
RESEARCH CONTRlBuTlONS

Programming
Techniques and
Data Structures

Planar Point Location Using
lan Munro
Editor

Persistent Search Trees

NEIL SARNAK and ROBERT E. TARJAN

ABSTRACT: A classical problem in computational
geometry is the planar point location problem. This
problem calls for preprocessing a polygonal subdivision
of the plane defined by n line segments so that, given a
sequence of points, the polygon containing each point can
be determined quickly on-line. Several ways of solving
this problem in O(log n) query time and O(n) space are
known, but they are all rather complicated. We propose
a simple O(log f&query-time, O(n)-space solution, using
persistent search trees. A persistent search tree differs
from an ordinary search tree in that after an insertion or
deletion, the old version of the tree can still be accessed.
We develop a persistent form of binary search tree that
supports insertions and deletions in the present and
queries in the past. The time per query or update is
O(log m), where m is the total number of updates, and
the space needed is O(I) per update. Our planar point
location algorithm is an immediate application of this
data structure. The structure also provides an alternative
to Chazelle’s “hive graph” structure, which has a variety
of applications in geometric retrieval.

1. PLANAR POINT LOCATION

Let us consider a classical geometric retrieval prob-
lem. Suppose the Euclidian plane is subdivided into
polygons by n line segments’ that intersect only at

’ We regard a line or half-line as being a line segment. and an infinite region

whose boundary consists of a finite number of line segments as being a

polygon.

0 1986 ACM OOOI-0782/86/0700-0669 750

their endpoints. (See Figure 1, p. 670.) Given such a

polygonal subdivision and a sequence of query
points in the plane, the planar point location problem
is the problem of determining, for each query point,
the polygon containing it. (For simplicity we shall
assume that no query point lies on a line segment of
the subdivision.) We require that the answers to the
queries be produced on-line; that is, each query
point must be located before the next one is known.

A solution to the point location problem consists
of an algorithm that preprocesses the polygonal sub-
division, building a data structure that facilitates lo-
cation of individual query points. We measure the
efficiency of such a solution by three parameters:
the preprocessing time, the space required to store
the data structure, and the time per query. Of
these, the preprocessing time is generally the least
important.

Many solutions to the point location problem have
been proposed [lo, 11, 13, 18, 22, 23, 321. If binary
decisions are used to locate the query points, R(log n)
time per query is necessary. Dobkin and Lipton [ll]
showed that this lower bound is tight, exhibiting a
method with O(log n) query time needing O(n’)
space and preprocessing time. The Dobkin-Lipton
result raised the question of whether an O(log n)
bound on query time can be achieved using only
O(n) space, which is optimal if the planar subdivi-
sion must be stored. Lipton and Tarjan [23] an-
swered this question affirmatively by devising a

july 1986 Volume 29 Number 7 Communications of the ACM 669

Research Contributions

complicated method based on the planar separator
theorem [zJ].

More recent research has focused on providing a
simpler algorithm with resou.rce bounds the same as
or close to those of the Lipton-Tarjan method. Algo-
rithms with O(log n) query time using O(n) space
have been developed by Kirkpatrick [18], who used
the fact that every planar graph has an independent
set containing a fixed fraction of the vertices; by
Edelsbrunner, Guibas, and Stolfi [13], who improved
a method of Lee and Preparata [22] that uses the
notion of separating chains; and by Cole [lo], who
noted that the Dobkin-Lipton approach reduces
planar point location to a problem of storing and
accessing a set of similar lists.

FIGURE 1. A Polygonal Subdivision. Arrows denote line segments
going to infinity.

FIGURE 2. The Polygonal Subdivision of Figure 1 Divided into
Slabs. The dashed lines are slab boundaries.

Cole’s observation is the starting point for our
work. Let us review the Dobkin-Lipton construction.
Draw a vertical line through each vertex (intersec-
tion of line segments) in the planar subdivision. (See
Figure 2.) This splits the plane into vertical slabs.
The line segments of the subdivision intersecting a
slab are totally ordered, from the bottom to the top
of the slab. Associate with each line segment the
polygon just above it. Now it is possible to locate a
query point with two binary searches: the first, on
the x-coordinate, locates the slab containing the
point; the second, on the line segments intersecting
the slab, locates the nearest line segment below the
point, and hence determines the polygon containing
the point. (By introducing a dummy line segment
running from (-w, -a)) to (co, -co), we can guarantee
that below every point there is a line segment.)
Since testing whether a point is above or below a
line segment takes O(1) time, a point query takes
O(log n) time. Unfortunately, if we build a separate
search structure (such as a binary search tree) for
each slab, the worst-case space requirement is e(n’),
since 8(n) line segments can intersect Q(n) slabs.

We can reduce the space bound by noticing as
Cole did that the sets of line segments intersecting
contiguous slabs are similar. Think of the x-coordi-
nate as time. Consider how the set of line segments
intersecting the current slab changes as the time in-
creases from --03 to +a. As the boundary from one
slab to the next is crossed, certain segments are de-
leted from the set and other segments are inserted.
Over the entire time range, there are 2n insertions
and deletions, one insertion and one deletion per
segment. (Think of line segments going to --oo in the
x-coordinate as being inserted at time -03, and line
segments going to +m in the x-coordinate as being
deleted at time +~a.)

We have thus reduced the point location problem
to the problem of storing a sorted set subject to in-
sertions and deletions so that all past versions of the
set, as well as the current version, can be accessed
efficiently. In general we shall call a data structure
persistent if the current version of the structure can
be modified and all versions of the structure, past
and present, can be accessed. Ordinary data struc-
tures, which do not support access in the past, we
call ephemeral.

