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Abstract— In this paper we present a fast and precise method
to estimate the planar motion of a lidar from consecutive
range scans. For every scanned point we formulate the range
flow constraint equation in terms of the sensor velocity, and
minimize a robust function of the resulting geometric con-
straints to obtain the motion estimate. Conversely to traditional
approaches, this method does not search for correspondences
but performs dense scan alignment based on the scan gradients,
in the fashion of dense 3D visual odometry. The minimization
problem is solved in a coarse-to-fine scheme to cope with large
displacements, and a smooth filter based on the covariance of
the estimate is employed to handle uncertainty in unconstraint
scenarios (e.g. corridors). Simulated and real experiments have
been performed to compare our approach with two prominent
scan matchers and with wheel odometry. Quantitative and
qualitative results demonstrate the superior performance of
our approach which, along with its very low computational
cost (0.9 milliseconds on a single CPU core), makes it suitable
for those robotic applications that require planar odometry.
For this purpose, we also provide the code so that the robotics
community can benefit from it.

I. INTRODUCTION

Odometry is an essential component for robot localization.

It is commonly solved through three major techniques that

are based on inertial devices, wheel encoders or visual

odometry (either by feature tracking or by dense image

alignment). Inertial measurement units (IMUs) are ideal to

estimate spatial orientation but accumulate too much trans-

lational error over time due to their inability to cancel the

gravitational component of the measurement [1]. Odometry

based on enconders has extensively been used to provide fast

motion estimates for wheeled or legged robots, though this

approach is prone to being inaccurate due to wheel/leg slip-

page and the impreciseness of the kinematic robot models.

Last, vision-based methods are arguably the most flexible and

powerful solution to the motion estimation problem because

they can be adapted to work with different types of robots

(wheeled, legged, aerial) and configurations (2D-3D motion).

Our proposal here relies on laser scans and has the ad-

vantage over the aforementioned methods to be independent

of the vehicle type of locomotion as well as very fast and

precise, as supported by experimental validation. Thus, it

turns out to be particularly suitable for those (very common)

cases where the robot already uses a laser range scanner for

mapping, obstacle avoidance or localization. Our approach,

named RF2O (Range Flow-based 2D Odometry), builds
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upon [2] and represents the apparent motion of any point

observed by the sensor as a function of the velocity of the

sensor, assuming that the environment is static. Thus, every

point defines a geometric residual which can be minimized

within a dense formulation to obtain the lidar motion. To

overcome the assumption of a motionless environment (i.e. to

handle moving objects), we compute the Cauchy M-estimator

of the geometric residuals, a more robust estimate than

traditional choices like the L2 or L1 norms. Furthermore, we

solve this estimation problem within a coarse-to-fine scheme,

which provides finer results and allows the method to cope

with larger motions.

We have conducted a varied set of experiments to compare

our method against point-to-line iterative closest point (PL-

ICP) [3] and the polar scan matching approach (PSM) [4].

Firstly, their performances are evaluated at different scan

rates on simulated scenarios where the ground truth is

available. Secondly, qualitative results are shown for a real

experiment where 2D maps are built by concatenating the

scanned points according to the odometry motion estimates

of each method. Thirdly, we devise a real experiment to

evaluate how robust the methods are against the presence of

noise and moving objects. Overall, results show that RF2O is

significantly more precise for both translations and rotations,

and presents the lowest runtime (2 times faster than PSM

and 20 times faster than PL-ICP). Besides analyzing the

results presented herein, we encourage the reader to watch

the demonstration video which, together with the available

code, can be found at:

http://mapir.isa.uma.es/work/rf2o

II. RELATED WORK

Although low-cost RGB-D cameras have recently favored

the transition to 3D odometry, localization and mapping

strategies, it is a matter of fact that a fair number of mobile

robots move on planar surfaces and rely on laser scanners

to navigate. In this context, very successful results have

been achieved in the fields of 2D Localization [5][6] and

SLAM [7], and many algorithms have been proposed to solve

the general scan matching problem [8][3][9]. In this paper

we focus on pure 2D odometry, which can be regarded as

a particular case of scan matching, where the scans to be

aligned are taken consecutively and are normally close to

each other.

