5 has two components, so Ch = C1
h ∪ C2

h.
For every sequence b ∈ {1, 2}n, we set

Kb = π−1
sq(1)

(
C

b(1)
1

)
∩ · · · ∩ π−1

sq(n)

(
Cb(n)

n

)
.

Then by construction we have K =
⋃

b∈{1,2}n Kb. We are going to prove that for

every sequence b and for any neighboring links i and j in G, we have Kb
∼= VRP(i, j).

For the sake of simplicity, we start by proving this result when the graph G
consists only of two squares (i.e. n = 2):

1

4 5

2 3

6
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In this case we only have two flip linkages with configuration spaces C1 and C2.
Let us fix b ∈ {1, 2}2, and consider the diagram:

(6.1)

C
b(1)
1

∼=

π2,5
$$

C
b(2)
2

∼=

π2,5
zz

VRP(2, 5)

We know that the maps π2,5 are isomorphisms, because of Lemma 5.5. We consider
the set {

(x, y) : x ∈ C
b(1)
1 , y ∈ C

b(2)
2 and π2,5(x) = π2,5(y)

}
,

which is nothing but the pullback of Diagram (6.1). One can check that this set
equals Kb since, as we observed before, the elements of K are only subject to
the equations coming from the cycles in C1 and C2. Because of the property of
isomorphisms of being stable under pullbacks, we obtain the following commutative
diagram of isomorphisms:

Kb

∼=

πsq(2)

%%
∼=

πsq(1)

yy
C

b(1)
1

∼=

π2,5
$$

C
b(2)
2

∼=

π2,5
zz

VRP(2, 5)

The composition π2,5 ◦ πsq(1) equals the projection π2,5 : Kb −→ VRP(2, 5), and
the same holds for every projection πi,j : Kb −→ VRP(i, j), where i and j are
neighboring links. Hence each of these maps is an isomorphism, and this proves
our claim.

If now G is constituted by more than two squares, then Kb is obtained via an
iteration of several pullbacks, and eventually we get a diagram of isomorphisms.
Thus the claim holds also in this case.

Since K is covered by finitely many varieties of dimension one, then it has di-
mension one. Moreover, each of the varieties Kb is an irreducible component of K.

We are left to prove that L realizes the motion φ induced by P . Similarly as we
did in the proof of Proposition 6.1, one can show that φ(R) ⊆ RP(1, n+ 1). Since
K is one-dimensional, then also RP(1, n+ 1) is so; since φ(R) is one-dimensional,

then φ(R) is a component of RP(1, n+ 1). �

Remark 6.7. As we mentioned in Section 1, the linkages constructed via our
algorithms present the same issues as the ones produced by Kempe’s procedure,
namely the devices do not realize only the motion they are designed for, but also
other ones. This is due to the fact that the elementary linkages produced by the
flip procedure, commonly known as antiparallelograms, admit configuration spaces
with more than one component (see Proposition 5.5). On the other hand, since
antiparallelograms are among the linkages used also by Kempe’s procedure, the
techniques developed in [1] and [6, Section 3.2.2] can be applied also in our case to
prevent this unwanted behavior.
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We now state explicitly how many links and joints the linkages created by our
algorithm have, when applied to a parametrization of a curve.

Proposition 6.8. Let ϕ : R −→ R2 the parametrization of a real bounded planar
curve. Without loss of generality, suppose that

ϕ(t) =

(
f(t)

h(t)
,
g(t)

h(t)

)

with f, g, h ∈ R[t], and h monic, and d = deg h > max{deg f, deg g}. Then, there
exists a linkage with at most 4d links and 6d − 2 joints drawing the curve given
by ϕ.

Proof. As discussed before Definition 4.13, the motion polynomial P = h+η (f+ıg)
is bounded, and by Proposition 3.7 the orbit of the origin in R2 under the motion
that it determines is exactly the image of ϕ. Let us denote by L the linkage
obtained by applying ConstructStrongLinkage to P . Then L is constituted by at
most 4d+2 links and 6d+1 joints: in fact, as noticed in the proof of Theorem 4.15,
the real polynomial R returned by FactorMotionPolynomial has at most degree d.
Since here we are only interested in the curve traced by the linkage, and not in the
orientation of the end effector, we can remove the leftmost square from the graph
of the linkage L, obtaining a linkage with 4d links and 6d−2 joints (for an example,
see Section 8). �

