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Abstract— There has been considerable interest recently in
building 3D maps of environments using inexpensive depth cam-
eras like the Microsoft Kinect sensor. We exploit the fact that
typical indoor scenes have an abundance of planar features by
modeling environments as sets of plane polygons. To this end, we
build upon the Fast Sampling Plane Filtering (FSPF) algorithm
that extracts points belonging to local neighborhoods of planes
from depth images, even in the presence of clutter. We introduce
an algorithm that uses the FSPF-generated plane filtered point
clouds to generate convex polygons from individual observed
depth images. We then contribute an approach of merging these
detected polygons across successive frames while accounting for
a complete history of observed plane filtered points without
explicitly maintaining a list of all observed points. The FSPF
and polygon merging algorithms run in real time at full camera
frame rates with low CPU requirements: in a real world indoor
environment scene, the FSPF and polygon merging algorithms
take 2.5 ms on average to process a single 640 x 480 depth
image. We provide experimental results demonstrating the
computational efficiency of the algorithm and the accuracy of
the detected plane polygons by comparing with ground truth.

I. INTRODUCTION

With the availability of low-cost depth cameras like the
Microsoft Kinect sensor, there has been renewed interest in
building 3D models of indoor environments. Much of the
current work towards the goal of 3D mapping (e.g. [1], [2])
have focused on generating detailed, dense 3D models of
environments. However, typical indoor environments consist
of large planar features that could instead be used to build
simplified models of indoor environments at a fraction of the
memory requirements of dense 3D models. Hence, we are
interested in modeling such indoor environments by extract-
ing the dominant planar features. This could be performed
as a post-processing step by mesh simplification [3] of a
detailed 3D model, or (as we propose) in an incremental,
on-line manner, where for every observed depth image, only
planar regions are extracted to be merged into the model
of the environment. Our approach can therefore be broken
down into the following steps:

1) For every observed depth image, compute polygons to
best approximate the dominant planes in that image.

2) Find correspondences between the polygons in the
current image with the polygons in the map.
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Fig. 1: Results from a test scene: (a) Plane Filtered points
shown as orange points, corresponding convex polygons
shown in blue. The complete 3D point cloud is overlaid as
translucent grey for reference. (b) Map generated by merging
polygons from multiple depth images

3) Iteratively merge corresponding polygons from succes-
sive images, thus growing the map.

Our approach uses the Fast Sampling Plane Filtering
(FSPF) algorithm [4], which extracts points belonging to
local neighborhoods of planes from depth images, even in the
presence of clutter. Given the FSPF generated neighborhoods
of local planar points, we first compute the plane parameters
of each neighborhood by eigenvector decomposition of the
scatter matrix, and then construct a convex hull over the
points to define the polygon boundary. The scatter matrix
for each polygon is stored in a decoupled manner which, as
we shall show, allows us to merge polygons over successive
observations and compute the least square fit over all ob-
served points over time without having to explicitly maintain
a list of them. We introduce an image render based ray-
casting method for determining correspondences between the
polygons observed in the latest depth image, to the polygons
in the map. Polygons in the latest depth image that do not
correspond to any existing polygons in the map are added as
new polygons to the map.

To illustrate the key processed results of polygon con-
struction and merging, Fig. 1 shows the plane filtered points
and polygons from a single frame, and the map obtained by
merging 15 depth image frames from a sample scene.

We provide experimental results demonstrating the accu-
racy of the polygon estimation and merging algorithms when
compared to ground truth, and also provide results from a
number of differing indoor scenes.



II. RELATED WORK

The problem of plane (and general geometric shape)
detection from raw 3D point clouds has been studied in
the past(e.g. [5], [6]), where the plane (or general shape)
detection is performed offline, typically as a post-processing
step on the complete 3D point cloud. On the other hand,
real-time online approaches that use data from depth images
can exploit the fact that depth cameras make observations in
“2.5D”: the depth values are observed on a (virtual) 2D im-
age plane originating from a single point. Region growing [7]
exploits the local correlation in the depth image and attempts
to assign planes to every 3D point. The Fast Sampling Plane
Filtering algorithm (FSPF) [4] instead samples points at
random and uses RANSAC [8] in local neighborhoods.