Traditionally, ICP [9] or some of its variants have been

applied to solve the registration problem between consecutive

scans. A very successful approach was proposed by Censi
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[3], where a point-to-line metric is used instead of the point-

to-point original metric of ICP. Futhermore, the author pre-

sented an implementation which ran one order of magnitude

faster than existing ICP variants, and was more precise and

efficient than the pioneer point-to-segment work in [10].

More recently, Generalized-ICP [11] showed an improved

performance over previous ICP versions, but has been mostly

used for the registration of 3D point clouds. For this family

of methods, accuracy depends on every particular version

and implementation, yet they all share the same weakness:

they are computationally expensive.

Alternatively, other methods were specifically de-

signed to solve the 2D scan matching problem. Gonza-

lez&Gutierrez [2] formulated the ”velocity constraint equa-

tion”, an adaptation of the optical flow constraint for range

scans, and proposed to estimate the lidar motion by impos-

ing this restriction for every point observed in the scans.

However, their method was only tested with simple simu-

lated scenarios and provided modest results. Diosi&Kleeman

presented the Polar Scan Matching approach [8], where the

translation and rotation between two scans are alternately

estimated until convergence. Conversely to ICP, this method

avoids searching for correspondences by simply matching

points with the same bearing, which leads to a higher

computational performance. This approach was subsequently

extended and further evaluated in [4]. A different method

proposed by Olson [12] tries to find the rigid transformation

that maximizes the probability of having observed the latest

scan given the previous one. Additional information is used

(control inputs or wheel odometry) to ease the method

convergence and two different implementations, GPU and

multi-resolution CPU, are presented. A thorough evaluation

is performed in terms of computational performance but, sur-

prisingly, no results for the method’s accuracy are presented.

More recently, other approaches have built upon the afore-

mentioned works. It is the case of [13] and [14], which fuse

laser odometry (the Olson’s laser odometry [12] and point-

to-line ICP [3], respectively) with stereo vision to perform

autonomous navigation with UAVs. Furthermore, the work

of Pomerleau et al. [15] presents a fast implementation and

a through evaluation of some ICP variants on real-world 2D

and 3D data sets.

III. LIDAR VELOCITY AND 2D RANGE FLOW

In this section we describe how the 2D velocity of a

laser scanner can be estimated from the apparent motion

that it observes, assuming that the environment is static and

rigid. Let R(t, α) be a range scan where t is the time and

α ∈ [0, N) ⊂ R is the scan coordinate, being N the size

of the scan. The position of any point P with respect to

the local reference frame attached to the sensor is given by

its polar coordinates (r, θ) (see Fig. 1). Provided that P is

visible from the lidar, it will be observed at a scan coordinate

α that is directly related to the angular coordinate of P :

α =
N − 1

FOV
θ +

N − 1

2
= kαθ +

N − 1

2
(1)
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Fig. 1. Top view representation of a laser scan that intersects with a certain
object. An observed point P moves with respect to the scanner to P

′ after
an interval of time ∆t.

where FOV is the scanner field of view. Similarly to the

optical flow constraint equation, a linear constraint can be

derived from the general expression of geometric consistency

of two scan pairs. Assuming the differentiability of R, the

range of any point at the second scan can be expressed as

the Taylor expansion

R(t+∆t, α+∆α) = R(t, α) +
∂R

∂t
(t, α)∆t

+
∂R

∂α
(t, α)∆α+O(∆t2,∆α2) (2)

where ∆t is the time lapse between consecutive scans and

∆α represents the change in the scan coordinate of the point

considered. Neglecting the second/higher order terms, and

dividing by ∆t, we can obtain a simple expression that

relates the scan gradients with the change of the range and

the scan coordinate of a point during the interval [t, t+∆t]:

∆R

∆t
≃ Rt +Rα

∆α

∆t
(3)

with

∆R = R(t+∆t, α+∆α)−R(t, α),

Rt =
∂R

∂t
(t, α), Rα =

∂R

∂α
(t, α).

If we consider that ṙ = ∆R/∆t and α̇ = ∆α/∆t are the

average velocities of a point in range and scan coordinates

during the interval [t, t+∆t], we obtain:

ṙ ≃ Rt +Rαα̇ = Rt +Rαkα θ̇ (4)

Equation (4) was firstly introduced by Gonzalez&Gutierrez

[2] and subsequently generalized and named as the ”range

flow constraint equation” in [16].

