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Abstract. Let G = { I t , . . . ,  1,} be a collection of  n segments in the plane, none of  

which is vertical. Viewing them as the graphs of  partially defined linear functions 

of  x, let YG be their lower envelope (i.e., pointwise minimum). YG is a piecewise 

linear function, whose graph consists of subsegments of  the segments I~. Hart and 

Sharir [7] have shown that YG consists of at most O(na(n)) segments (where a(n) 

is the extremely slowly growing inverse Ackermann's function). We present here a 

construction of  a set G of  n segments for which YG consists of  ~(na(n)) subseg- 

ments, proving that the Hart-Sharir  bound is tight in the worst case. 

Another  interpretation of  our result is in terms of  Davenport-Schinzel  sequences: 

the sequence Ec  of  indices of  segments in G in the order in which they 

appear along Yc is a Davenport-Schinzel  sequence of  order 3, i.e., no two adjacent 

elements o f  E6 are equal and EG contains no subsequence of  the form 

a . . .  b .  • • a . . .  b" • • a. Hart and Sharir have shown that the maximal length of  

such a sequence composed of  n symbols is O(na(n)). Our result shows that the 

lower bound construction of  Hart and Sharir can be realized by the lower envelope 

of  n straight segments, thus settling one of  the main open problems in this area. 

1. Introduction 

Let  G be  a set  o f  n s t ra igh t  l ine  s egmen t s  in the  p lane ,  n o n e  o f  wh ich  is vert ical .  

T h e  l o w e r  e n v e l o p e  o f  G,  d e n o t e d  by YG, is the  po in tw i se  m i n i m u m  o f  these  
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Equipment Corporation, and the IBM Corporation. This paper is part of the first author's M.Sc. 

thesis prepared at Tel Aviv University under the supervision of the second author. A preliminary 

version of this paper has appeared in Proceedings of the 27th IEEE Symposium on Foundations of 

Computer Science, Toronto, 97-106, 1986. 
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segments when viewed as partially defined functions ofx.  Y~ is a (not necessarily 

continuous) piecewise linear function in x whose graph consists of  portions of 

the segments of  G. The main goal of  this paper  is to estimate the maximal number 

of  segments that such YG can have. See Fig. 1.1 for an illustration. 

This problem is a special case of the following general problem arising in 

computational geometry: let G be a set of  n real-valued continuous functions 

f ~ , . . .  ,f~ defined over the real axis. Suppose that for each i ~ j  the functions f~ 

and f) intersect in at most s points (e.g., this is the case for polynomials of fixed 

degree, or Chebyshev systems, and so on). Let Y~(x)=min{f~(x):  1 <-i < - n} be 

the lower envelope (i.e., the pointwise minimum) of the f / s .  The graph of Y~ 

consists of  (maximal) connected portions of  the graphs of  the functions f~. Let 

A~(n) denote the maximum number of  such portions, taken over all possible 

collections of  n functions satisfying the above conditions. 

An equivalent way of  looking at the problem is as follows. Let U =  

U ( f l , . . .  ,fn) denote the sequence of indices (uz, u 2 , . . . ,  u,,) so that the kth 

leftmost portion of the graph Y6 is a portion of  the graph of the function f~ .  

Then U is easily seen to satisfy the following properties: 

(1) ui ~ { 1 . . . .  , n } for each i. 

(2) For each i < m we have u~ # u~+l. 

(3) There do not exist s + 2  indices 1 -< i~ < i2<" • • < i~+2 -< m such that u~ l = 

u~3= u~ . . . . .  a and u~2= u~,=u~ . . . . .  b, for 1-<a ¢ b ~ n .  

A sequence U = ( u z , . . . ,  u,,) satisfying these properties is called an (n, s) 

Davenport-Schinzel sequence (a DS(n, s) sequence for short). These sequences 

were introduced by Davenport  and Schinzel in [6] and have been analyzed later 

in [5], [12], [15], [2], [7], [13], and [14]. 

