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In this paper we consider planar random motions with four directions and four

different speeds, switching at Poisson paced times.  We are able to obtain, in

some cases, the explicit distribution of the position ,  in all itsÐ\Ð>Ñß ] Ð>ÑÑ >  !
components (the discrete one, lying on the edge  of the probability support`U>

U U> >, as well as the absolutely continuous one, concentrated inside ).
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1. Introduction

Many concrete situations suggest the idea of planar random motions with drift.

 The usual description of such motions based on Wiener process has some basic draw-

backs. For example, the velocity of a Wiener particle is infinite and its sample paths have a

fractal structure. We suggest a more realistic model where the trajectories are composed by

finite-length segments and are run at finite velocity (changing with directions).

 Furthermore, we observe that under a suitable rescaling, these motions can be appro-

ximated by the usual planar Brownian motion.

 In principle, the number of possible directions of motion, as well as the angle formed by

each segment of the trajectories, should be arbitrary. However it can be easily realized that

the mathematical difficulties implied by the treatment of motions with an arbitrary number of

directions cannot be overcome and we are obliged to consider cases which represent

reasonable approximations of the reality with an acceptable level of mathematical difficulty.It

seems to us that a balanced compromise is obtained by considering a planar motion with four

possible directions  with four different velocities , .H - 5 œ !ß "ß #ß $5 5

 The minimal number of directions of a non-trivial planar motion is three (changing

cyclically or randomly) but the probabilistic results which can be obtained are not completely

satisfactory (see [2] and [5]).

1Supported by RFBR, grant No. 99-01-00989.
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 The case of planar motions with four possible orthogonal directions and coinciding velo-

cities (i.e. without drift) has been analyzed in two papers [3, 4]. The models considered in

these papers differ because the chance mechanism governing the changes of direction is

different.

 In this paper we assume that the directions  are run at velocities  and that the changesH -5 5

among them are governed by a homogeneous Poisson process with rate .  More-  !
precisely, if the particle is moving with direction  and a Poisson event occurs, then it willH5

move either with direction  or  (with probability ).H H "Î#5" 5"

 Therefore reflection and continuation on the same direction are excluded.  The assumption

that no reflection is possible after each change of direction plays a central role in our analysis.

 For the probabilistic description of the random motion, we consider the position of the

particle   and the related distributionÐ\Ð>Ñß ] Ð>ÑÑß >  !

Pr .1Ö\Ð>Ñ − .Bß ] Ð>Ñ − .C×Þ Ð" Ñ

The motion with four orthogonal directions and coinciding velocities ,  - œ - 5 œ !ß "ß #ß $ß5

and orthogonal deviations at Poisson times is examined in [4]. In this case all components of

the distribution, in the set  of possible positions (having the form of a rotated square), haveU>

been obtained. In particular, the singular component of (1.1) for  and above all,ÐBß CÑ − `U>

the joint distribution (1.1) inside  have been derived explicitly (this is so far the uniqueU>

case).

 In the present paper, the assumption that the four velocities  differ implies that the set of-5
possible positions of the randomly moving particle is an irregular quadrangle.

 The particle can be located either inside  (when at least two speed changes have beenU>

recorded) or on the edge  (if the particle always chooses the outward pointing direction).`U>

 In Section 2 we derive the fourth-order hyperbolic equation governing the distribution

(1.1) (see formula (2.5)) and despite all our efforts could not be further investigated. In the

symmetric case, this coincides with equation (2.6) and has been extensively examined in [4].

 The difficulties connected with the analysis of this type of planar motion with drift (with

four different orthogonal velocities) are somehow circumvented in Section 3, where three

directions ,  are assumed collinear with the axes and run with velocities  andH 5 œ !ß "ß # -5 5

the fourth one has components  (see Figure 2). The basic advantage ofH œ Ð-  - ß  - Ñ% ! # "

this assumption is that the random position  can be expressed as a suitable linearÐ\Ð>Ñß ] Ð>ÑÑ
combination of two independent, one-dimensional, telegrapher's processes with drift.

 Recently, the explicit distribution of the telegrapher's process (depending on two different

velocities and two different rates) has been obtained (see [1]). This permits us to derive the

joint distribution of the particle's position inside  (formula (3.11)) and the distribution onU>

the edge  (see Remark 3.4).`U>

 All these results generalize those of [4] and permit us to give a mathematical description of

planar motion with a drift, roughly coinciding with the diagonal of the set  depicted inU>

Figure 2.