Cole solved the point location problem by devising
a persistent representation of sorted sets that occu-
pies O(m) space and has O(log m) access time, where
m is the total number of updates (insertions and
deletions) starting from an empty set. However, his
data structure has two drawbacks. First, his method
is indirect, proceeding by way of an intermediate
problem in which item substitutions but neither in-

670 Communications of the ACM July 1986 Volume 29 Number 7

Research Contributions

sertions nor deletions are allowed. Second, the en-
tire sequence of updates must be known in advance,
making the data structure unusable in situations
where the updates take place on-line. We shall pro-
pose a simpler data structure that overcomes these
drawbacks.

Our main result, presented in Section 3, is a per-
sistent form of binary search tree with an O(log m)
worst-case access/insert/delete time and an
amortized’ space requirement of O(1) per update.
Our structure has neither of the drawbacks of
Cole’s, It provides a simple O(n)-space, O(log n)-
query-time point location algorithm. It can also re-
place Chazelle’s “hive graph” [7], a rather compli-
cated data structure with a variety of uses in geo-
metric searching. Section 4 contains a brief discus-
sion of these applications and some remarks about
extensions and open problems. Some of the results
presented here appear in preliminary form in
Sarnak [N].

2. PERSISTENT SORTED SETS

AND SEARCH TREES

We are now faced with a problem that is purely in
the realm of data structures, the persistent sorted set
problem. We wish to maintain a set of items that
changes over time. The items have distinct keys,
with the property that any collection of keys of
items that are in the set simultaneously can be to-
tally ordered. (The keys of two items that are not in
the set at the same time need not be comparable.)
Three operations on the set are allowed:

access@, s, t): Find and return the item in set s at
time t with greatest key less than or equal to x. If
there is no such item, return a special null item.

insert(i, s, t): At time t, insert item i (with prede-
fined key) into set s, assuming it is not already
there. Item i remains in the set until it is explicitly
deleted.

delete(i, s, t): At time t, delete item i from set s,
assuming it is there.

Starting with an empty set, we wish to perform
on-line a sequence of operations, including m up-
dates (insertions and deletions), with the following
property:

(*) Any update occurs at a time no earlier than any
previous operation in the sequence. That is, up-
dates are allowed only in the present.

The explicit time parameter tin the operations
formalizes the notion of persistence. We break ties in
‘By amortized complrxify we mean the complexity of an operation averaged

over a worst-case sequence of operations. For a full discussion on this con-

cept. see ‘Tarjan’s survey paper (391.

operation time by order in the sequence of opera-
tions. Property (*) allows accesses to take place
either in the present (after the most recent update)
or in the past. In the usual ephemeral version of the
sorted set problem, the time of an operation is im-
plicit, corresponding to its position in the sequence
of operations. An equivalent definition of the
ephemeral problem is obtained by requiring the se-
quence of operations to have the following stronger
property in place of (“): the operations in the se-
quence occur in nondecreasing order by time.

This problem and variants of it have been studied
by many authors [8,10, 12, 21, 27, 28, 31, 33, 361.

Dobkin and Munro [12] considered the problem of
maintaining a persistent list subject to access, inser-
tion, and deletion by list position. (The items in the
list have positions 1 through n counting from the
front to the back of the list.) The persistent list prob-
lem seems to be harder than the persistent sorted set
problem. Dobkin and Munro proposed an off-line
method (all updates occur in the sequence before all
accesses) with O((log m)‘) access time using O(m log
m) space. Overmars [31] proposed an on-line method
for the persistent list problem with O(log m) access
time using O(m log m) space. Overmars also studied
the much easier version of the persistent sorted set
problem in which an operation access&, t) need only
return an item if the set contains an item with key
exactly equal to x. For this version, he developed an
O(m)-space, O(log m)-access-time on-line algorithm.
Chazelle [8] devised an O(m)-space, O((log m)‘)-
access-time method for the off-line version of the
original persistent sorted set problem. As discussed
in Section 1, Cole [lo] discovered an O(m)-space,
O(log m)-access-time off-line algorithm.

All these methods use data structures that are
somewhat ad hoc and baroque. A more direct ap-
proach is to start with an ephemeral data structure
for sorted sets or lists and make it persistent. This
idea was pursued independently by Myers [27, 281,

Krijnen and Meertens [al], Reps, Teitelbaum, and
Demers [33], and Swart [36], who independently
proposed essentially the same idea, which we shall
call path copying. The resulting data structure can be
used to represent both persistent sorted sets and per-
sistent lists with an O(log m) time bound per opera-
tion and an O(log m) space bound per update.

In the remainder of this section we shall review
binary search trees and how they can be made per-
sistent using path copying. In Section 3 we propose a
new method that uses space even more efficiently
than path copying. It leads to a data structure for
persistent sorted sets (but not persistent lists) that
has bounds of O(log m) worst-case time per operation
and O(1) amortized space per update.

luly 1986 Volum 29 Number 7 Communications of the ACM 671

Research Contributions

RIGH-i
ROTATION

&zEq&

A B B C

FIGURE 3. A Rotation in a Binary Tree. The tree can be a subtree (i) all missing (external) nodes are regarded as
of a larger tree. black;

A standard data structure for representing ephem-
eral sorted sets is the binary search tree. This is a
binary tree3 containing the items of the set in its
nodes, one item per node, with the items arranged in
symmetric order: if x is any node, the key of the item
in x is greater than the keys of all items in its left
subtree and less than the keys of all items in its right
subtree. The symmetric-order item arrangement al-
lows us to perform an access operation by starting at
the tree root and searching down through the tree,
along a path determined by comparisons of the
query key with the keys of items in the tree: if the
query key is equal to the key of the item in the
current node, we terminate the access by returning
the item in the current node; if it is less, we proceed
to the left child of the current node; if it is greater,
we proceed to the right child. Either the search ter-
minates having found an item with key equal to the
query key, or it runs off the bottom of the tree. In
the latter case, we return the item in the node from
which the search last went right; if there is no such
node, we return null.