In order to describe the velocities of all points with

respect to the same vector basis, we transform the radial

and azimuthal velocities (ṙ, θ̇) to a cartesian representation

(ẋ, ẏ), as shown in Fig. 1:

ṙ = ẋ cos θ + ẏ sin θ (5)

r θ̇ = ẏ cos θ − ẋ sin θ (6)

As a last step, we need to impose that every apparent motion

is actually caused by the lidar translation and/or rotation. In



other words, we assume that every point moves with respect

to the sensor as if it was part of a rigid body whose velocity

is the same but opposite in sign to that of the sensor:
(

ẋ
ẏ

)

=

(

−vx,s + y ωs

−vy,s − xωs

)

(7)

being ξs = (vx,s , vy,s , ωs) a 2D twist (sensor velocity)

and (x, y) the cartesian coordinates of P . If the cartesian

velocities (5) (6) are substituted in (4) and the rigidity

hypothesis (7) is imposed, we can transform the range flow

constraint equation into a constraint for the lidar velocity:
(

cos θ +
Rαkα sin θ

r

)

vx,s +

(

sin θ −
Rαkα cos θ

r

)

vy,s

+(x sin θ − y cos θ −Rαkα)ωs +Rt = 0
(8)

As a result, every scanned point imposes a restriction to

the sensor motion and, therefore, 3 linearly independent

restrictions would theoretically suffice to estimate it.

IV. VELOCITY ESTIMATION

In practice, the lidar motion cannot be estimated with

only three independent restrictions because, in general, (8)

is inexact due to the noise of the range measurements, the

errors made by the linear approximation (3) or the presence

of moving object (non-static environment). Therefore, we

propose a dense formulation in which all the points of the

scan contribute to the motion estimate. For every point, we

define the geometric residual ρ(ξ) as the evaluation of the

range flow constraint (8) for a given twist ξ:

ρ(ξ) = Rt + (x sin θ − y cos θ −Rαkα)ω (9)

+

(

cos θ +
Rαkα sin θ

r

)

vx +

(

sin θ −
Rαkα cos θ

r

)

vy

To obtain an accurate estimate, the sensor motion is com-

puted by minimizing all the geometric residuals within a

robust function F :

ξM = argmin
ξ

N
∑

i=1

F (ρi(ξ)) (10)

F (ρ) =
k2

2
ln

(

1 +
(ρ

k

)2
)

(11)

The function F is the Cauchy M-estimator, and k is an ad-

justable parameter. Conversely to the more common choices

of the L2 or L1 norms, this function reduces the relevance

of those points with very high residuals, and represents

an effective and automatic way to deal with outliers. The

optimization problem is solved with Iteratively Reweighted

Least Squares (IRLS), where the weights associated to the

Cauchy M-estimator are:

w(ρ) =
1

1 +
(

ρ
k

)2 (12)

With IRLS, the system is iteratively solved by recomputing

the residuals and subsequently the weights until convergence.

A. Pre-weighting strategy

As previously mentioned, there are some factors that can

render (8) inaccurate, mainly the unfulfillment of the rigidity

hypothesis (7) and the deviations from the linear approxi-

mation made in (3). Although the Cauchy M-estimator can

alleviate their effect on the overall motion estimate, it does

not eliminate it completely. The presence of moving objects

is hard to detect before solving the motion and, therefore, we

rely on the Cauchy M-estimator to downweight them during

the minimization process. On the other hand, deviations from

the linear approximation adopted in (3) can be detected

beforehand, which helps to accelerate convergence in (10)

and also leads to more accurate results. To this purpose, we

propose a pre-weighting strategy to downweight the residuals

of those points where the range function is nonlinear or even

non-differentiable. We call it ”pre-weighting” because it is

applied before the minimization problem (10) is solved. In

order to quantify the error associated to the linearization of

(2), we expand the Taylor series to the second order:

ṙ = Rt +Rαα̇+R2o(∆t, α̇) +O(∆t2, α̇)

R2o(∆t, α̇) =
∆t

2

(

Rtt +Rtαα̇+Rααα̇
2
)

(13)