Thus U ( f ~ , . . .  ,fn) is a DS(n, s) sequence. Moreover, it is known (see [2]) 

that for any DS(n, s) sequence U one can construct a s e t f z , . . .  ,f~ of  continuous 

functions,  each pair of which intersect in at most s points, for which 

U ( f ~ , . . . , f , )  = U. Such a set of  functions is said to represent or realize the 

sequence U. 
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The following bounds are known for A~(n): 

hi(n)  = n (Trivial), 

A2(n) = 2n - 1 [2], 

h3(n)=O(na(n)) [7], 

A,(n) = O(na(n) °~"'r ~t) 

A2,+l(n)=f~(na ~(n)) [14] 

for s > 3  [13], 

(a(n) is the functional inverse of Ackermann's function and is very slowly 

growing). 

If  the functions f ~ , . . . , f n  are partially defined linear functions (i.e., their 

graphs are straight segments), then one can extend them continuously to totally 

defined functions so that each pair of extended functions intersect in at most 

three points (see [2] and [7]). 

Hence the maximum number of  segments composing YG, for a collection G 

of n segments, is A3(n) = O(no~(n)). However, even though there exist DS(n, 3) 

sequences U of length Ut(na(n)) [7], the construction (e.g., in [2]) that realizes 

such sequences U by collections of functions yields rather irregularly shaped 

functions, and it was an open problem whether U can also be realized by 

collections of  functions of  simple shape, in particular by collections of  segments. 

In this paper we show that this is indeed the case. Specifically, we take the 

DS(n, 3) sequences of  nonlinear size produced by Hart and Sharir and realize 

them by collections of  segments. Our construction is fairly involved, and is based 

on a doubly inductive process which follows the inductive pattern in the construc- 

tion of [7]. 

Since the construction in [7] is not explicit, but rather defined in terms of 

generalized path compressions on trees, we first provide, in Section 2, an explicit 

inductive construction of the sequences of [7] and analyze their structure (a 

similar construction has recently been obtained by Komjath [8]). Section 3 then 

proceeds to describe the inductive realization of these sequences by collections 

of  segments. For the convenience of the reader, two appendices are provided, 

summarizing the basic definitions used in our sequence construction, and giving 

a few initial examples of  these sequences. 

Our results are useful in setting tight bounds on the complexity of  various 

problems in computational geometry. The concluding section, Section 4, mentions 

some of these problems and also discusses some related open problems. 

2. Generation of Nonlinear DS(n,3) Sequences 

In this section we provide an explicit construction of DS(n, 3) sequences whose 

length is nonlinear in n. This construction is essentially identical to the tree-based 
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construction of [7] but avoids the use of auxiliary constructs such as generalized 

path compressions (used in [7]). It proceeds inductively, following the double 

induction scheme of [7], and constructs a collection of sequences S(k, m), defined 

in terms of  two positive integer parameters k and m. Each sequence S(k, m) is 

constructed from subsequences defined inductively for smaller values of  k and 

m, which are then modified and merged to form S(k, m). 

2.1. The Functions Ck 

In the construction we use a sequence of  functions {Ck} (see [14]), which are 

similar to Ackermann's functions Ak (the "generalized exponentials" of [ 1]), but 

are more suitable for the purpose of our construction. 

Let ~d = {1, 2 , . . .}  and I~o = Nw {0}. Define inductively a sequence of functions 

N ~ {Ck: No~ }k=l as follows. 

Cl(m) = 1, re-->O, 

Ck(O) = 2, k->2, 

Ck(m) = Ck(m -- 1)- Ck._l( Ck(ra -- 1)), k ~ 2 ,  m ~ l .  

A table of some "small" values of Ck(m) is given in Appendix 1. (For comparison, 

the original Ackermann's functions {Ak: N~}k~-~ are defined as: 

Al (m)=2m,  m>--l, 

Ak(1) =2 ,  k->2, 

Ak(m)=Ak  t(Ak(rn--1)), k ~ 2 ,  m ~ 2 .  

A table of some "small" values of Ak(m) is given in Appendix 1.) It can easily 

be proved that (see also [14]): 

(1) C2(m)=2  for m - 0 .  

(2) C3(m)=2m+J2 for m->0. 

(3) C4(m)->2 2- , with m + l  two's in the exponential tower. 