 In Section 3 we present an analytical approach to the derivation of the distribution of the

particle, by deriving and solving its governing equation. By means of the solutions of this

equation, we are able to construct the singular components of the distribution (on the edge

`U Ñ U Ñ> > and the absolutely continuous part (lying inside .

 We also verify that these distributions (obtained by means of analytical tools) coincide

with those obtained directly from the representation (2.9) of the planar motion in terms of

one-dimensional telegraph processes with drift.
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2. Description of the Model and Derivation of the Equations Governing

 the Distributions

We assume that a particle (initially in the origin) can move according to the four orthogonal

directions

H œ - - 5 œ !ß "ß #ß $Þ Ð#Þ"Ñ5 5 5
5 5
# #

˜ ™cos , sin , 1 1

The changes of direction are governed by a homogeneous Poisson process (with rate )-  !
and we suppose that at each Poisson event (  is the cumulative number of events up toRÐ>Ñ
time ) the particle can move from  to  (i.e. only on the line orthogonal to which it> H H5 5„"

was moving on) and the two possible directions are chosen with equal probability . We"Î#
point out that reflecting backwards on the same line considerably complicates the analysis,

even in the case where , .- œ - 5 œ !ß "ß #ß $5

 We note that at time , the set  of possible positions is the quadrangle depicted in Figure> U>

1 (where two sample paths are sketched, one ending on the edge  and one inside ).`U U> >

Figure 1
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 We remark that, with probability , the particle lies, at time , on one of the vertices of/ > >-

U>, while it is located on the outer boundary (excluding the corners) with probability

Pr corners PrÖÐ\Ð>Ñß ] Ð>ÑÑ − `U  × œ ÖRÐ>Ñ œ 5×>

∞

5œ"

"
#5"

Ð#Þ Ñ2

œ #Ð/  / ÑÞ >Î#  >- -

Thus the total amount of probability splits up into three parts, i.e. on the corners, on the edge

`U U> > and inside  (as in the no-drift case, see Orsingher [4]). In this case the distribution

substantially differs on the two latest sets.

 It is a simple matter to realize that the density functions

0 ÐBß Cß >Ñ.B.C œ Ö\Ð>Ñ − .Bß ] Ð>Ñ − .CßHÐ>Ñ œ H ×ß 5 œ !ß "ß #ß $ Ð#Þ Ñ5 5Pr 3

ÐHÐ>Ñ > being the current direction of motion at time ) are solutions of the following

differential system:

ÚÝÝÝÝÛÝÝÝÝÜ

`0 `0
`> `B #! " $ !

`0 `0
`> `C #" # ! "

`0 `0
`> `B ## " $ #

`0 `0
`> `C #$ # ! $

! !

" "

# #

$ $

œ  -  Ö0  0 ×  0

œ  -  Ö0  0 ×  0

œ -  Ö0  0 ×  0

œ -  Ö0  0 ×  0 Þ

Ð#Þ Ñ

-

-

-

-

-

-

-

-

4

With some calculations, it easy to check that the functions , , as well as0 4 œ !ß "ß #ß $4

: œ 0$
4œ! 4 satisfy the fourth-order equation

’ “ˆ ‰ ˆ ‰` ` ` `
`> `> `B `B

#
! # ! #   Ð-  - Ñ  - -- -

#

#

Ð#Þ Ñ5

‚    Ð-  - Ñ  - - :’ “ˆ ‰ ˆ ‰` ` ` `
`> `> `C `C

#
" $ " $- -

#

#

     : œ !Þ- - -# ` ` ` `
`> # `B `> # `C

- - - -˜ ™ ˆ ‰ˆ ‰ š ›! # " $   

In the no-drift case, where ,  equation (2.5) coincides with- œ - 4 œ !ß "ß #ß $4

ˆ ‰ ’ “Š ‹` ` ` ` `
`> `> `> `B `C `B `C

# # % ` :  #  -  :  - œ ! Ð#Þ'Ñ- -
# # #

# # # # #

%

 

(see formula (3.9) of [4]).