It can be noticed that, neglecting higher order terms, the

second order derivatives in R2o(∆t, α̇) can be used to

detect the deviations from linearity. One special case is the

second order derivative with respect to time (Rtt), which

cannot be computed in a coarse-to-fine scheme because the

warped images are timeless and, therefore, the concept of

second temporal derivative makes no sense (coarse-to-fine

is described in Section V). Moreover, it is important to

detect those regions of the scans where the range function is

not only nonlinear but non-differentiable. These regions are

mainly the edges of the different objects observed, and are

typically characterized by very high values of the first order

derivatives (Rt and/or Rα). To penalize these two effects,

nonlinearities and discontinuities, we define the following

pre-weighting function for each scanned point:

w̄ =
1

√

ǫ+Rα
2 +∆t2Rt

2 +Kd

(

Rαα
2 +∆t2Rtα

2
)

(14)

The parameter Kd marks the relative importance of first order

and second order derivatives, and ǫ is a small constant to

avoid the singular case.

Thus, we initially compute a pre-weighted set of residuals

ρwi (ξ) = w̄i ρi(ξ) i ∈ {1, 2...N} (15)

which are subsequently minimized according to (10) (11).

Although we do not show comparisons in the paper, this

strategy provides better results than standard IRLS minimiza-

tion without pre-weighting and converges faster (approxi-

mately by a factor of 2).

V. COARSE-TO-FINE SCHEME AND SCAN WARPING

The linearization presented in (3) holds either for small

displacements between consecutive scans or at areas with



constant range gradients (which, in the case of a lidar, would

occur for a very unusual geometry: an Archimedean spiral).

To overcome this limitation, we estimate motion in a coarse-

to-fine scheme, where the coarser levels provide a rough

estimate which is improved subsequently in finer levels. The

coarse-to-fine scheme was introduced by Battiti et al. [17] to

solve the optical flow problem for large displacements, and

has commonly been adopted ever since [18][19].

Let R0, R1 be two consecutive laser scans. Initially,

two Gaussian pyramids are to be created by successively

downsampling (typically by 2) the original scans R0, R1.

Normally, a Gaussian mask is applied to downsample RGB

or grayscale images but, in the case of range data, a standard

Gaussian filter is not the best choice since it creates artifacts

on the filtered scans. As an alternative, we employ a bilateral

filter [20] that does not mix distant points which are likely to

belong to different objects of the scene. Once the pyramids

are built, the velocity estimation problem is iteratively solved

from the coarsest to the finest level. At every transition to

a finer level, one of the two input scans must be warped

against the other according to the overall velocity estimated

in previous levels (ξp). This warping process is always

divided into two steps and, in our formulation, is applied

over the second scan R1. Firstly, every point P observed

in R1 is spatially transformed using the rigid body motion

associated to the twist ξp:





xw

yw

1



 = eξ̂p





x
y
1



 , ξ̂p = ∆t





0 −ωp vx,p
ωp 0 vy,p
0 0 0



 (16)

Secondly, the transformed points must be reprojected onto

R1 to build the warped scan Rw
1 so that:

Rw
1 (α

w) =
√

(xw)2 + (yw)2, (17)

αw = kα arctan

(

yw

xw

)

+
N − 1

2
(18)

Several points could be warped to the same coordinate αw,

in which case the closest one is preserved (the others would

be occluded). If ξp is converging to the real velocity, then

the warped scan Rw
1 will be considerably closer to the first

scan R0 than the original R1, which allows us to apply the

linear approximation in (2) with a finer resolution.

VI. IMPLEMENTATION

Our algorithm pays special attention to the computation

of the range gradients. Normally, a fixed discrete formula

is employed to approximate either scan or image gradients.

In the case of range data, this strategy leads to very high

values of the gradients at the object borders, which do

not represent the real gradients over those objects. As an

alternative, we make use of an adaptive formula that regards

the geometry of the environment. This formula weights

forward and backward derivatives in the scan with the 2D

distances between contiguous observations (points):

Rα(α) =
d(α+ 1)R−

α (α) + d(α)R+
α (α)

d(α+ 1) + d(α)
(19)

R−

α = R(α)−R(α− 1), R+
α = R(α+ 1)−R(α)

d(α) = ‖((x(α)− x(α− 1), y(α)− y(α− 1))‖

Thus, the closest neighbour is always contributing more to

the gradient computation while distant points barely affect it.