7. Self-collisions

A natural question that arises in the construction of a linkage is whether it can
be physically realized such that no collisions between components of the linkage
occur. More precisely, one asks whether there exists an assignment of 1, 2, . . . , n
to the links such that for any i < k < j for which i and j are neighboring links,
the joint connecting i and j never overlaps with the link k. For general linkages it
is a difficult problem to detect such collisions; see for example [5, Section 9.3 and
Theorem 9.5.5]. However, it turns out that the same problem has a straightforward
solution for linkages constructed by our algorithm, and the reason is that all joints in
our case follow rational curves whose explicit parametrization is a direct byproduct
of the algorithm ConstructStrongLinkage. Assuming that a link is realized as
a collection of line segments connecting the (two or three) joints attached to it,
a collision is described as follows: for some i < k < j as above there exists a
t ∈ R ∪ {∞} such that the position

(
x1(t), y1(t)

)
of the joint (i, j) lies on one of

the line segments of link k; denote its endpoints by
(
x2(t), y2(t)

)
and

(
x3(t), y3(t)

)
.

Then a collision happens if the system

(7.1)

{
x1(t) = s · x2(t) + (1− s) · x3(t)

y1(t) = s · y2(t) + (1− s) · y3(t)

has a solution subject to 0 ≤ s ≤ 1 and t ∈ R ∪ {∞}. In our construction, the
coordinates xi, yi are given by rational functions in t, so that the system (7.1) is
equivalent to a bivariate polynomial system that can be easily solved. Note that
for each admissible configuration (i.e., joint plus line segment) we have to solve a
system of the form (7.1). This way we can decide whether collisions occur or not,
and if so, we obtain the precise description when and where they happen.
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At the same time, we want to mention a remarkable method for preventing
collisions for planar linkages with a link diagram of the form shown in Figure 7.
This method is based on designing the shape of some links and joints: we introduce
three types of links (F-link, U-link, Z-link), and two types of joints (T-joint, Z-joint).

As before, all links are arranged in different layers, and w.l.o.g. we assume that
these layers correspond to integer numbers. An F-link is located in a single layer,
in other words, we associate one integer for each F-link. On the other hand, U-links
and Z-links stretch across two, not necessarily neighboring, layers. Therefore, to
such links we associate a pair of integers (a, b) with a < b, which means that one
part of the link is located in layer a and the other part in layer b; the two parts are
rigidly connected by a vertical rod. For any two different U-links with layers (a1, b1)
and (a2, b2), we prohibit the situations a1 < a2 < b1 < b2 and a2 < a1 < b2 < b1,
which could yield a collision between these two U-links. For a Z-link on layers (a, b)
we impose the condition b− a = 2, and the link located on layer a+ 1 (in our case
this will always be some part of a U-link) is connected with this Z-link by a revolute
joint (which we call Z-joint) around its vertical rod. In contrast, a T-joint joins two
links located on neighboring layers.

Using the above design, one can check that collisions can only happen between
links, and not between links and joints. We now argue that even these collisions
can be avoided. First, an F-link can not collide with another F-link or a Z-link.
Second, a Z-link can not collide with another Z-link. Third, if we move the vertical
connections of all U-links sufficiently far away, the F-links and Z-links do not collide
with the U-links. Fourth, the above conditions on the layers of U-links imply that
two U-links could collide only if they occur in a nested way (e.g., a1 < a2 < b2 < b1).
Again, this can be avoided by moving the vertical connection of the outer U-link
far away enough. Thus we can always manage to make a collision-free design, by
manipulating the shape of the U-links.

Figure 8. A linkage without self-collisions composed of three F-
links (gray), two U-links (white), and one Z-link (black)

It remains to argue that for a general ladder-shaped link diagram, as returned
by our algorithm ConstructStrongLinkage and as displayed in Figure 7, we can
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find an assignment of link types and layers such that all the above conditions are
fulfilled. One such assignment is depicted in Figure 9; it demonstrates that we
can realize a motion—given by a factored motion polynomial of degree n—by a
collision-free linkage using 4n+ 1 layers.

U

(0, 4n)

F

(1)

U

(3, 4n−1)

Z

(2, 4)

U

(6, 4n−2)

Z

(5, 7)

U

(3n−3, 3n+1)

Z

(3n−4, 3n−2)

F

(3n)

F

(3n−1)

T

T

T

Z

T

Z

T

Z

T

T

T

· · ·

· · ·

Figure 9. Assignment of joint types (T, Z), link types (F, U, Z)
and layers (above and below the corresponding vertices) such that
a linkage with ladder-shaped link graph can be realized without
self-collisions.

