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Abstract. We prove that every planar graph with maximum degree
three has a planar drawing in which the edges are drawn as circular
arcs that meet at equal angles around every vertex. Our construction
is based on the Koebe–Andreev–Thurston circle packing theorem, and
uses a novel type of Voronoi diagram for circle packings that is invariant
under Möbius transformations, defined using three-dimensional hyper-
bolic geometry. We also use circle packing to construct planar Lombardi
drawings of a special class of 4-regular planar graphs, the medial graphs
of polyhedral graphs, and we show that not every 4-regular planar graph
has a planar Lombardi drawing. We have implemented our algorithm for
3-connected planar cubic graphs.

1 Introduction

Lombardi drawing is a style of graph drawing, named after artist Mark Lombardi,
in which the edges of a graph are drawn as circular arcs and in which every
vertex is surrounded by edges that meet at equal angles at the vertex—that
is, the drawing has perfect angular resolution [9, 10]. Several families of graphs
are known to have Lombardi drawings, including regular graphs (under certain
restrictions on their factorizations into regular subgraphs) and certain highly
symmetric graphs [10]. Lombardi drawings have also been used to draw plane
trees with perfect angular resolution in polynomial area, something that would
be impossible for straight line drawings [9]. All graphs have drawings that relax
the constraints of Lombardi drawing to allow polyarcs or unequal angles [3, 8],
but the improved aesthetic quality of true Lombardi drawings makes it of interest
to determine more precisely which graphs have such drawings.

Planarity, the avoidance of crossing edges, is of great importance both in
Lombardi drawing and in graph drawing more generally. By Fáry’s theorem,
every planar graph can be drawn planarly with straight line segments for its
edges, and therefore it can also be drawn with circular arcs. However, those
arcs may not meet at equal angles. Not all planar graphs have planar Lombardi
drawings [8,10], and few positive results on planar Lombardi drawing are known:
only trees, Halin graphs (the graphs formed from plane trees by adding a cycle
connecting the leaves), outerpaths, and the graphs of symmetric polyhedra have
been proven to have planar Lombardi drawings [10, 19].

In this paper we take a major step forward in our knowledge of planar
Lombardi drawings, and in the applicability of the Lombardi drawing style,
by showing that all planar graphs of maximum degree three have planar Lom-
bardi drawings. The heart of our method applies to 3-connected 3-regular planar

W. Didimo and M. Patrignani (Eds.): GD 2012, LNCS 7704, pp. 126–137, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Planar Lombardi Drawings for Subcubic Graphs 127

graphs: we apply the Koebe–Andreev–Thurston circle packing theorem to the
dual graph, and then use three-dimensional hyperbolic geometry to construct a
novel Möbius-invariant Voronoi diagram of the circle packing, which we show to
be a Lombardi drawing of the input. Our implementation of this method pro-
duces drawings in which the overall drawing and the individual faces are all ap-
proximately circular and in which the spacing of the vertices is locally uniform.
We extend these results to graphs that are neither 3-regular nor 3-connected
by using bridge-block trees and SPQR trees to decompose the graph into 3-
connected subgraphs, drawing these subgraphs separately, and using Möbius
transformations to glue them together into a single drawing. We also use circle
packing in a different way to construct planar Lombardi drawings of a special
class of 4-regular planar graphs, the medial graphs of polyhedral graphs. How-
ever, as we show, not every 4-regular planar graph has a Lombardi drawing.

For space reasons we have omitted some details from this paper, for which see
the longer version of the same paper on arXiv:1206.6142.

2 Preliminaries

2.1 Möbius Transformations

Let S2 denote the space formed by adding a single point ∞ “at infinity” to the
Euclidean plane; this space is also known as the one-dimensional complex projec-
tive line P1(C). In S

2, straight lines may be interpreted as limiting cases of circles,
with infinite radius and containing the point ∞. A Möbius transformation [24]
is a map from S

2 to itself that transforms every circle (or line) into another cir-
cle (or line). Using complex-number coordinates, these transformations may be
represented as the fractional linear transformations and their conjugates. Every
two triangles may be mapped to each other by Möbius transformations.