 We observe that the transformation

: œ / A >-
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converts (2.5) into

’ “ ’ “` ` ` ` ` `
`> `>`B `B `> `>`C `C! # ! # " $ " $

# # # # # #

# # # # Ð-  - Ñ  - -  Ð-  - Ñ  - - A 

Ð#Þ(Ñ

   A œ !-# ` ` ` `
`> # `B `> # `C

- - - -˜ ™ š ›! # " $   

and thus the special case (2.6) into

` ` ` ` ` A
`> `> `B `C `B `C

# # %# # # # %

# # # # # #’ “Š ‹  -  A - œ !Þ Ð#Þ)Ñ-

The presence of the drift considerably complicates the situation. We do not think that it is

possible to obtain solutions to equation (2.7) in a closed form, expressed by means of well-

known functions with which one can construct the distribution of .Ð\Ð>Ñß ] Ð>ÑÑ
 Our idea is to study a less general case where the position vector ,  canÐ\Ð>Ñß ] Ð>ÑÑ >  !
be expressed in terms of a suitable combination of two independent one-dimensional

telegraph processes with drift, say  and  (the complete distribution of which is well-Y Z
known, see [1]).

 We assume that  and  have parameters  and velocities  andYÐ>Ñ Z Ð>Ñ Î# Ð- ß  - Ñ- ! #

Ð- ß  - Ñ" $ , respectively.

 Our process is defined as

Ú
ÛÜ

š ›
š ›

\Ð>Ñ œ

] Ð>Ñ œ  Þ
Ð#Þ*Ñ

-
- - -

- Y Ð>Ñ- Z Ð>Ñ

- Y Ð>Ñ- Z Ð>Ñ
- -

!

" ! #

" #

" !

! #

The set of possible values of the random vector defined in (2.9) is the quadrangle  withU>

vertices

E ´ Ö- >ß !× F ´ Ö!ß - >×ß! ",     

G ´  >ß > Ð#Þ"!Ñš ›- - - - - - - -
- - - - -
! # " $ " # ! $

" ! # ! #
  

H ´ >  - > Þš ›- - - - - - -
- - - - -!
! " ! # $ " $

" ! # ! #
 ,  

The joint distribution of  , isÐY Ð>Ñß Z Ð>ÑÑß >  !

:Ð?ß @ß >Ñ œ :Ð?ß >Ñ:Ð@ß >Ñ

where  and (consult [1], formulaÐ?ß @Ñ − V œ ÖÐ?ß @ÑÀ  - > Ÿ ? Ÿ - >ß  - > Ÿ @ Ÿ - >×> # ! $ "

(4.3))
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:Ð?ß >Ñ
Ð#Þ""Ñ

œ M Ð?  - >ÑÐ- >  ?Ñ  M Ð?  - >ÑÐ- >  ?Ñ/ `
- - # - - `> - -! # ! ! # !
 >Î#

" # ! # ! #

-

 ’ Š ‹ Š ‹È È- - -

“Š ‹È M Ð?  - >ÑÐ- >  ?Ñ  Ö Ð?  - >Ñ  Ð?  - >Ñ×Ð- - Ñ
# `? - - #

` /
! # ! # !

# !

! #

 >Î#

 - -

$ $

:Ð@ß >Ñ
Ð#Þ"#Ñ

œ M Ð@  - >ÑÐ- >  @Ñ  M Ð@  - >ÑÐ- >  @Ñ/ `
- - # - - `> - -! $ " ! $ "
 >Î#

" $ " $ " $

-

 ’ Š ‹ Š ‹È È- - -

“Š ‹È M Ð@  - >ÑÐ- >  @Ñ  Ö Ð@  - >Ñ  Ð@  - >Ñ×Ð- - Ñ
# `@ - - #

` /
! $ " $ "

$ "

" $

 >Î#

 .- -

$ $

We emphasize that, in the case of planar, symmetric motion, with four directions, that is

- œ - 4 œ !ß "ß #ß $ß U4 >,  the set  reduces to the square

W œ ÖÐBß CÑÀ ± B  C ± Ÿ ->ß ± B  C ± Ÿ ->× Ð#Þ"$Ñ>

and the representation (2.9) takes the form

\Ð>Ñ œ ÐYÐ>Ñ  Z Ð>ÑÑ

] Ð>Ñ œ  ÐYÐ>Ñ  Z Ð>ÑÑÞ
Ð#Þ"%Ñ

"
#
"
#

If , , the motion is obtained by composing two independent telegraph processes- œ - - œ -# ! $ "

(each one being symmetric but with different velocities). In this case,  reduces to aU>

rhombus and the resulting asymmetry is reflected in the form of equation

ˆ ‰ ’ “š ›` ` ` ` `
`> `> `> `B `C `B `C

# # # # #
! " ! "

` :  #  -  - :  - - œ !Þ Ð#Þ"&Ñ- -
# # #

# # # # #

%

 

An intermediate situation occurs when only one direction is run with asymmetrically valued

velocities (say the horizontal axis with velocities  and the vertical one with .- ß - „ - Ñ! # "

 In this case, in order to maintain the independence of the components of  andÐ\Ð>Ñß ] Ð>ÑÑ
thus representation (2.9), the quadrangle  must have verticesU>

E ´ Ö- >ß !× F ´ Ö!ß - >×ß! ",  

G ´  >ß - > Ð#Þ"'Ñš › #- - - -
- - - -"

! # # !