The time for an access operation in the worst case
is proportional to the depth of the tree. If the tree is
binary, its depth is at least Llog nl + 1, where n is the
number of tree nodes. This bound is tight for bal-
anced binary trees, which have depth O(log n) and
insertion and deletion time bounds of O(log n) as
well. There are many types of balanced trees, in-
cluding AVL or height-balanced frees [l], trees of
bounded balance or weight-balanced frees [29], and red-
black trees [14]. In such trees balance is maintained
by storing certain balance information in each node
(of a kind that depends upon the type of tree) and
rebalancing after an insertion or deletion by per-
forming a series of rotations along the access path
(the path from the root to the inserted or deleted
item). A rotation (see Figure 3) is a local transforma-
tion that changes the depths of certain nodes, pre-

3See the books of Knuth 1191 and Tarjan [3i’] for OUT tree terminology.

serves symmetric order, and takes O(1) time, assum-
ing that a standard binary tree representation is used
such as storing two pointers in each node, to its left
and right children.

For definiteness, we shall concentrate on red-
black trees, although our ideas apply to certain other
kinds of balanced trees. In a red-black tree each
node has a color, either red or black, subject to the
following constraints:

(ii) all paths from the root to a missing node contain
the same number of black nodes;

(iii) any red node, if it has a parent, has a black
parent.

This definition is due to Guibas and Sedgewick
[14]. Bayer [3] introduced these trees, calling them
symmetric binary B-trees. Olivie [30] gave an equiva-
lent definition (see [38]) and used the term half-
balanced trees.

Updating red-black trees is especially efficient as
compared to updating other kinds of balanced trees.
Rebalancing after an insertion or deletion can be

(a) -
OR

(b)
ROOT

-

(Cl
(d)

P

ct

s\,
FIGURE 4. The Reba!ancing Transformations in Red-Black Tree
Insertion. Symmetric cases are omitted. Solid nodes are black;

hollow nodes are red. All unshown children of red nodes are black.
In cases (c) and (d) the bottommost black node can be missing.

672 ConmuGcafiom of the ACM July 1986 Volume 29 Number 7

Research Contributions

done in O(1) rotations and O(log n) color changes
[38]. Furthermore the number of color changes per
update is O(1) in the amortized case [15, 16, 251.

Rebalancing is a bottom-up process. To perform an
insertion, we proceed as in an access operation. At
the place where the search runs off the bottom of
the tree, we attach a new node containing the new
item. We color this node red. This preserves the
black constraint (ii) but may violate the red con-
straint (iii). If there are now two red nodes in a row
the topmost of which has a red sibling, we color the
topmost red node, its red sibling black, and their
common parent (which must be black) red. (See Fig-
ure 4a.) This may produce a new violation of the red
constraint. We repeat the transformation of Figure
4a, moving the violation up the tree, until this trans-
formation no longer applies. If there is still a viola-
tion, we apply the appropriate transformation among
those in Figure 4b, c, and d to eliminate the viola-
tion. This terminates the insertion. The only rota-
tions are in the terminal cases: Figure 4c takes one
rotation and Figure 4d takes two.

A deletion is similar. We first search for the item
to be deleted. If it is in a node with a left child, we
swap the item with its predecessor (in symmetric
order), which we find by taking a left branch and
then right branches until reaching a node with no
right child. Now the item to be deleted is in a node
with at most one child. We delete this node and
replace it with its child (if any). This does not affect
the red constraint but will violate the black con-
straint if the deleted node was black. If there is a
violation, the replacing node (which may be missing)
is short; paths down from it contain one fewer black
node than paths down from its sibling. We bubble
the shortness up the tree by repeating the recoloring
transformation of Figure 5a until it no longer applies.
Then we perform the transformation of Figure 5b if
it applies, followed if necessary by one application of
Figure SC, d, or e. The maximum number of rota-
tions needed is three.

Let us now consider how to make red-black trees
persistent. We need a way to retain the old version
of the tree when a new version is created by an
update. We can of course copy the entire tree each
time an update occurs, but this takes O(n) time and
space per update. The idea of Myers [27, 281, Krijnen
and Meertens [21], Reps, Teitelbaum, and Demers
[33], and Swart [36] is to copy only the nodes in
which changes are made. Any node that contains a
pointer to a node that is copied must itself be copied.
Assuming that every node contains pointers only to
its children, this means that copying one node re-
quires copying the entire path to the node from the
root of the tree. Thus we shall call this method path

copying. The effect of this method is to create a set of
search trees, one per update, having different roots
but sharing common subtrees. Since node colors are
needed only for update operations, all of which take
place in the most recent version of the tree, we need
not copy a node when its color changes; we merely
overwrite the old color. This saves a constant factor
in space. (See Figure 6, p. 674.)

The time and space per insertion or deletion in a
persistent red-black tree is O(log n) since such an
operation changes only nodes along a single path in
the tree. If the update times are arbitrary real num-
bers, we must build an auxiliary structure to facili-
tate access to the appropriate root when searching in
the past. An array of pointers to the roots, ordered
by time of creation, suffices. We can use binary
search in this array to access the appropriate root.
This increases the time per access from O(log n) to
O(log m). If we use exponential search, the time to
perform an access in the tth version of the tree can
be reduced to O(log n + log t): we examine the first,
second, fourth, . . . , 2rlog tlth root until finding one
created after the desired search time; then we use

A.3 - (b) -

FIGURE 5. The Rebalancing Transformation in Red-Black Tree
Deletion. The two ambiguous (half-solid) nodes in (d) have the
same color, as do the two in (e). Minus signs denote short
nodes. In (a), the top node after the transformation is short

unless it is the root.