8. Final examples

We consider again the elliptic translational motion from Example 3.11, described
by the motion polynomial P (t) = (t2+1)+η (at−bı), but now for the concrete choice
a = ı and b = −2ı. Setting R = t2+1 and fixing the permutation (ı,−ı,−ı, ı) of the
roots of pp(RP ), as in (3.4), we obtain a two-dimensional family of factorizations
into linear factors, i.e., the solutions of the linear system (3.5), out of which we
choose the following:

(
t+ ı− η ı

)
·
(
t− ı+ 1

2η ı
)
·
(
t− ı+ 3

2η ı
)
· (t+ ı).

Next we have to fix an l ∈ K such that the IFM condition holds; it turns out that l =
t+9/5ı is a good choice (which yields a linkage that is well suited for visualization).
Applying the flip procedure iteratively to this input data, one obtains the following:

k̃1 = −ı− 2
7η ı, k̃2 = ı− 41

28η ı, k̃3 = ı− 3
8η ı, k̃4 = −ı+ 45

56η ı,

l1 = − 9
5 ı+

9
7η ı, l2 = − 9

5 ı+
9
4η ı, l3 = − 9

5 ı+
9
8η ı, l4 = − 9

5 ı+
9
28η ı.

Now we can use these quantities to construct a linkage that realizes an elliptic
translation. If, on the other hand, we content ourselves with a linkage that draws
the ellipse (i.e., the end effector is allowed to rotate arbitrarily), we can omit the
“leftmost square” in the link graph so that we obtain the graph shown in Figure 10.
Note that all linear motion polynomials appearing here are purely imaginary in
their secondary parts. This implies that all their fixed points are of the form
(x, 0), so that all joints are located on the horizontal axis when the linkage is
in its initial position (t = ∞); the same happens for t = 0. A realization of
this linkage is shown in Figure 11. It produces two collisions with the ordering
(7, 2, 8, 3, 9, 10, 5, 4) of the links, but both happen at t = ∞. Hence in principle
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2

7

3

8

4

9

5

10

χ(k2) χ(k3) χ(k4)

χ(l1) χ(l2) χ(l3) χ(l4)

χ(k̃2) χ(k̃3) χ(k̃4)

Figure 10. The link graph for the linkage drawing an ellipse.

Figure 11. The linkage that draws an ellipse. The same linkage
is shown in different positions: t = 2 (white), t = 1

2 (light gray),
t = 0 (dark gray), and t = −1 (black).

we can trace, without disassembling the linkage, the full ellipse except a single
point—see also the animations provided on our webpage [17].

We conclude with an example in connection to a popular formulation of Kempe’s
Theorem, stating that “There is a linkage that signs your name”. King [15, Corol-
lary 1.3] attributes this formulation to William Thurston. However, as remarked by
O’Rourke [23], it is very implausible that a concrete “signing linkage” has ever been
constructed due to the complexity, in terms of links and joints, of the linkages pro-
duced following Kempe’s procedure. As an example to support his claim, O’Rourke
points out that already constructing a linkage drawing the “J” of John Hancock’s
famous signature (see Figure 12) would be very difficult. We approximate the “J”
by the rational curve given by the parametrization (f/h, g/h), where

f(t) = −321880t5 − 436132t4 − 237449t3 − 64488t2 − 8666t− 451,

g(t) = −336018t5 − 472949t4 − 270569t3 − 78158t2 − 11325t− 651,

h(t) = 170
(
7225t6 + 13770t5 + 11187t4 + 4908t3 + 1219t2 + 162t+ 9

)
.
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Figure 12. John Hancock’s signature on the United States Dec-
laration of Independence.

Our implementation of the algorithm ConstructStrongLinkage—provided on our
webpage [17]—produces a linkage with 26 links and 37 joints realizing this curve,
see Figure 13. When we let it draw the depicted “J”, we encounter seven collisions.

Figure 13. A rational curve approximating the “J” in John Han-
cock’s signature and a linkage drawing it. The corresponding mo-
tion is a translation, which we visualize by using a quill pen whose
shape is a line segment in direction (5, 6). The spatial arrangement
of the links is indicated by hue: darker links lie below brighter ones.
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