! # ! #

H ´ - >  > Þš ›!
- - #- -
- - - -
! # ! "

! # ! #
,   

As with the general motion represented by (2.9), here the assumption of independence of the

components  implies that two directions of motion are not collinear with the axes. InYß Z
order to preserve representation (2.9) and approximate as much as possible the general
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situation described in the first part of this section, we assume that one velocity value, for

example , is a function of the other three as follows-$

- œ Þ$
- -
-
" #

!

The set  of possible positions is represented in Figure 2, where two sample paths are alsoU>

drawn.

Figure 2

 The first three directions of motion coincide with ,  and H 5 œ !ß "ß # H œ5 %

Ð-  - ß  - Ñ H Ñ! # " % (one trajectory of Figure 2 twice chooses direction .

 It must be emphasized that, in the case of planar motion with drift, the orthogonality of

directions, in general, excludes the possibility of representing  as the linearÐ\Ð>Ñß ] Ð>ÑÑ
combination of independent, one dimensional, processes. On the other way independence

excludes orthogonality of directions.

3.  Probabilistic Analysis of Motion
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As stated above, we here examine in detail the case (related to Figure 2) where the possible

directions of motion are represented by three vectors collinear to the axes and one has

components . This permits us to obtain the exact distribution of the positionÐ-  - ß  - Ñ! # "

vector  in all its components and to obtain a probabilistic description of planarÐ\Ð>Ñß ] Ð>ÑÑ
motions with drift. The differential system governing the distributions (2.3) reads

ÚÝÝÝÝÛÝÝÝÝÜ

`0 `0
`> `B #! " $ !

`0 `0
`> `C #" # ! "

`0 `0
`> `B ## " $ #

`0 `0 `0
`> `B `C #! # " #

! !

" "

# #

$ $ $

œ  -  Ö0  0  #0 ×

œ  -  Ö0  0  #0 ×

œ -  Ö0  0  #0 ×

œ  Ð-  - Ñ  -  Ö0 

-

-

-

- 0  #0 ×Þ

Ð$Þ"Ñ

! $

The functions  as well as  satisfy the fourth-order equationA œ / 0 A œ A4 4 4
> $

4œ!
-

’ “ ’ “` ` ` ` ` ` `
`> `>`B `B `> `>`B `C `B`C! # ! # ! # " ! #

#
"

# # # # # # #

# # # # Ð-  - Ñ  - -  Ð-  - Ñ  -  - Ð-  - Ñ A     

Ð$Þ#Ñ

  A œ !-# ` `
`> # `B

Ð- - Ñ
#š ›! #   

which coincides with (2.8) when ,  and with (2.15) if  (after the- œ - 4 œ !ß "ß #ß $ - œ -4 ! #

introduction of exponential transformation).

 Equation (3.2) can be further simplified by means of the Galilean transformation

Ú
ÛÜ

B œ B  >

C œ C
> œ >

Ð$Þ$Ñ

w - -
#

w

w

! #

which leads to

’ “ ’ “` ` ` ` ` `
`> % `B `> % `B `C `B `C

Ð- - Ñ Ð- - Ñ #
" " ! #

# # # # # #

w# w# w# w# w# w w
! # ! #

# #

           -  - Ð-  - Ñ A

Ð$Þ%Ñ

 œ !Þ-# ` A
`>

#

w#

Equation (3.4) can be rewritten as follows (deleting the )w
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` A ` ` ` `
`> `> # `B `C `B`C

# #- -
" " ! #

% # # # #

% # # #

# #
! #       -  - Ð-  - Ñ Aš ›-

Ð$Þ&Ñ

  -  - Ð-  - Ñ A œ !Ð- - Ñ Ð- - Ñ
% `B % `B `C `B`C

` ` ` `#
" " ! #

! # ! #
# ## # # #

# # #  .š ›
From our point of view, equation (3.5) has the advantage that the odd order derivatives with

respect to time  are absent. This makes the derivation of the explicit distribution of>
Ð\Ð>Ñß ] Ð>ÑÑ >  !, , possible (despite the presence of drift).