]uly 1986 Volume 29 Number 7 Communicafions of the ACM 673

Research Contributions

RGURE 6. A Persistent Red-Black Tree with
Path Copyi$f- The initial tree, existipg at time
Cr;ciMtains A, B, D, F, G, W, I, J, K. ltem E is
insert& at time 1, item M at time 2, and item
C at fiiiie &he nodes are labeled by their
M&s, f f&h, b for black. The nodes are
al& label+ by their time of creation. All
edges exit the bottoms of nodes and enter

the tops.

rsistent Red-Black Tree Wii

binary search on the roots from 1 through Zflog tl
(numbered in creation order). The same kind of
search starting from the most recently created root
and proceeding to earlier roots gives an access time
of O(log n + log(m - t)). If the update times are the
integers 1 through m, we can use direct access into
the root array to provide O(l)-time access to the ap-
propriate root, and the total time for an access opera-
tion is only O(log n).

As Swart noted, path copying works on any kind
of balanced tree, not just on red-black trees. Myers
used AVL trees, Krijnen and Meertens used B-trees,
and Reps, Teitelbaum, and Demers used 2,3 trees.
Path copying is also quite versatile in the applica-
tions it supports. By storing in each node the size of
the subtree rooted there, we can obtain an imple-

mentation of persistent lists (in which access is by
list position rather than by key). We also have the
ability to update any version, rather than just the
current one, provided that an update is assumed to
create an entirely new version, independent of all
other versions. In order to have this more general
kind of updating, we must copy a node when its
balance information changes as well as when one of
its pointers changes, but this increases the time and
space needed for updates by only a constant factor.

3. SPACE-EFFICIENT PERSISTENT
SEARCH TREES
A major drawback of the path copying method is its
nonlinear space usage. In this section we shall pro-
pose a method that needs only linear space. We shall

674 Communications of the ACM luly 1986 Volume 29 Number 7

use the fact that old balance information need not be
saved, although this is not essential. Our approach is
to avoid copying the entire access path each time an
update occurs. That this approach might work is
suggested by the observation that in an ephemeral
red-black tree, only O(1) pointer changes are needed
per update.

Suppose we implement persistent red-black trees
without any node copying, by allowing nodes to be-
come arbitrarily “fat”: each time we want to change
a pointer, we store the new pointer in the node,
along with a time stamp indicating when the change
occurred and a bit that indicates whether the new
pointer is a left or right pointer. (This bit is actually
redundant, since we can determine whether a
pointer is left or right by comparing the key of the
item in the node containing the pointer to that of the
item in the node indicated by the pointer.) When a
node color is changed we overwrite the old color.
(See Figure 7.)

With this approach an insertion or deletion in a
persistent red-black tree takes only O(1) space, since
an insertion creates only one new node and either
kind of update causes only O(1) pointer changes. The
drawback of the method is its time penalty: since
a node can contain an arbitrary number of left or
right pointers, deciding which one to follow during
a search is not a constant-time operation. If we use
binary search by time stamp to decide which pointer
to follow, choosing the correct pointer takes O(log m)
time, and the time for an access, insertion, or dele-
tion is O((log n)(log m)).

We can eliminate this time penalty by introducing
limited node copying. We allow each node to hold k
pointers in addition to its original two. We choose k

Research Contributions

to be a small positive constant; k = 1 will do. When
attempting to add a pointer to a node, if there is no
empty slot for a new pointer, we copy the node,
setting the initial left and right pointers of the copy
to their latest values. (Thus the new node has k

empty slots.) We must also store a pointer to the
copy in the latest parent of the copied node. If the
parent has no free slot, it, too, is copied. Thus copy-
ing proliferates through successive ancestors until
the root is copied or a node with a free slot is
reached. (See Figure 8.)

Searching the resulting data structure is quite
easy: when arriving at a node, we determine which
pointer to follow by examining the key to decide
whether to branch left or right and examining the
time stamps of the extra pointers to select among
multiple left or multiple right pointers. (We follow
the pointer with the latest time stamp no greater
than the search time if there is one, or else the
initial pointer.) As noted in Section 2, if the update
times are arbitrary real numbers we must build an
auxiliary array to guide access operations to the
proper roots. This makes the time for an access oper-
ation O(log m), whereas the time for an update oper-
ation is O(log n). However, in practice the number of
roots is likely to be much smaller than m, since a
root will be duplicated relatively infrequently. If the
update times are consecutive integers, the auxiliary
array provides O(l)-time access to the roots.

It remains for us to analyze the space used by the
data structure. As with path copying, a single update
operation using limited node copying can result in
O(log n) new nodes. However, amortized over a se-
quence of updates, there are only O(1) nodes copied
per update, implying an O(n) space bound for the

FIGURE 8. A Persistent Red-Black
free Wiih Limited Node Copying
Assuming Each Node Can Hold One
Extra Pointer. The initial tree and
insertions are as in Figure 8. The

labeling is as in Figure 7.

ply 1986 Volume 29 Number 7 Communications of the ACM 675

Research Cvntributions

data structure. To obtain the amortized space bound
we need some definitions. We partition the nodes of
the data structure into two classes, live and dead.
The live nodes are those reachable from the latest
tree root by following pointers valid at the current
time (the time of the most recent update). The live
nodes form the current version of the search tree. As
the current time increases, the node partition
changes: live nodes can become dead but not vice-
versa. All nodes dead at a given time are not affected
by any later update.