Möbius transformations may also be defined from inversions. If O is a circle
centered at point o with radius r, inversion through O maps any point p to
another point q on the ray from o through p, at distance r2/d(o, p) from o.
O is fixed by the inversion, the inside of O becomes the outside and vice versa,
and o trades places with ∞. In the limiting case of a line, inversion becomes
reflection across the line. Every Möbius transformation may be represented as a
composition of a finite set of inversions.

Möbius transformations are conformal mappings : they preserve the angle of
every two incident curves. Since they preserve both circularity and angles, they
preserve the property of being a Lombardi drawing.

2.2 Hyperbolic Geometry

To understand our drawing algorithm, it will be helpful to understand some
qualitative features of hyperbolic geometry, avoiding detailed calculations [2].

In the upper halfspace model of three-dimensional hyperbolic space, hyperbolic
space is represented by an open halfspace of three-dimensional Euclidean space,
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but with a non-Euclidean distance metric. The boundary plane of the Euclidean
halfspace does not belong to the hyperbolic space but may be thought of as the
set of “points at infinity” for the hyperbolic space. It is convenient to add one
more point∞ to this boundary plane, so that it becomes a copy of S2. Hyperbolic
lines are represented by Euclidean semicircles that meet the boundary plane at
right angles, or by Euclidean rays perpendicular to the boundary plane; the
vertical rays may be viewed as the limiting case of semicircles with one endpoint
at ∞. Hyperbolic planes are represented by Euclidean hemispheres that meet
the boundary plane at right angles in a circle, or by halfplanes that touch the
point ∞ and meet the boundary plane perpendicularly in a line.

The symmetries of hyperbolic space may be extended to the plane at infinity,
on which they act as Möbius transformations. Every Möbius transformation of
S
2 corresponds uniquely to a symmetry of hyperbolic space.

2.3 Circle Packing

In the form that we need it, the Koebe–Andreev–Thurston circle packing the-
orem [25] states that the vertices of every maximal planar graph may be rep-
resented by circles with disjoint interiors, such that two vertices are adjacent if
and only if the corresponding two circles are tangent.

It is not known how to find circle packings in strongly polynomial time, but it
is possible to find approximate packings by numerical algorithms that are poly-
nomial in both the number of vertices and the accuracy of approximation [22].
We use a numerical relaxation procedure by Collins and Stephenson [4] that
repeatedly adjusts the radii of individual circles to reduce the angular defect by
which the surrounding circles either fail to surround it completely or surround
it by a larger angle than 2π. As Collins and Stephenson show, this method con-
verges rapidly to a unique solution, the system of radii for a valid packing. Once
a close approximation to the radii has been calculated, the positions of the circle
centers are not difficult to determine.

The circle packings constructed by the Collins–Stephenson procedure (with
equal outer radii) yield unsatisfactory Lombardi drawings, with one vertex placed
at ∞. To improve our drawings, we find a Möbius transformation of the packing

Fig. 1. Left: the central region of a circle packing constructed by the Collins–
Stephenson procedure; the outer three circles, shown only partially in the figure, have
equal radii. Right: a transformed packing with one circle exterior to the others, maxi-
mizing the minimum circle radius.
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for which one chosen circle surrounds all the others. Among all transforma-
tions fixing the outer circle we choose the one that maximizes the radius of the
smallest inner circle (Figure 1). This problem of finding a radius-maximizing
Möbius transformation may be expressed (using the connection between Möbius
transformations and three-dimensional hyperbolic geometry) as a quasiconvex
program, a problem of finding the minimum value of a pointwise maximum of
quasiconvex functions. It may be solved either combinatorially in linear time
using LP-type optimization algorithms or numerically using local improvement
procedures; the theory of quasiconvex programs guarantees that there are no lo-
cal optima in which the local improvement might get stuck [1, 11]. Since we are
already using a numerical method to find circle packings, our implementation
also takes the numerical approach to find the best transformation.