 We emphasize here that, in the case where the distribution is directed by Equation (2.5),

all orders of the time derivatives appear and this makes the analytical approach prohibitively

complex.

 Clearly the Fourier transform

JÐ ß ß >Ñ œ / AÐBß Cß >Ñ.B.C Ð$Þ'Ñα " ' ' 
V

3 B3 C

#

α "

is a solution to the biquadratic equation

. J . J
.>

# # # #- -
# .>" " ! #

% #

%

# #
! #

#    -  - Ð-  - Ñš ›- α " α"

Ð$Þ(Ñ

 Ð-  - Ñ  -  - Ð-  - Ñ J œ !Þα#
! #

#

% %! # " ! #
# # # #Ð- - Ñ

"š ›α " α"

The four roots of the algebraic equation associated to (3.7) are

< œ „  Ð-  - Ñ „  Ð-  - Ñ Ð$Þ)Ñ"
#

# # # #
" # " !˜ ™È È- " α - " α

and thus the general solution of equation (3.7) has the form

JÐ ß ß >Ñ œα "

E/
> >
# #

# # # #
" # " ! È È- " α - " αÐ- - Ñ  Ð- - Ñ

F/
> >
# #

# # # #
" # " !È È- " α - " αÐ- - Ñ  Ð- - Ñ

Ð$Þ*Ñ

 G/ Ð- - Ñ  Ð- - Ñ> >
# #

# # # #
" # " ! È È- " α - " α

H/ Ð- - Ñ  Ð- - Ñ> >
# #

# # # #
" # " !È È- " α - " α

EßFßGßH being arbitrary constants.

 To check this, we write equation (3.7) in the more convenient form

. J " . J
.> # .>

# # # #
" # " !

% #

% #   Ö  Ð-  - Ñ   Ð-  - Ñ ×- " α - " α
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 Ð-  - Ñ  -  - Ð-  - Ñ J Ð$Þ"!Ñα#
! #

#

% %! # " ! #
# # # #Ð- - Ñ

"š ›α " α"

œ  ÖL O ×. J " . J
.> # .>

# #% #

% #  

 Ð-  - Ñ  -  - Ð-  - Ñ J œ !Þα#
! #

#

% %! # " ! #
# # # #Ð- - Ñ

"š ›α " α"

where , .L œ  Ð-  - Ñ O œ  Ð-  - ÑÈ È- " α - " α# # # #
" # " !

 The related algebraic equation is

<  < ÖL O ×  Ð-  - Ñ  -  - Ð-  - Ñ œ !Þ% # # # # # # #"
# % %! # " ! #

Ð- - Ñ
" α#

! #
#š ›α " α"

A routine calculation shows that

<  < ÖL O ×% # # #"
#

 (inserting (3.8))œ

   œ  ÐL OÑ ÐL O ÑÐLOÑ
#

"
#

# # #
%

% $

 œ L O #L O
#

% % # #

%

 œ Ð- - Ñ Ð- - Ñ #Ð- - Ñ Ð- - Ñ
#

" # " ! " # " !
% % # #

%

" α " α " α " α

     œ   Ð-  -  - - Ð-  - ÑÑ  Ð-  - Ñ
α α " α "% # # #

# !
%

$
"

# #

# # #
"Ð- - Ñ

#
-

# #
$ $ #
# ! ! # # ! ! #

-

  œ  Ð-  - Ñ  -  - Ð-  - Ñ ßα#
! #

#

% %! # " ! #
# # # #Ð- - Ñ

"š ›α " α"

which concludes our verification.

 We are able to derive the distribution of  in two ways. The first approach isÐ\Ð>Ñß ] Ð>ÑÑ
based on the representation (2.9) of motion (with the assumption that , while the- œ - - Î- Ñ$ " # !

second method is analytical and uses the solution (3.9) of the Fourier transform (3.6) of the

governing equation (3.2).

 We are now in a position to state the basic result of this section.

  Theorem 3.1:  The absolutely continuous part of the distribution of   isÐ\Ð>Ñß ] Ð>ÑÑß >  !

:ÐBß Cß >Ñ œ M ÐB  C  - >ÑÐ- >  B  Ñ/
- Ð- - Ñ # - - - - C! # !

- - >

" ! # ! # " "

# #
- ’ Š ‹É- -

 M ÐB  C  - >ÑÐ- >  B  CÑ Ð$Þ""Ñ`
`> - - - -! # !