Our analysis uses the potential paradigm [39]. We
define the potential of the data structure to be the
number of live nodes minus l/k times the number
of free slots in live nodes. We define the amortized
space cost of an update operati.on to be the actual
number of nodes it creates plus the net increase in
potential it causes. With these definitions, the actual
number of nodes created by a sequence of updates is
bounded by the sum over all updates of the amor-
itzed space cost plus the net decrease in potential
over the sequence. If we start with an empty data
structure, the initial potential is zero, and since the
potential is always nonnegative the total amortized
space cost is an upper bound on the actual number
of nodes created.

The definition of potential is such that copying a
node has an amortized space cost of zero, since a
live node with no free slots becomes dead and a new
live node with k free slots is created, for a net de-
crease in potential of one, balancing the one new
node created. Storing a new pointer in a node has an
amortized space cost of l/k. The creation of a new
node during an insertion has an amortized space
cost of one. Since an insertion or deletion requires
storing O(l) new pointers not counting node copying,
the amortized space cost of an update is O(1). A
more careful count shows that an insertion has an
amortized space cost of at most 1 + 6/k; a deletion,
at most 7/k. In the special case of k = 1, the amor-
tized space cost per update is slightly less than indi-
cated by these bounds: at most six for an insertion or
deletion.

The choice k = 1 is probably the most convenient
in practice and is certainly the easiest to implement.
However, choosing a larger value of k may reduce
the space needed by the data structure, since al-
though the space per node increases, the number of
node copyings decreases. The best choice of k de-
pends on the exact way nodes are stored in memory
and on the average (as opposed to worst-case) num-
ber of new pointers created by updates. Neverthe-
less, we shall give a simplified analysis based on the
amortized bounds derived above. Suppose that

memory is divided into words, each of which is large
enough to hold an item, a time stamp, or a pointer.
We shall ignore the space needed to store node
colors and the types of extra pointers (left or right);
as noted above the latter information is redundant
and the color of a node can if necessary be encoded
by swapping or not swapping the original left and
right pointers in a node. Under these assumptions a
node requires 2k + 3 words of memory, and the
amortized space cost in words per update is at most
(2k + 3)(1 + 6/k) = 2k + 18/k + 15. This is mini-
mized at 27 words per update for k = 3. This choice
is only marginally better than the 30 words per up-
date (six nodes of five words each) needed for k = I.
Both these estimates are probably much larger than
the expected values.

Limited node copying applied to red-black trees
provides a linear-space representation of persistent
sorted sets but not of persistent lists, because to rep-
resent lists we must maintain subtree sizes for all
versions, and each update causes O(log n) subtree
sizes to change. Limited node copying becomes simi-
lar to path copying in this case, and the space bound
per update is O(log n). Our data structure does, how-
ever, support operations on persistent sorted sets in
addition to those defined in Section 2. In particular,
the following three operations are easy to handle:

access range (x, y, s, t): Find and return all items in
set s at time t with key between x and y (inclu-
sive).

join (sl, s2, t): At time t, combine sets s1 and s2 into

a single set, named sl. Set s2 becomes empty at
time t. This operation requires that at time t all
items in s, have keys less than those of all items
in sZ, Time t can be any time greater than or equal
to the time of the most recent update.

split (sl, sZ, x, t): At time t, split s1 into two sets: a
new version of sl, containing all items with key
less than or equal to X, and sz, containing all items
with key greater than x. Time t can be any time
greater than or equal to the time of the most
recent update.

We shall discuss how to implement these opera-
tions on ephemeral red-black trees; the extensions to
persistent trees are straightforward. To perform ac-
cess range (x, y, s, t), we proceed as in access (x, s, t),
thereby locating the node e containing the item with
smallest key no less than x. Then we visit the tree
nodes starting from e in symmetric order, stopping
when we reach one containing an item with key
exceeding y. In an ephemeral tree, the time for such
a query is O(k + log n), where k is the number of

676 Communications of the ACM Iuly 1986 Volume 29 Number 7

Research Contributions

items returned. In a persistent tree the time is
O(k + log m) assuming update times are arbitrary
real numbers.

To discuss joining and splitting, we need the con-
cept of the rank r(e) of a node e, defined to be the
number of black nodes on any path from e down to a
missing node. We can compute the rank of a node in
time proportional to the rank by walking down from
the node along any path. (Instead of comparing ranks
from scratch, we can store with each tree root its
rank, and then compute ranks on the way down the
tree along any search path.) Consider a join of sets s1
and sZ, To perform the join, we delete the item, say
i, of smallest key in set s2. We compute the ranks rl
and r2 of the roots of the trees T1 and Tz representing
s, and the new s2, respectively. Assume y1 z r2. (The
case r1 < r2 is symmetric.) If rI = r2, we create a new
black node containing i and make the roots of T1 and
T2 its children, If y1 = r2 + 1 and the root of Tz is red,
we color it black and proceed as in the case of rl =
r2. Otherwise, we color the root of Tz black if it is
red and locate the node e along the right path4 of T1
of one higher rank than the root of T2. We create a
new red node containing i, which becomes the new
right child of e; its left child is the old right child of e
and its right child is the root of T2. This may create a
violation of the red constraint, which we eliminate
as in insertion, The total time taken by the join is
O(log n), where YZ is the size of the new tree. Since
only one new node is created and O(1) pointer
changes are made, the amortized space bound in the
persistent version is O(1). Note that once i is deleted
from T2, and r1 and uZ are computed, the time for the
rest of the join is O(r, - r2 + 1). Furthermore, the
rank of the root of the new tree is either rI or rl + 1.