2.4 Triangle Centers

A triangle center is a function from Euclidean triangles to Euclidean points
such that performing a similarity transformation and then constructing the cen-
ter gives the same result as constructing the center and then performing the
similarity transformation. Hundreds of triangle centers are known, and include
many well-known points determined from a triangle, such as its centroid, circum-
center, incenter, and orthocenter [18]. It is convenient, in computing the position
of a triangle center, to use barycentric coordinates, weights for which the center
is the weighted average of the vertices.

There are two triangle centers that (as an unordered pair of points) are equiv-
ariant under Möbius transformations, not just Euclidean similarities. One of
these two centers, the first isodynamic point, may be constructed by transform-
ing the given triangle to an equilateral triangle (in such a way that the interiors
of the circumcircles of the triangles map to each other), choosing the centroid
of the equilateral triangle, and reversing the transformation. The second isody-
namic point may be constructed similarly using ∞ in place of the centroid.

3 Cubic Polyhedral Graphs

We first explain the simplest case of our Lombardi drawing algorithm, in which
the planar graph to be drawn is 3-connected and 3-regular. We will later sim-
plify the algorithm, but in terms of three-dimensional hyperbolic geometry, our
drawings may be constructed by the following steps:

– Construct the dual graph of the given input graph, a maximal planar graph,
and its (unique) planar embedding.

– Apply the Collins–Stephenson procedure to realize the dual maximal planar
graph as the intersection graph of a collection of tangent circles Ci.

– Use quasiconvex programming to find a Möbius transformation of the circles
taking them to a configuration in which one circle C0 is exterior to all the
others, and maximizing the minimum radius of the internal circles.
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– Let the plane on which the circles are packed be the boundary of a three-
dimensional halfspace model for hyperbolic space. Each circle Ci forms the
set of points at infinity for a hyperbolic plane Hi within this space, which
in the halfspace model is represented as a hemisphere. With this model,
isometries of hyperbolic space correspond to Möbius transformations of the
plane and vice versa.

– Construct the three-dimensional hyperbolic Voronoi diagram of the hyper-
bolic planes Hi, a partition of hyperbolic space into cells within which every
point is closer to Hi (as measured using hyperbolic distance) than to any
other one of these planes. The bisector between two hyperbolic planes (the
set of points equidistant from both of them) is itself a hyperbolic plane. The
cell for Hi is a hyperbolic convex polyhedron, the intersection of hyperbolic
halfspaces bounded by these bisectors.

– Compute the intersection of the Voronoi diagram boundaries with the plane
at infinity (the original Euclidean plane on which we drew the circle packing).
The bisectors of the Voronoi diagram form circular arcs in this plane. Triples
of bisectors meet at Voronoi edges, which intersect the plane in vertices
at which three circular arcs meet. The Voronoi cell for a hyperplane Hi

meets the plane at infinity in a two-dimensional region, containing circle Ci

(or contained in it for i = 0) and bounded by circular arcs and vertices.
Therefore, the arcs and vertices form a drawing of the dual graph to the
intersection graph of circles, which is our initial 3-regular graph.

Fig. 2. Lombardi drawing of the
Frucht graph derived from the
circle packing of Figure 1

To verify that this process produces Lombardi
drawings, we must show that the three arcs
meeting at each vertex form 120◦ angles. For
any three mutually tangent circles of the circle
packing, there exists a Möbius transformation
taking their tangencies to an equilateral trian-
gle. In the transformed packing, the bisectors
between the three circles are lines, the axes of
symmetry of the equilateral triangle, which meet
at 120◦ angles. Because Möbius transformations
are conformal mappings, the three curves in our
un-transformed drawing have the same 120◦ an-
gles at the vertex where they meet.

Three-dimensional Voronoi diagrams may have quadratic complexity, but we
can shortcut this bound by constructing a drawing directly from a circle packing.

Theorem 1. If we are given as input an n-vertex 3-regular 3-connected planar
graph, we can produce a planar Lombardi drawing for the graph in time T+O(n),
where T denotes the time needed to find a circle packing dual to the given graph.