- -Š ‹É-
! # " "

# #
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 -  - M ÐB  C  - >ÑÐ- >  B  CÑ “š › Š ‹É   
Ð- - Ñ
#Ð- - Ñ `B `C - - - -! " ! # !

` ` - -# !

# ! ! # " "

# #-

’ Š ‹É- -
# - - - -! # !

- -M ÐB  C  - >ÑÐ- >  B  CÑ
! # " "

! !

 M ÐB  C  - >ÑÐ- >  B  Ñ`
`> - - - - C! # !

- -Š ‹É-
! # " "

! !

 -  - M ÐB  C  - >ÑÐ- >  B  Ñ   .
Ð- - Ñ
#Ð- - Ñ `B `C - - - - C# " ! # !

` ` - -# !

# ! ! # " "

! ! “š › Š ‹É-

 Proof:   We consider the transformation

B œ

C œ 
Ð$Þ"#Ñ

-
- - -

- ?- @

- ?- @
- -

!

" ! #

" #

" !

! #

 

and its inverse

? œ B  C

@ œ C  B
Ð$Þ"$Ñ

-
-
-
-

#

"

"

!

with Jacobian

N œ œ Þ» »
`? `?
`B `C
`@ `@ -
`B `C

- - ! #

!

The joint distribution of  becomesÐ\Ð>Ñß ] Ð>ÑÑ

:ÐBß Cß >Ñ œ : ÐB  Cß >Ñ: ÐC  Bß >Ñß Ð$Þ"%Ñ- -
- - -Y Z

- -! #

! " !

# "

where  is given in (2.11) and  in (2.12), with .  In performing (3.14) it: : - œ - - Î-Y Z $ " # !

should be kept in mind that, by (3.12), we have that

` " ` `
`? - - `B `C! "œ -  -

! #
š ›  

` ` `
`@ - - - `B `C

- -œ  Þ!

! # "

#š › 

   In the special case where ,  the density (3.11) reduces toRemark 3.1: - œ - 4 œ !ß "ß #ß4
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:ÐBß Cß >Ñ œ M - >  ÐB  CÑ  M - Ð>  ÐB  CÑ/ `
#- # #- `> #-! !

# # # # # #
 >

#

- ‘ˆ ‰ ˆ ‰È È- - -

‘ˆ ‰ ˆ ‰È È- - -
# #- `> #-! !

# # # # # #`M - >  ÐB  CÑ  M - >  ÐB  CÑ

and coincides with (3.5) of [4].

 If , from (3.11) we also obtain- œ - Á -! # "

:ÐBß Cß >Ñ

œ M - - >  Ð- C  - BÑ  M - - >  Ð- C  - BÑ/ `
#- - # #- - `> #- -! ! " ! ! "

# # # #
! " ! "

# # # #
 >

! " ! " ! "

- ’ “Š ‹ Š ‹È È- - -

’ “Š ‹ Š ‹È È- - -
# #- - `> #- -! ! " ! ! "

# # # #
! " ! "

# # # #`M - - >  Ð- C  - BÑ  M - - >  Ð- C  - BÑ
! " ! "

.

In view of constraint (2.2) it is easy to check that

T<ÖÐ\Ð>Ñß ] Ð>ÑÑ − U  `U × œ "  T<ÖÐ\Ð>Ñß ] Ð>ÑÑ − `U ×> > >

œ "  #/  / Þ >Î#  >- -

By considering (3.14) we have that

' ' ' '
U U

- -
- - -Y Z

- -

> >

! #

! " !

# ":ÐBß Cß >Ñ.B.C œ : ÐB  Cß >Ñ: ÐC  Bß >Ñ.B.C

œ [by (3.13)]

œ : Ð?ß >Ñ: Ð@ß >Ñ.?.@' '
V

Y Z

>

œ : Ð?ß >Ñ.? : Ð@ß >Ñ.@' '            - >

- >
Y @

- >

 >

!

#

"

-- -" #
-!

œ [by Remark 5.1 of [1]]

œ "  / ÞŠ ‹
#->

#

It is also very important to note that the bounds of the set  in Figure 2 are implied by theU>

analytical structure of the distribution (3.11).

   The set , where the distribution (3.11) is concentrated, isRemark 3.2: U>

U œ ÐBß CÑÀ  - >  B  C  - >ß  - >  B  C  - > ß> # ! # !
-
- -

-š ›#

" "

!
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represented in Figure 2.