We implement splitting using repeated joining.
The easiest way to describe the algorithm is recur-
sively. Suppose we have a procedure join3 whose
effect is as follows:

join3 (e, f, g): Let e, f, g be nodes such that e and g
are the roots of red-black trees T, and Tz, respec-
tively, satisfying the condition that all items in T1
have keys smaller than that of the item in f and
all items in Tz have keys greater than that of the
item in f. Combine T1, f, and T2 into a single tree
whose root has rank max(r(e), r(g)] or max{r(e),
r(g)] + 1, and return the root of the new tree.

We implement join3 in the same way as the sec-
ond half of a binary join; the time it requires is

0(j r(e) - r(g) + 1 I). Using join3, we can implement a
procedure split(e, x), whose input is the root e of a

‘The right pafh of a binary tree is the path from the root through right
children to a missing node. The lefr path is defined similarly.

red-black T and a key x, and whose output is a pair
(f, g) such that f and g are the roots of the trees
formed when T is split at X. Let left(e) and right(e) be
the left and right children of node e, respectively. To
perform split(e, x), we test whether the key of the
item in e is less than, or equal to x. If so, we perform
split(righf(e), x), returning (h, g). Then we compute
f = join3 (left(e), e, h) and return (f, g). The case
of x less than the key of the item in e is symmetric.

The splitting algorithm has a running time of
O(log n), because the multiple joins that take place
have running times that form a telescoping sum,
summing to O(log n). (See, for example [2].) The per-
sistent version has an amortized space bound of
O(log n). We can reduce this amortized space bound
to O(log min(k, n - k]), where k and n - k are the
sizes of the trees resulting from the split, by modify-
ing the splitting algorithm slightly. To split a tree T
with root r at key x, we follow the search path for x
until it changes direction. Suppose the first change
of direction is from right to left (the opposite case is
symmetric), and let e be the node from which we
branch left. (Node e is the last node along the search
path that is on the right path of T.) We break the
link connecting e to its parent f and perform split(e,
x) (as implemented above) returning (g, h). We re-
place f as the right child of its parent by left(f),
repairing the possible violation of the color con-
straints as in the deletion algorithm. Finally, we re-
turn the pair (join3(r, f, g), h). The time bound is still
O(log n), The amortized space bound of O(log min(k,
n - k)) for the persistent version follows from two
facts: (i) node e has rank O(iog min(k, n - kj) in the
original tree; (ii) restoring the color constraints after
replacing node f by its left child takes only O(1)

pointer changes.
Maintaining more than one persistent sorted set

(as one must do if joins and splits are allowed) re-
quires the maintenance of an auxiliary structure for
each set to facilitate access to the appropriate root
when searching. If multiple arrays are hard to use as
auxiliary structures because of the problem of allo-
cating storage for them, search trees can be used
instead. The trees can be either ordinary balanced
trees or some other kind, such as finger search tree?
or self-adjusting trees [%I. Depending on the choice
of structure, the time to access the appropriate root
is O(log m) or faster.

We conclude this section with a few remarks
about the generality of our O(1) amortized space
bound for insertion, deletion, and join. What makes
the analysis work is that red-black trees need only
5A finger search free is a search tree augmented with a few pointers to favored
nodes, called fingers. Access and update operations in the vicinity of fingers
are especially efficient [6. 16, 17, 20, 411.

July 1986 Volume 29 Number 7 Communications of the ACM 677

Research Contributions

O(1) pointer changes per update. This bound hap-
pens to be worst-case, but for our purpose an amor-
tized bound would do as well, since the resulting
space bound is amortized anyway. This means that
any kind of balanced tree with O(1) amortized struc-
tural update times can be used in place of red-black
trees, Examples include red-black trees with top-
down instead of bottom-up updating [26], weight-
balanced trees [5], and “weak” or “hysterical”
B-trees [15, 16, 261. We also have the option of stor-
ing the items in the external nodes of the tree in-
stead of in the internal nodes (if we store appropriate
keys in the internal nodes to guide searches).

4. APPLICATIONS AND EXTENSIONS
We have proposed a data structure for representing
persistent sorted sets. Our structure has O(log m)
access time, O(log n) update time, and needs O(1)

amortized space per update starting from an empty
set. Here n is the current set size and m is the total
number of updates. Our resource bounds match
those of Cole [lo], but our data structure is on-line
and is simple enough to have potential practical
applications.

As discussed in Section 1, our structure provides
an efficient solution to the planar point location
problem. For a planar subdivision of n line segments,
the preprocessing time necessary to build the data
structure is O(n log n), the space needed is O(n),
and the query time is O(log n). Although these
bounds have been obtained by others [lo, 14, 18, 231,

our method is simple enough to be useful in prac-
tice as well as efficient in theory. The methods of
Kirkpatrick [18] and Edelsbrunner, Guibas, and
Stolfi [13], when combined with a new linear-time
algorithm for triangulating simple polygons [40],

need O(n) preprocessing time rather than O(n log n).
Whether this reduction is important depends on the
application. It is open whether some variant of our
method has O(n) preprocessing time.

Our structure also supports a generalization of the
planar point location problem in which the queries
are of the following form: given a vertical line seg-
ment, report all polygons the segment intersects.
Such a query is equivalent to an access range opera-
tion on the corresponding persistent sorted set and
thus takes O(log n + k) time where k is the number
of reported polygons. This bound has also been ob-
tained by Chazelle [7], but only by using a compli-
cated data structure, the hive graph, which is built as
an extension to a data structure for the planar point
location problem. Our structure solves both prob-
lems at once.