Proof: Once a circle packing is constructed, the phase of the algorithm that
computes a Möbius transformation maximizing the minimum circle radius can
be performed in linear time [1]. Each vertex of the drawing lies within the cusp
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formed by three mutually tangent circles. By Möbius invariance, it is the isody-
namic point of the triangle formed by the three tangency points of its cusp. We
may calculate its position as the weighted average of the three tangency points,
using the known barycentric coordinates of the isodynamic point as weights.
Each circular arc of the drawing has two vertices as its endpoints and passes
through one tangency point, which together determine its location. ��

4 Two-Connected Subcubic Graphs

We next describe how to extend our Lombardi drawing technique to 2-connected
graphs. A 2-connected graph may have vertices of degree two or three, but the
degree-2 vertices may be suppressed, forming a 3-regular multigraph with the
same connectivity. If the multigraph has a planar Lombardi drawing, so does
the original graph with the degree-2 vertices, as the vertices may be restored by
subdividing edges without changing the Lombardi property. Therefore, for the
most part within this section we assume that the given graph remains 3-regular.

We use a standard tool for decomposing 2-connected graphs, the SPQR tree [5,
6, 16, 17, 20]. An SPQR tree for a graph G is a tree structure in which each tree
node is associated with a graph Ci, known as a 3-connected component of G.
In each 3-connected component, some of the edges are labeled as “virtual”,
and each edge of the SPQR-tree is labeled by a pair of oriented virtual edges
from its two endpoints; each virtual edge of a component is associated in this
way with exactly one tree edge. The given graph G may be formed by gluing
the components Ci together, by identifying pairs of endpoints of virtual edges
according to the labeling of the tree edges, and then deleting the virtual edges
themselves. The nodes of an SPQR tree have three types: R nodes, in which the
associated graph is 3-connected, S nodes, in which the associated graph is a cycle,
and P nodes, in which the associated graph is a bond graph, a multigraph with
two vertices and three or more parallel edges. With the additional constraint
that no two S nodes and no two P nodes may be adjacent, the SPQR tree is
uniquely determined from G, and may be constructed in linear time.

The SPQR trees of 3-regular graphs have an additional structure that will be
helpful for us:

Lemma 1 (Pootheri [23], Eppstein and Mumford [14]). A 2-connected
graph G is 3-regular if and only if each edge in its SPQR tree has exactly one S
node as an endpoint, each S node is associated with an even cycle that alternates
between virtual and non-virtual edges, each P node is associated with a three-edge
bond graph, and each R node is associated with a graph that is itself 3-regular.

Theorem 2. If we are given as input an n-vertex 2-connected planar graph with
maximum degree 3, we can produce a planar Lombardi drawing for the graph in
time T +O(n), where T denotes the time needed to find and optimally transform
a family of circle packings with total cardinality O(n).



132 D. Eppstein

Fig. 3. Left: planar Lombardi drawing for a 3-edge P node. Right: gluing multiple
Lombardi drawings together on an S node with alternating virtual and non-virtual
edges (schematic view, not an actual Lombardi drawing).

Proof: Suppress the degree-two vertices of the given graph to produce a 3-regular
2-connected graph, decompose it into an SPQR tree with the additional structure
of Lemma 1, and use Theorem 1 to construct a planar Lombardi drawing of the
3-connected component associated with each R node. In each S node of the tree,
glue the drawings from the adjacent tree nodes together by using inversions
centered near their virtual edges to expand the virtual edges, move these edges
to the outer face of their drawings, and shrink the rest of the drawings, and then
align the circular arcs representing their virtual edges so that they all lie on a
common circle (Figure 3, right). Finally, subdivide the edges of the drawing as
necessary to restore the suppressed degree-two vertices. ��

5 Subcubic Graphs with Bridges

Fig. 4. Modifying a 3-connected Lombardi
drawing to attach bridges to subdivision
points along an edge

We are finally ready to describe
our algorithm for constructing planar
Lombardi drawings for arbitrary sub-
cubic planar graphs, possibly includ-
ing bridge edges.