A number of 3D mapping algorithms (e.g., [9], [10],
[11]) have been developed that build maps using 3D points
in space. An alternative approach to mapping using the
raw 3D points is to map using planar features extracted
from the 3D point cloud (e.g., [12], [13]). Approaches to
extraction of geometric features in point clouds include 3D
Hough transform [14] and region growing [7]. In particular,
3D Plane SLAM [15] is a 6D SLAM algorithm that uses
observed 3D point clouds to construct maps with 3D planes.
In this approach, plane detection relies on region growing for
plane extraction, whereas our approach uses local RANSAC
filtering of the depth image.

Recent approaches have enabled dense 3D reconstruction
of environments using a single moving RGB camera [2]
or using depth only [16]. The resultant maps of these
approaches are intended to be detailed models of the envi-
ronment, whereas our approach aims at building simplified
models of the environment.

III. PLANE POLYGON CONSTRUCTION AND MERGING

Given an observed raw depth image I, FSPF creates a list
P of n 3D points that belong to local planes and a list R of
the associated plane normals.

A. Polygon Construction

From the plane filtered point cloud P, local neighbor-
hoods of points are merged to form local convex poly-
gons. A convex polygon is denoted by the tuple ¢ =
{P,n,f), r,b1,bo, B} where P is the set of 3D points used
to construct the convex polygon, n the number of points
in P, p the centroid of the polygon, r the normal to the
polygon plane, by and by the 2D basis vectors on the plane
of the polygon and B the set of 3D points that define the
convex boundary of the polygon. Given a neighborhood of
plane filtered 3D points P, a convex polygon c is constructed
from P as follows:

1) The polygon centroid p is computed as p =

LS D
n p,EP R

2) The scatter matrix S of the points in P is computed

as S =3 cp(pi—p)pi—p)".

3) The normal r is then given by the eigenvector of S

corresponding to its smallest eigenvalue.

4) The orthogonal basis vectors that span the plane, by
and by are the remaining two eigenvectors of S.

5) The boundary set B is found using Graham scan [17]
over the points of P projected onto the plane.

In this work, we assume the pose of the depth camera
sensor has already been registered with respect to a global
reference frame. This could be done (for example) using
one of the variants of iterative closest point (ICP) based
approaches [18]. After pose registration, in order to construct
a meaningful geometric representation of a scene, it is
necessary to merge the observed polygons from multiple
scenes to form a single, “global scene”. This is done in two
steps:

1) Correspondence Matching: Polygons in the latest

frame are matched to polygons in the global scene.

2) Polygon Merging: Matched polygons are merged to

update the plane parameters and the convex hull of
the polygons in the scene.

B. Correspondence Matching

Given a set M = {pM} of polygons that represent the
map of polygons constructed so far and the set O = {pjo}
of observed polygons in the latest depth image, the corre-
spondence matching problem is to find out which polygons
pjo in the current depth image overlap with which polygons
pM in the map. In our approach, we solve this problem using
ray casting:

1) A unique color is assigned to each polygon p} in the

map M.

2) A virtual camera with the same optical parameters
(pixel size, field of view) as the actual depth camera
is set up at the location found by pose registration.

3) The color-coded polygons are then rendered to an
image as viewed by the virtual camera.

4) The pixel location of each plane filtered point in the
depth image is then used to look up the color of
the corresponding pixel in the rendered image, thus
indicating the map polygon corresponding to that point.

The image rendering step, when performed using OpenGL
and accelerated by an nVidia GeForce GTX 560 GPU,
runs at an average of 3800 frames per second. After esti-
mating observation to map polygon correspondences, these
correspondences are further checked to ensure that matched
polygons have an offset distance of less than 7, and that the
angle difference between their normals is at most 6. n and
0 are configurable parameters, and in our experiments are
set to 0.0lm and 1.0° respectively. Observed polygons p?
that do not correspond to any map polygon are assumed to
be new polygons, and added to the map M without merging
with any existing polygon.