 By means of the Galilean transformation

Ú
ÛÜ

B œ B  >

C œ C
> œ >

Ð$Þ"&Ñ

w - -
#

w

w

! #

the joint density (3.11) becomes

:ÐB ß C ß > Ñw w w

œ M Ð > Ñ  ÐB  C Ñ Ð$Þ"'Ñ/
- Ð- - Ñ # - - # -!

- - w # w w #- >w

" ! # ! # "

! # #
-

 ’ Š ‹É- -

 M Ð > Ñ  ÐB  C Ñ`
`> - - # -!

- - w # w w #-
w

! # "

! # #Š ‹É-

 -  - M Ð > Ñ  ÐB  C Ñ “š › Š ‹ÉÐ- - Ñ
#Ð- - Ñ `C `B - - # -" # !

` ` - - w # w w #-# !

# ! ! # "
w w

! # #-

’ Š ‹É- -
# - - # -!

- - -w # w w #M Ð > Ñ  ÐC  B Ñ
! # "

! # !

 M Ð > Ñ  ÐC  B Ñ`
`> - - # -!

- - -w # w w #
w

! # "

! # !Š ‹É-

 -  - M Ð > Ñ  ÐC  B Ñ “š › Š ‹ÉÐ- - Ñ
#Ð- - Ñ `B `C - - # -! " !

` ` - - -w # w w ## !

# ! ! # "
w w

! # ! -

and is defined in the quadrangle

U œ B ß C À B  C Ÿ > ß C  B Ÿ >w w w w w w w w w
>

-
- # - #

- - - - -š ›¹ ¹ ¹ ¹#

" "

! # ! ! # .

The transformation (3.15) eliminates the drift along the  axis due to different horizontalB
velocities.

 In the next theorem we present the Fourier transform of the absolutely continuous com-

ponent of the distribution (3.11).

   Theorem 3.2: The characteristic function of  isÐ\Ð> Ñß ] Ð> ÑÑw w

KÐ ß ß >Ñ œ / :ÐB ß C ß > Ñ.B .C Ð$Þ"(Ñα " ' '
V

3 B 3 C w w w w w

#

w wα "

œ / "  /"
#

 > > Ð -  - Ñ Î#
Ð -  - Ñ# # #

! "

# #
! "- - α "-

- α "
’Š ‹È È
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 "  / “Š ‹-
- α "

- α "È È
# #

! "

# #
! "

Ð -  - Ñ
> Ð -  - Ñ Î#

’Š ‹"  /-
- α "

- α "È È
# #

# "

# #
# "

Ð -  - Ñ
> Ð -  - Ñ Î#

 "  / “Š ‹-
- α "

- α "È È
# #

# "

# #
# "

Ð -  - Ñ
> Ð -  - Ñ Î# .

   For the convenience of the reader we report formula (5.3) of [1], suitably adapted:Proof:

' / : Ð?ß >Ñ.?3?
Y

#

œ / "  /"
#

 Ö3 Ð- - Ñ ×> >  Ð- - Ñ Î#
 Ð- - Ñ

"
# # ! # !

# # #
# !

# # ## - - #-
- #

’Š ‹È È

 "  / Þ“Š ‹-
- #

- #È È
# # #

# !

# # #
# !

 Ð- - Ñ
>  Ð- - Ñ Î#

In view of formula (3.14) and of the transformation (3.15), we get

KÐ ß ß > Ñ œ / : B  C  > ß >α " w 3 B 3 C w w w w- - - -
- - #

V
Y

-! # ! #

! "
#

w w
#' ' Š ‹α "

: C  B  > ß > .B .CZ
w w w w w w-

- #-
- Ð- - ÑŠ ‹"

! !

" ! #

’ “B œ Ð?  @Ñ  >ß C œ Ð@  ?Ñß > œ >w w w- - - -
- - - # - - -

- -! ! # !

! # " ! # !

# "    

œ / / : Ð?ß >Ñ.? / : Ð@ß >Ñ.@3 >

V V

3 ? 3 @
Y Z

α
- -! #

#

-  - - - Î-  -! # # ! " !
- - - -! # ! #' 'α " α "

œ / Ð-  - Ñ>  Ð$Þ")Ñ3 > " 3 >
# # - - #

-  -
! #

α α " -
- -! #

# ! "

! #
š š ›Š ‹exp
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’Š ‹"  /-
- α "

- α "È È
# #

! "

# #
! "

Ð -  - Ñ
> Ð -  - Ñ Î#

›“Š ‹ "  /-
- α "

- α "È È
# #

! "

# #
! "

Ð -  - Ñ
> Ð -  - Ñ Î#

š š ›’ “" 3 > >
# # - - - - #

- -
! "

- -exp     # !