Our algorithm begins by deleting
all the bridge edges from the graph,
and suppressing all degree two ver-
tices, leaving a collection of isolated
vertices and 2-connected 3-regular
subgraphs. It then constructs the SPQR tree of each 2-connected subgraph,
forming its 3-connected components, and applies Theorem 1 to construct a pla-
nar Lombardi drawing for each R node in each SPQR tree.

Within each face of each of these drawings, form a sequence of circular arcs
forming 30◦ angles to the arcs of the face and 60◦ angles to each other, forming a
smaller inset polygon (Figure 4, left). These arcs cannot intersect each other, as
can be seen by considering separately each triangular cusp of the circle packing
from which the drawing was constructed. Within each circle of the circle packing
(viewing the circle as a disk model for the hyperbolic plane) the new arcs are
confined to disjoint halfspaces. For each edge e of one of these drawings that
corresponds to a path of suppressed degree-two vertices some of which were
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bridge endpoints, let k be the number of bridge endpoints of e. Choose arbitrarily
one or the other of the two circular arcs A forming 30◦ angles to e, and replace
e by a sequence of k + 1 circular arcs, all of which form the same 30◦ angle to
A. These arcs meet each other at 120◦ angles, and we may extend a bridge from
each of the vertices formed in this way to a new degree-one vertex (Figure 4,
right). By a similar construction we unsuppress and attach bridge edges to the
suppressed bridge endpoints within the P nodes and S nodes of the SPQR tree.

Next, we glue the components within each SPQR tree together, as in Theo-
rem 2. At the same time, for each isolated vertex created by the bridge deletion
step, we create a drawing of a claw K1,3 consisting of three unit-length line
segments meeting at 120◦ angles. Additionally, we unsuppress the remaining
degree-two vertices of the original graph, by subdividing edges of these draw-
ings. After this step, we have separate drawings for each block (biconnected
component) of the original graph, in which each bridge incident to the block has
a degree-one vertex at its other end.

Finally, for each two blocks that should be connected by a bridge, we apply an
inversion centered on the degree-one endpoint of the bridge, causing the bridge
edge to become an infinite ray exterior to the drawing. After this transformation
the two blocks may be glued together by making their two copies of the bridge
edge lie on the same line. This completes the proof of our main result:

Theorem 3. If we are given as input an n-vertex planar graph with maximum
degree 3, we can produce a planar Lombardi drawing for the graph in time T +
O(n), where T denotes the time needed to find and optimally transform a family
of circle packings with total cardinality O(n).

6 Four-Regular Graphs

An alternative form of the circle packing theorem states that every 3-connected
planar graphG and its dual can be simultaneously represented by tangent circles,
so that two circles from the two packings are orthogonal if they represent a vertex
v of G and a face of G containing v, and disjoint otherwise. The packing is unique
up to Möbius transformation, and may be found by a numerical procedure similar
to the one for circle packing of maximal planar graphs [22].

These dual packings allow us to construct a planar Lombardi drawing of
the medial graph of G, the 4-regular graph formed by placing a vertex on the
midpoint of each edge of G and connecting two of these new vertices by an edge
whenever they are the midpoints of consecutive edges on the same face. Each
pair of orthogonal circles in the packing and dual packing of G form a lune,
which may be bisected by a circular arc forming a 45◦ angle with both circles.
Two circular arcs meeting at the same point of tangency form right angles or
180◦ angles to each other, so the collection of bisecting arcs forms a drawing of
the graph with one vertex for each point of tangency and one edge for each pair
of orthogonal circles, which is the medial graph of G (Figure 5, left). As before,
this drawing has an interpretation as the intersection of a three-dimensional
hyperbolic Voronoi diagram with the plane at infinity, and as before it can be
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Fig. 5. Left: Dual circle packings for a cube and octahedron, with a Lombardi drawing
of their medial graph, the cuboctahedron. Center: A 4-regular polyhedron that is the
medial graph of a non-polyhedral graph, described by Dillencourt and Eppstein [13].
Right: A 4-regular planar graph with no Lombardi drawing.

extended to certain 2-connected graphs using the SPQR tree. However, this
technique does not apply to 3-connected 4-regular planar graphs that are not
medial graphs of polyhedral graphs, such as the one shown in Figure 5, center.