In the case that both neighbours are approximately equidis-

tant, the presented formula is equivalent to a centered finite

difference approximation. More details about the gradient

computation can be found in [19].

Last, it is important to remark that there are some ge-

ometric configurations of the environment from which the

sensor motion cannot be recovered. The most common case

arises when the lidar only observes a wall. Under this

circumstance, the motion parallel to the wall is undetermined

and therefore the solver would provide an arbitrary solution

for it (not only our method but any approach based purely on

geometry). In order to mitigate this problem, we apply a low-

pass filter in the eigenspace of the velocity ξ which works

as explained next. First, the eigenvalues of the covariance

matrix Σ ∈ R
3×3 of the IRLS solution are analyzed to detect

which motion (or combinations of motions) are undetermined

and which are perfectly constrained. In the space of the

eigenvectors, the velocity ξtM provided by (10) is weighted

with that of the previous time interval ξt−1 to obtain the new

filtered velocity ξt:

[(1 + kl)I + keE] ξt = ξtM + (klI + keE)ξt−1 (20)

where E is a diagonal matrix containing the eigenvalues and

kl, ke are parameters of the filter. Concretely, kl imposes a

constant weighting between the solution from the solver and

the previous estimate while ke defines how the eigenvalues

affect the final estimate. These parameters are set to the

following values:

kl = 0.05e−(l−1), ke = 15× 103e−(l−1) (21)

where l is the pyramid level that ranges from 1 (coarsest) to

the number of levels considered. Please refer to [19] for a

more detailed explanation on this filter and how it is applied.

VII. EXPERIMENTS

This section is composed of a set of three different exper-

iments. The two first experiments address the evaluation of

the proposed RF2O algorithm and its comparison with other

approaches in simulated and real environments, respectively.

The third experiment is carried out to analyze the robustness

of the motion estimates against noise and the presence of

moving objects. For comparison, two state-of-the-art scan

matchers are selected: Point-to-Line ICP (PL-ICP) [3], and

Polar Scan Matching (PSM) [4]. In both cases, we use

the implementations that their authors published online. For

quantitative evaluation, the relative pose errors as described

in [21] will be considered. Both translational and rotational

deviations per second will be evaluated with the root mean



TABLE I

SIMULATED EXPERIMENT - TRANSLATIONAL AND ROTATIONAL DEVIATIONS PER SECOND, AND EXECUTION TIMES.

Translational RMSE (cm/s) Rotational RMSE (deg/s) Runtime (ms)
Scan rate (Hz) RF2O PSM PL-ICP RF2O PSM PL-ICP RF2O PSM PL-ICP

S
ce

n
.

1 10 0.425 14.82 1.860 0.108 2.412 0.524 0.941 1.837 15.98
5 0.308 7.363 0.759 0.054 1.572 0.321 0.933 1.979 18.51
2 0.248 3.071 0.584 0.043 0.598 0.281 0.904 2.205 23.79
1 0.273 12.27 0.396 0.372 2.290 0.108 0.900 2.675 27.58

S
ce

n
.

2 10 0.398 19.56 1.904 0.121 4.725 0.473 0.951 1.994 19.02
5 0.346 18.60 1.084 0.084 4.370 0.268 0.935 2.642 23.84
2 0.785 18.13 10.14 0.339 4.155 3.042 0.931 3.351 28.59
1 5.250 42.67 24.07 3.669 15.67 7.282 0.892 3.656 35.56

S
ce

n
.

3 10 0.461 4.940 18.44 0.071 1.469 0.246 0.922 1.826 19.55
5 0.382 5.499 39.74 0.054 2.027 0.129 0.940 2.296 15.25
2 0.249 7.138 38.48 0.033 2.328 0.071 0.900 2.911 17.54
1 0.439 33.51 40.19 0.106 3.693 0.068 0.875 3.677 26.74

squared error (RMSE), which corresponds to a performance

measure independent of the experiment duration.

For real experiments, a Hokuyo URG-04LX-UG01 laser

scanner mounted on a Giraff mobile robot [22] is used to

gather the laser scans at a maximum frequency of 10 Hz. For

the case of simulated experiments, the laser characteristics

have been imitated (ray number = 682, FOV = 240 ◦, max

distance = 5.5 m). Moreover, a Gaussian noise with σ = 1 cm

is added to the simulated scans to make them more realistic.