C. Polygon Merging

When merging the latest depth image observation with the
map built so far, the polygons extracted from the latest depth
image need to be merged with the corresponding polygons
in the map built so far. The problem of polygon merging is
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Fig. 2: Correspondence matching: Polygons in the map are
uniquely color-coded (a), and from the perspective of a
virtual camera (b) rendered in an image (c). Correspondences
of pixels in the observed depth image (d) are then determined
by inspecting the color of the same pixel in the rendered
image.

thus: given two convex polygons c!, c?, we wish to construct
a merged polygon ¢™ using the 3D points from both planes
c' and 2.

A naive approach to merging polygons
ct = (P, n', 5", rt, bt 0L, B} and 2 =
{P2 n2 p% 12 12,02, B2} to form merged polygon
cm = {pm,nm,pm,rm,bz,b?,Bm} is to combine the

3D points as pm = pt U P? and then compute all other
polygon parameters from P™. In practice, this is infeasible
since it requires a complete history of all 3D points ever
observed to be maintained and the amount of available
memory is finite.

It is, however, possible to perform polygon merging with-
out maintaining a complete history of all observed 3D points
by in a manner analogous to the parallel computation of
covariance matrices [19]. Scatter matrices from two different
polygons cannot be directly combined due to the coupling
in S between the points p; and the centroid. However, S 1
may be decoupled as S* = S} —n'S} where S; depends on
the 3D points in P*, and S} on the centroid p'. S} and SJ
are then given by S} = Zp%p}T and S3 = p'p'T. Given
the centroids p' and p? of the two polygons, the centroid
p™ of the merged polygon is computed as their weighted
mean. Thus, the matrix 55" of the merged polygon can be
computed from p"™ and the scatter matrix of the combined
polygon is given by S™ = St + S2 + n™ S,

Therefore, the matrix S?! along with centroid p and the
number of points n is sufficient for merging polygons based
on the complete history of observed 3D points, and the
individual 3D points no longer need to be maintained for
each polygon.

One implementation detail remains: to ensure numerical
stability over time, the algorithm performs the eigenvector
decomposition on the normalized matrix %S, and maintains
normalized matrices %Sl instead of Sj.

The convex boundary point set B™ of the merged polygon
is computed by running Graham scan on the union of the
points from the boundary point sets B' and B? of the

constituent polygons.
The complete set of steps of our polygon merging algo-
rithm are thus:

1) Compute centroid p™

2) Compute scatter matrix S™

3) Compute normal r™ and basis vectors b7*, 05" by
eigenvector decomposition of S

4) Compute boundary point set B" using Graham scan
on plane projected points from B! B2

The merged polygons in the map are thus updated using
all observed points so far that correspond to them.

IV. EXPERIMENTAL RESULTS

We performed two sets of experiments to demonstrate the
computational efficiency and effectiveness of FSPF and the
polygon merging algorithms. First, we collected data for a
controlled scene with and without clutter, with ground truth.
This ground truth data evaluates the accuracy of the merged
polygons, both with respect to the observed depth image, as
well as with respect to the measured ground truth. We then
tested the FSPF and polygon merging algorithms on a set of
real indoor scenes.

A. Ground Truth Comparison

We constructed a scene with planar features (Fig. 4a)
including planes at various angles and different levels of
occlusion. We then recorded depth image data from the
scene and built a map of the scene using our algorithm. The
errors in raw observation were evaluated by comparing the
reconstructed 3D points with the ground truth values. We
refer to this error comparison as the “point to ground truth”
(PG) error. Fig. 4c shows the point to ground truth errors in
observation for different parts of the image. Fig. 4b shows the
map of polygons reconstructed from the scene. Except for the
top surfaces of the two boxes on the right, all the dominant
planes in the image are extracted by the algorithm. Fig. 4d
shows the errors between the 3D points reconstructed from
the depth image and the built map. We refer to this error
comparison as the “point to map” (PM) error.