Chazelle gives a number of applications of hive
graphs to geometric retrieval problems; for each of
these, our structure provides a simpler solution. As

an example, given a collection of line segments in
the plane with i crossings, we can in O((n + i)log n)
time construct a data structure of size O(n + i) that,
given a vertical query segment, will allow us to re-
port all data line segments the query segment
crosses in O(log n + k) time, where k is the number
of reported segments. Cole [18] gives several other
applications to which our structure applies.

We have obtained several extensions to the result
presented here, which we shall discuss in detail in a
future paper. The limited node copying technique
generalizes to show that any ephemeral linked data
structure, provided its nodes have constant in-
degree as well as constant out-degree, can be made
persistent at an amortized space cost of O(1) per
structural change and an additive O(log m) time pen-
alty per access. Whereas limited node copying as
discussed in the present paper resembles node-
splitting in B-trees, the generalized technique resem-
bles the “fractional cascading” idea of Chazelle and
Guibas [9]. Among other applications, the general-
ized technique allows the addition of extra pointers,
such as parent pointers and level links [6], to persist-
ent red-black trees.

Our implementation of persistent search trees, al-
though more space-efficient than the path copying
method, is not as versatile. For example, path copy-
ing provides a representation for persistent lists as
well as persistent sorted sets. For the list application,
limited node copying is equivalent to path copying
because the size information necessary for access by
position must be updated all the way along an access
path after any insertion or deletion, causing @(log n)
space usage per update. As noted in Section 2, path
copying also provides the ability to update any ver-
sion, rather than just the current one. Adding addi-
tional pointers, such as parent pointers, to the result-
ing data structure seems difficult. Nevertheless, path
copying can be extended to finger search trees, re-
ducing the space usage for updates in the vicinity of
fingers.

There are many open problems concerning geo-
metric retrieval problems and persistent data struc-
tures. Perhaps one of the most interesting is how to
make our planar point location algorithm, or any
such algorithm, dynamic, so that line segments can
be inserted and deleted on-line. The dynamization
techniques of Bentley and Saxe [4] provide a way to
handle insertions while preserving the O(1) space
bound. However, the access and insertion time be-
comes O(log n)‘). Deletion seems to be harder to han-
dle. An even more challenging problem is to find a
persistent representation for a dynamically changing
planar subdivision. A good data structure for this
purpose would have many applications in computa-
tional geometry [lo].

678 Communications of the ACM july 1986 Volume 29 Number 7

Research Conk

REFERENCES
1.

2.

3.

4.

5.

6.

7.

6.
9.

10.
11.

12.

13.

14.

15.

16.

17.

16.

19.

20.

21.

22.

23.

24.

25.

Ad&on-Velikii. GM. and Landis. E.M. An algorithm for the
organization of information. Souief Math. Dokl. 3, 5 (Sept. 1962).
1259-1262.
Aho, A.V.. Hopcroft, J.E.. and Ullman. 1.0. The Design and Analysis of
Compufer Algorlfhms. Addison-Wesley, Reading, Mass.. 1974.
Bayer, R. Symmetric binary B-trees: Data structure and maintenance
algorithms. Acfa Inform. 1.4 (Nov. 1972), 290-306.
Bentley, J.L.. and Saxe, J.B. Decomposable searching problems I:
Static-to-dynamic transformation. J AIgorifhms I. 4 (Dec. 1980).
301-358.
Blum, N.. and Mehlhorn. K. On the average number of rebalancing
operations in weight-balanced trees. A-78/06. Fachbereich Ange-
wandte Mathematik und Informatik. UniversitBt des Saarlandes.
Saarbrdcken. West Germany, 1978.
Brown, M.R., and Tarjan, R.E. Design and analysis of data structures
for representing sorted lists. SIAM /. Comput. 9, 3 (Aug. 1980),
594-614.
Chazelle. B. Filtering search: A new approach to query-answering.
In Proceedings of 24fh Annual IEEE Symposium on Foundations of
Computer Sc~e&. (Tucson. Ariz.. Nov. 7-9. 1983). 122-132.
Chazelle. B. How to search in history. Inform. Control. to appear.
Chazelle. B.. and Guibas. L.J. Fractional cascading: A data structur-
ing technique with geometric applications. In Aufomafa, Languages,
and Programming, l2fh Colloquium. (Napflion, Greece, July 15-18.
1985): Lecfure Nofes in Compufer Science 194. Wilfried Bauer, Ed.,
Springer-Verlag. Berlin, 1985. 90-100.
Cole. R. Searching and storing similar lists. /. Algorithms. to appear.
Dobkin. D., and Lipton. R.J. Multidimensional search problems.
SIAM J. Compuf. 5, 2 (June 1976). 181-186.
Dobkin. D.P., and Munro, J.I. Efficient uses of the past. In Proceedings
of 2lsf A~rwal IEEE Symposium ou Foundafions of Computer Science,
(Syracuse. N.Y., Oct. 13-16. 1980), 200-206.
Edelsbrunner. H., Guibas. L.J.. and Stolfi, J. Optimal point location in
a monotone subdivision. Rep. 2, Digital Systems Research Center,
Palo Alto, Calif.. 1984.
Guibas. L.J.. and Sedgewick. R. A dichromatic framework for bal-
anced trees. In Proceedings of 19th Annual IEEE Symposium on Foun-
darions of Compufer Science, (Ann Arbor, Mich.. Oct. 16-18. 1978),
8-21.
Huddleston, S.. and Mehlhorn, K. Robust balancing in B-trees, Lec-
fare Notes in Computer Science 104, Springer-Verlag. Berlin, West
Germany (1981). 234-244.
Huddleston. S.. and Mehlhorn. K. A new data structure for repre-
senting sorted lists. Acta Inform. 17, 2 (June 1982), 157-184.
Huddleston, S. An efficient scheme for fast local updates in linear
lists. Department of Information and Computer Science, Univ. of
California, Irvine. 1981.
Kirkpatrick, D. Optimal search in planar subdivisions. SIAM \. Com-
puf. 12. 1 (Feb. 1983). 28-35.
Knuth. D.E. The Art of Comparer Programming, Vol. I: Fundamental
Algorithms. 2d. ed.. Addison-Wesley. Reading, Mass.. 1973.
Kosaraju. S.R. Localized search in sorted lists. In Proceedings of 13th
Annual ACM Symposium on Theory of Computing, (Milwaukee, Wis..
May 11-13. 1981). 62-69.
Krijnen. T.. and Me&ens, L.G.L.T. Making B-trees work for B. IW
219/83. The Mathematical Centre. Amsterdam, The Netherlands,
1983.
Lee, D.T., and Preparata. F.P. Location of a point in a planar subdivi-
sion and its appiications. SlAM /. CompuL 6. 3 (Sept. 1977), 594-606.
Lipton, R.J.. and Tarjan. R.E. Applications of a planar separator theo-
rem. In Proceedings of 18th Annual 1EEE Symposium on Foundations of
Compukr Science, (Providence, R.I., Oct. Il-Nov. 2, 1977). 162-170.
Lipton, R.J., and Tarjan, R.E. A separator theorem for planar graphs.
SlAM /. Appl. Math. 36, 2 (Apr. 19791, 177-189.
Maier, D.. and Salveter, S.C. Hysterical B-trees. Inform. Process. Letf.
12.4 (Aug. 13. 1981). 199-202.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