A. Comparison in a Simulated Environment

In this experiment, the compared methods estimate the

planar motion of a laser scanner that moves in a simulated

environment. We use the precise ground truth available

in simulation to perform a quantitative evaluation of the

different approaches. The simulated environment is divided

into three distinct scenarios: a room containing only objects

formed by straight line segments (Scen. 1), a room that

contains only curved obstacles and curved walls (Scen. 2)

and a straight corridor with scattered small objects (Scen. 3).

During the experiment, the lidar travels along a predefined

path, covering a distance of 43.47 meters at an average speed

of 0.398 m/s. Furthermore, four different scan rates (10,

5, 2 and 1 Hz) are tested to analyze the influence of the

frequency of execution in the odometry estimates. Table I

depicts the relative pose errors in the form of translational

GT RF2O PL-ICP PSM

Start

End

1

2

3

Fig. 2. Simulated environment and the best path as estimated by each
method (RF2O@5Hz, PL-ICP@10Hz, PSM@2Hz). Numbers indicates the
different scenarios of the environment.

and rotational deviations per second, together with their

runtimes for the three compared methods. Fig. 2 plots the

simulated environment with the best estimated trajectory of

each method. That is, from all the execution rates, only the

one with overall minimum error is plotted for qualitative

assessment. As can be noticed, RF2O exceeds the other two

approaches for all the scenarios in the experiment, providing

much more accurate estimates. PL-ICP presents relatively

good estimates for the room scenarios, but it drastically fails

at the corridor (specially for translations). On the other hand,

PSM presents much higher relative errors in general, and

concretely at the second scenario where only curved objects

can be found. Furthermore, it presents important problems

at narrow places such as doors.

It is interesting to notice that the best results are not

obtained with the highest frequency. Experiments at 10 Hz

provide worse results than those at 5 or 2 Hz, which indicates

that data oversampling leads to error accumulation. On the

other hand, a too little frequency implies that consecutive

scans are too separate and more difficult to align (as occurs at

1 Hz). Thus, the optimal frequency is not always the highest

available one and depends on the average (or maximum)

linear and angular speeds of the lidar.

An alternative and helpful way to compare these methods

is to calculate their RMS errors per segment length, as

described in [23]. Fig. 3 depicts these average translational

errors as a percentage of the segment length considered,

and computed independently for the three scenes of the

experiment. It can be seen that our approach is in all cases

superior to the other two methods, being always under

1% RMSE for all three scenes. PL-ICP is the second best

candidate, having around 5% RMSE, except for the long

corridor (Scen. 3) where it completely fails.

Finally, from the computational point of view, the last

columns on Table I show the runtimes in milliseconds

measured on an AMD Phenom II X6 1035T CPU at 2.6 GHz.

Overall, RF2O takes less than 1 ms, followed by PSM

with 2.85 ms and PL-ICP with more than 19 ms. Taking

this into account, the presented approach not only provides

more accurate estimates but it is also much faster than its

competitors.
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Fig. 3. Translation errors averaged over all sub-sequences of a given length
for the three scenes of the simulated experiment.

B. Real Experiment

To validate the results obtained in the simulated exper-

iments, we employ a real mobile robot equipped with a

Hokuyo laser scanner which navigates in an office-like envi-

ronment. Making use of a mobile robot allows us to include

the odometry estimates from the onboard encoders (a pair of

low-cost AMT102-v incremental encoders from CUI Inc.),

but prevents us from performing a quantitative comparison

given the lack of a precise ground truth. Therefore, in this

section the different methods are compared just qualitatively

by plotting 2D maps built purely from the odometry pose

estimates. In other words, for each method we present maps

built as a concatenation of 2D point clouds along their

estimated trajectories, without resorting to global consistency

or any other mapping strategy.