To evaluate the accuracy of the polygons in the built map,
points on the polygons are uniformly sampled at intervals
of 0.5c¢m, and these 3D points are compared to the ground
truth. We refer to this error comparison as the “map to ground
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Fig. 3: Cumulative histogram of errors in mapping the
clutter-free scene: (PG) depth image vs. ground truth, (PM)
depth image vs. built map and (MG) built map vs. ground
truth.
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Fig. 4: Ground truth in a clutter-free scene: (a) RGB Image of the scene , (b) The map built by the polygon extraction and
merging algorithm, (c) Errors between points in depth image compared to ground truth, and (d) compared to built map.
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Fig. 5: Cumulative histogram of errors in mapping the scene
with clutter: (PG) depth image vs. ground truth, (PM) depth
image vs. built map, and (MG) built map vs. ground truth

truth” (MG) error. Fig. 3 shows a cumulative histogram of
the three error comparisons.

We next evaluate the effect on the error in polygon map
building due to the presence of clutter in the scene. Fig. 6a
shows a controlled scene with added objects of clutter.
Fig. 6¢ shows that the point to ground truth error is notice-
ably large in the regions of the scene corresponding to the
objects of clutter. Fig. 6d shows that the built map(Fig. 6b)
has lower errors than the point to ground truth case, but parts
of the scene are unmapped. In spite of the local occlusions
due to clutter on the boxes, the surfaces of the boxes are still
reconstructed by the FSPF and polygon merging algorithms,
and as Fig. 5 shows, the polygons that are constructed in the
scene are still observed to have a maximum error of 2cm.

B. Real World Scene Tests

The FSPF and polygon merge algorithms were tested
on data collected from 5 scenes that we selected as rep-
resentative of our environment. At each scene, the Kinect
sensor was kept static, so no pose update was necessary.

For each scene, the polygons from 15 consecutive frames
were merged to generate a set of polygons that represent
the entire scene. Fig. 7 shows the scenes and the processed
output from each scene, while Table I summarizes the output
and processing times for the algorithms for each scene. The
sampling efficiency for each scene is computed as the ratio
of the mean number of plane filtered points per frame to the
mean sampled locations per frame. The FSPF run time is per
frame, and the polygon merge processing time is for all the
polygons per frame.

Scene 1 has three boxes in the corner of a room. The
merged scene polygons correctly include all the planes in
the scene except two (the tops of the boxes on the left and
center). Scene 2 is set in a corridor, and lacks clutter. The
merged scene polygons correctly include all the polygons in
the scene near the Kinect. Scene 3 is set in an open area next
to a staircase. The merged scene polygons include the ground
polygon, the side of the staircase, and the overhanging
staircase. Scenes 4 and 5 show work areas with chairs and
tables. Despite the clutter, all table surfaces are correctly
identified among the merged scene polygons. Scene 5 had a
toy chair on top of the table, and the merged scene includes
its corresponding polygons as well.

V. CONCLUSION

In this paper, we introduced algorithms to generate con-
vex polygons from single depth images, and to merge the
polygons over time based. We experimentally showed the
computational efficiency of FSPF and polygon merge algo-
rithms. and evaluated their accuracy based on ground truth.
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Fig. 6: Ground truth in a scene with clutter: (a) RGB Image of the scene , (b) The map built by the polygon extraction and
merging algorithm, (c) Errors between points in depth image compared to ground truth, and (d) compared to built map.
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Fig. 7: Test scenes 1-5 (top to bottom). First column shows the RGB image of the scene, second column the depth image,
third column the plane filtered points (orange points) and polygons (lilac) for a single depth image frame, fourth column
the polygons generated by merging 15 consecutive processed depth image frames. Columns 2 and 3 include overlays of the
raw 3D point cloud (translucent white) for reference.