" ! ! #

" #α " - Ð-  Ñ  -

’Š ‹"  /-
- α "

- α "È È
# #

# "

# #
# "

Ð -  - Ñ
> Ð -  - Ñ Î#

 "  / Þ›“Š ‹-
- α "

- α "È È
# #

# "

# #
# "

Ð -  - Ñ
> Ð -  - Ñ Î#

In the last step, formula (5.3) of [1] has been applied. Some simplifications yield (3.18).

   IfRemark 3.3:

   E œ "  " "
# Ð -  - Ñ Ð -  - Ñ# # # # #

# " ! "
Š ‹ Š ‹- -

- α " - α "È È

 

   F œ "  " "
# Ð -  - Ñ Ð -  - Ñ# # # # #

# " ! "
Š ‹ Š ‹- -

- α " - α "È È

   G œ "  " "
# Ð -  - Ñ Ð -  - Ñ# # # # #

# " ! "
Š ‹ Š ‹- -

- α " - α "È È

   H œ "  " "
# Ð -  - Ñ Ð -  - Ñ# # # # #

# " ! "
Š ‹ Š ‹- -

- α " - α "È È

the Fourier transform (3.17) can be written down as

KÐ ß ß >Ñ œ / E/α "  > >Ð Ð -  - Ñ  Ð -  - Ñ ÑÎ#- - α " - α "’ È È# # # #
! " # "

F/>Ð Ð -  - Ñ  Ð -  - Ñ ÑÎ#È È- α " - α "# # # #
# " ! "

G/>Ð Ð -  - Ñ  Ð -  - Ñ ÑÎ#È È- α " - α "# # # #
# " ! "
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H/ “>Ð Ð -  - Ñ  Ð -  - Ñ ÑÎ#È È- α " - α "# # # #
# " ! "

œ / JÐ ß ß >ÑÞ >- α "

This clearly shows that the function  (  is the joint distribution (3.16) in the/ :ÐB ß C ß > Ñ :-> w w ww

frame  has Fourier transform which satisfies equation (3.10). The Fourier transformÐB ß C ß > ÑÑw w w

of the distribution (3.11) in the frame , denoted by , is thenÐBß Cß >Ñ L
LÐ ß ß >Ñ œ KÐ ß ß >Ñ/ Þα " α " 3 Ð- - Ñ>Î#α ! #

   The components of the singular distribution on the edge  areRemark 3.4À `U>

  on the lines  and Ð3Ñ C  - BÎ-  - > œ ! C  - BÎ-  - - >Î- œ !" ! " " ! " # !

;ÐBß Cß >Ñ œ M ÐB  C  - >ÑÐ- >  B  CÑ/
#Ð- - Ñ # - - - -! # !

- - >

! # ! # " "

# #
- ’ Š ‹É- -

 M ÐB  C  - >ÑÐ- >  B  CÑ Ð$Þ"*Ñ`
`> - - - -! # !

- -Š ‹É-
! # " "

# #

“š › Š ‹É -  - M ÐB  C  - >ÑÐ- >  B  CÑ- -
#Ð- - Ñ `B `C - - - -! " ! # !

` ` - -# !

# ! ! # " "

# #- .

  on  and Ð33Ñ B  - CÎ-  - > œ ! B  - CÎ-  - > œ !# " ! # " !

<ÐBß Cß >Ñ œ M ÐB  C  - >ÑÐ- >  B  CÑ/
#Ð- - Ñ # - - - -! # !

- - >

! # ! # " "

! !
- ’ Š ‹É- - 

 M ÐB  C  - >Ñ Ð- >  B  CÑ Ð$Þ#!Ñ`
`> - - - -! # !

- -Š ‹É-
! # " "

! ! 

“š › Š ‹É -  - M ÐB  C  - >ÑÐ- >  B  CÑ Þ- - - -
#Ð- - Ñ `B `C - - - -# " ! # !

` `# ! ! !

# ! ! # " "

-

Formulas (3.19) and (3.20) can be easily derived from (2.9). Points  on the linesÐBß CÑ
C  - BÎ- œ „ - > B  - CÎ- œ ?" ! " # " can be determined as intersections with . Thus

\Ð>Ñ  - ] Ð>ÑÎ- œ YÐ>Ñ Ð\Ð>Ñß ] Ð>ÑÑ# "  for all  and the distribution on this part of the edge

`U YÐ>Ñ ? œ B  - CÎ-> # " coincides with that of  given by (2.11), where .
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