36.

39.

40.

41.

Mehlhorn. K. Data Sfrucfures and Algorifhms I: Sorting and Searching.
Springer-Verlag. Berlin. 1984.
Myers, E. W. AVL dags. Tech. Rep. 82-9, Department of Computer
Science. Univ. of Arizona. Tucson. Ariz.. 1982.
Myers. E.W. Efficient applicative data types. In ConJerence Record
Eleuenfh Awual ACM Symposium on Principles of Programming
Languages. (Salt Lake City, Utah. Jan. 15-18, 1984), 66-75.
Nievergelt. J.. and Reingold. E.M. Binary search trees of bounded
balance. SIAM 1. Compuf. 2. 1 (Mar. 1973), 33-43.
Olivib. H. A new class of balanced search trees: Half-balanced bi-
nary search trees. RAIRO lnformalique ThPorefique. 16 (1982). 51-71.
Overman. M.H. Searching in the past 1. Inform. Confrol. to appear.
Preparata. F.P. A new approach to planar point location. SIAM /.
Comput IO. 3 (Aug. 1981). 473-482.
Reps, T.. Teitelbaum. T.. and Demers, A. Incremental context-
dependent analysis for language-based editors. ACM Trans. Prog.
Lang. Sysr.. 5 (1983). 449-477.
Sarnak. N. Persistent data structures. Ph.D. dissertation, Department
of Computer Science, New York University. New York, to appear.
Sleator. D.D.. and Tarjan. R.E. Self-adjusting binary search trees. I.
ACM 32, 3 (July 1985), 652-686.
Swart, G. Efficient algorithms for computing geometric intersections.
Tech. Rep. #85-01-02. Department of Computer Science. Univ. of
Washington, Seattle, 1985.
Tarjan. R.E. Dafa Slrucrures and Network Algorithms. Society for In-
dustrial and Applied Mathematics. Philadelphia, Pa.. 1983.
Tarjan, R.E. Updating a balanced search tree in O(1) rotations. ln-
form. Process. Left. 16, 5 (June 1983), 2.53-257.
Tarjan. R.E. Amortized computational complexity. SIAM]. Alg. Disc.
Mefh. 6. 2 (Apr. 1985). 306-318.
Tarjan, R.E., and van Wyk. C.J. A linear-time algorithm for triangu-
lating simple polygons. In Proceedings of 18th Annual ACM Symposium
on Theory of Computing. (Berkeley. Calif., May 28-30. 1985). to ap-
pf?iV.

Tsakalidis, A.K. AVL-trees for localized search. Lecture N&es in Com-
pufer Science 172, Springer-Verlag. Berlin, West Germany (1984),
473-485.

CR Categories and Subject Descriptors: E.l[Data]: Data Structures-
graphs. lists, trees: E.P[Data]: Data Storage Representations-linked repre-
sentations; F.Z.Z[Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems-computations on discrete struc-
tures, geomekical problems and compufations: 1.3.5[Computer Graphics]:

General Terms: Algorithms, Theory
Additional Key Words and Phrases: post-office problem, planar point

location, persistent data structure. search tree

Received 8/85; revised 10/85: accepted 2/86

Authors’ Present Addresses: Neil Sarnak. IBM T.J. Watson Research
Center, P.O. Box 218. Yorktown Heights, NY 10598. Robert E. Tarjan,
Computer Science Department, Princeton University, Princeton. NJ
08544. and AT&T Bell Laboratories, Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright nbtice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

CORRIGENDUM

David S. Scott and S. Sitharama Iyengar, TID-A
translation invariant data structure for storing im-
ages. Commun. ACM 29, 5(May 1986), 418-429.

Page 425, left column, paragraph 1, sentences 6
and 7 should read:

Maximal square characterization of Figure 9a us:
ing TID structure is described in Table II. Table III
summarizes the best, worst, and average perform-
ante for the various locations.

July 1986 Volume 29 Number 7 Communications of the ACM 679