The path covered by the robot during this experiment is

roughly 49 meters long, and is travelled at an average speed

of 0.535 m/s (max speed of 0.6 m/s). For all methods, we

set the scan rate at 10 Hz. Fig. 4 plots the maps built from

the trajectory estimates of the different approaches. As a

reference, we plot the map built from the accurate localiza-

tion provided by [6], which does not compute odometry but

finds the pose of the robot within a previously built map. As

can be seen, the map derived from our odometry estimation

is noticeably closer to the reference map than any of the

others. PL-ICP provides the second best estimation after

RF2O, failing mostly in the corridor areas (see Section VII-

A), which results in a shortening of the map and overlapping

of scan points in such areas. PSM and the encoder-based

maps follow the comparison, being the latter the worst of all

of them, with difference.

C. Robustness Against Noise and Non-static Environments

Finally, we analyze how noise and moving objects affect

the motion estimation of the proposed method, i.e., when the

assumption of a static environment is violated. Therefore,

this section is composed of two experiments. The first one

aims to evaluate the drift of the compared methods caused by

the noise of the measurements. To this end, a real experiment

is conducted where a lidar working at 10 Hz is kept still

in a static environment for a time lapse of three minutes.

Under this setup, since the only error involved is the sensor

noise, the outcome represents how noise affects the motion

estimates of the different methods. Table II shows the relative

deviations per second of the compared methods. We have

also considered a simplified version of our approach (RF2O-

NC), where we remove the Cauchy M-estimator and simply

minimize the squared residuals (see (11)). From these results

we can conclude that both RF2O and PL-ICP are equally

good at translations, being marginally worse than the non-

robust RF2O-NC, while, at rotations, PL-ICP is slightly

superior than the others.

Then, a second experiment is conducted in the same sce-

nario but, in this case, several moving objects are introduced.

During the experiment two persons are walking around the

robot, opening and closing a door and displacing a cardboard

box (see Fig. 5). The reader is encouraged to watch the

demonstration video where the experiment is shown in detail

(http://mapir.isa.uma.es/work/rf2o).

TABLE II

TRANSLATIONAL AND ROTATIONAL DEVIATIONS PER SECOND:

ROBUSTNESS AGAINST NOISE AND MOVING OBJECTS.

Static Experiment
RMSE RF2O RF2O-NC PSM PL-ICP

Translation (cm/s) 0.125 0.113 0.268 0.125
Rotation (deg/s) 0.075 0.064 0.216 0.043

Moving Objects Experiment
RMSE RF2O RF2O-NC PSM PL-ICP

Translation (cm/s) 0.636 0.879 3.548 0.412

Rotation (deg/s) 0.267 0.321 1.091 0.082

As can be seen in the second part of Table II, PL-ICP

is the most robust method in such situations, followed by

the proposed RF2O. It is important to notice that, although

PL-ICP is between two and three times better than RF2O,

the magnitude of the errors is still pretty small for both

methods, unlike the PSM estimates, which show important

translational and rotational drifts. Finally, comparing the

two versions of our approach, it can be noticed that under

the presence of moving objects, the Cauchy M-estimator

provides results that are 25% more accurate than those

obtained with standard quadratic minimization.

VIII. CONCLUSIONS

We have presented a novel approach named RF2O to

estimate the planar motion of a lidar by imposing the range

flow constraint equation on consecutive scan pairs. Exten-

sive experiments have been carried out to demonstrate the

accuracy of our method, and comparisons with point-to-line

ICP, Polar Scan Matching and the standard wheel odometry

have been performed under different scenarios and frame

rates. Results show that RF2O provides the most accurate

estimates for both translations and rotations, except for non-

static environments, where PL-ICP is slightly superior. With

a reported runtime of barely 1 millisecond, planar motion can

be easily estimated with almost no computational cost, which

makes this method attractive for many robotic applications

http://mapir.isa.uma.es/work/rf2o
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Fig. 4. Maps built as a concatenation of 2D point clouds along the estimated trajectories for different methods. The reference map is built using the
accurate localization of a particle filter-based approach. Trajectories are shown in red and the scanned points in blue.

Fig. 5. First row: Sequence of images taken during the second experiment
described in the section VII-B. Second row: 3D representation of the scans
and the robot at those particular instants, where the non-static points are
shown in red.

that are computationally demanding and require real-time

performance. For future work, we plan to analyze the effect

of small deviations from planar motion, which might be

useful if this method is applied to estimate the motion of

a quadcopter or a vehicle with strong dynamics.
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