The 4-regular 2-connected planar graph in Figure 5, right has no planar Lom-
bardi drawing. We defer the proof to the full version of this paper.

7 Implementation

We implemented in Python the algorithm for 3-connected graphs, including
the Collins–Stephenson circle packing algorithm and a numerical improvement
method for finding optimal Möbius transformations. Our implementation takes
as input a text file with one line per vertex; each line lists the identifiers for a
vertex and its three neighbors in clockwise order. The output drawing is rep-
resented in the SVG vector graphics file format. Figure 6 shows some drawings
created by our implementation.

8 Conclusions

We have shown that all planar graphs with maximum degree three (and some
planar graphs of degree four) have planar Lombardi drawings, greatly extending
the classes of graphs for which such drawings are known to exist, and we have
implemented our algorithm for the special case of 3-connected 3-regular graphs.

The drawings constructed by our new algorithm have a natural, organic shape,
in which the outer face and all the interior faces are approximately circular,
resembling soap bubble complexes. If the maximum number of edges per face of
the input graph is bounded, then adjacent circles in the circle packing will have
radii whose ratio is also bounded, from which it follows that the vertex spacing
of the drawing is locally uniform. Our drawings automatically display any global
cyclic or dihedral symmetries of the input graph, and may be used even in cases
such as the truncated icosahedron which our previous methods, designed for
graphs with a high degree of symmetry [10], are incapable of handling. They
also display certain local symmetries of the graph, in the sense that, if G is
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(a) Markström’s 24-
vertex graph with no 4-
or 8-cycles [21]

(b) Došlić’s 38-vertex
graph with girth five and
cyclic edge connectivity
three [7]

(c) 252-vertex hexagonal
mesh

(d) Tutte’s 46-vertex non-
Hamiltonian cubic planar
3-connected graph [26]

(e) Grinberg’s 46-vertex
non-Hamiltonian graph
with cyclic edge connec-
tivity five [15]

(f) 46-vertex Halin graph
formed from a complete
ternary free tree

(g) 60-vertex buckyball or
truncated icosahedron

(h) Irregular 69-vertex graph

Fig. 6. Sample drawings from our implementation
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a subgraph of a 3-connected graph that is connected to the rest of the graph
by exactly three edges, then every copy of G in one of our drawings can be
transformed into every other copy of G by a Möbius transformation.

Possible flaws in this approach, from the graph drawing point of view, are
that the area of the drawing (scaled so that the shortest edge has unit length)
may be exponential, that the coordinates of the vertices may not be possible
to represent precisely (as integers or bounded-degree algebraic numbers) but
instead must be approximated numerically, and that the time for computing
these drawings depends on the accuracy of this numerical approximation rather
than varying strongly polynomially with the input size.

In a followup paper, we extend these results in several directions. In particular,
we show that our Lombardi drawing methods for 3-connected and 2-connected
planar graphs generate drawings for which it is possible to assign pressures to
the faces in such a way that they obey the physical laws governing the static
behavior of soap bubbles, and we use this method to characterize the graphs of
planar soap bubbles as being exactly the bridgeless 3-regular planar graphs [12].
(Our method for graphs with bridges does not produce valid soap bubbles.) In
addition, we extend to intersecting disks the Möbius-invariant power diagram
defined here for disjoint disks, and we find a distance function in the Euclidean
plane for which it is the minimization diagram, giving it an intrinsic definition
rather than one relying on hyperbolic geometry.

Although our results greatly extend our knowledge of planar Lombardi draw-
ings, other fundamental questions in this area remain unsolved. For instance,
what is the complexity of testing whether a planar graph has a Lombardi draw-
ing? It would also be of interest to determine the maximum number d such that
all graphs of maximum degree d, or all planar graphs of maximum degree d, have
Lombardi drawings that are not necessarily planar.
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