(4) Ck (1 )= 2 .  Ck-,(2). 

(5) Ak_~(m)<--Ck(m)<--Ak(m+3) for k->4, m - l ,  so the growth of  the 

sequences of  functions {Ck} and {Ak} are of  the same order of  magnitude. 

In what follows we will often use the shorthand notations t~ = C k ( m - 1 ) ,  

f l= Ck-~(Ck(m--1)), and ~ =  Ck(m)= 4" /3 (by definition). 
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2.2. Generation of Nonlinear DS(n, 3) Sequences 

For each k, m -> 1 the sequence  S(k, m) that we are going to construct  will satisfy 

the following propert ies:  

(a) S(k, ra) is composed  o f  Nk(m) = rn. Ck(m) distinct symbols .  (These sym- 

bols are named  (d, y) ,  for  d = 1 . . . .  , rn, 3' = 1 . . . . .  ~/, and are ordered  so 

that  (d, y ) < ( d ' ,  3") if  y < y '  or 3,= 3" and d<d ' . )  

(b) Define a fan to be  a cont iguous subsequence  of  the form 

(1, 3') (2, 3') . . .  (rn, 3') 

such that  all its e lements  are the leftmost appearances  of  the cor responding  

symbols  in the entire sequence.  Then S(k, m) contains Ck(m) fans of  size 

m for 3' = 1, 2 , . . . ,  Ck(m). These fans are pairwise disjoint and cover  the 

entire set o f  characters  in S (according to (a) above).  Thus each symbol  

of  S appears  in one (and exactly one) fan of  S. The naming scheme of  

the symbols  of  S(k, m) can be interpreted as assigning to each symbol  the 

index 3' o f  the fan in which it appears ,  and its index d within that  fan. 

Definition. Let U = (ul . . . .  , u,,) be a sequence whose symbols  belong to some 

totally ordered  alphabet .  A chain c=(u~ . . . . .  , ui,) is a maximal  cont iguous 

decreasing subsequence  of  U, i.e., 

(u ,o- ,  < )U ,o>  U,o+~ > "  " "  > u,,( < u , ,+0 .  

Chains  are obviously disjoint and their union is the entire sequence U. 

2.3. Inductive Construction of S(k, m) 

The construct ion proceeds  by double  induction on k and m as follows. 

(1) k = 1. The  sequence  is a single fan of  size m: 

S = ( ( 1 , 1 )  ( 2 , 1 ) - . . ( m ,  1)). 

( 2 )  

Propert ies  (a) and (b) clearly hold here (Cl(m) = 1). 

k = 2. The sequence contains a pair  o f  disjoint fans of  size m, with a chain 

of  size rn fol lowing each of  these fans (and starting at the last e lement  of  

the fan),  and rn - 1 singleton chains following at the end of  the sequence. 

Specifically, 

S = ( ( 1 , 1 )  (2 ,1)  . . .  ( m - l ,  1) (m, 1) 

(1,2)  (2, 2) . . "  ( m - l , 2 )  (m, 2) 

(2,  2) (3,  2)  • • • (rn, 2)) .  

( m -  1,  1)  • • • ( 1 ,  1 )  

( m - l , 2 )  . . .  ( 1 ,2 )  

And indeed it contains  Cz(m) = 2 fans and is composed  of  2m symbols .  

(I t  can be easily checked that  S(2, m) can also be obta ined by the general  

construct ion steps 3 and 4 below; however ,  for  exposi t ion sake, we treat  

the case k = 2 explicitly, both  here and  in Section 3 below.) 
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k -> 3, m = 1. The sequence is identical to the sequence for k' = k -  1 and 

m ' = 2 ,  except for renaming its symbols and fans: S(k- l ,2)  contains 

Ck-1(2) = Ck(1)/2 fans, each of which consists of two symbols. We regard 

each fan of  S(k - 1, 2) as two singleton fans in S(k, 1). The ith symbol of 

the/3th fan of S(k - 1, 2) is named (i,/3) in S(k-  1, 2) and is renamed as 

(1, 2 / 3 - 2 +  i) in S(k, 1) to reflect this fan splitting. Properties (a) and (b) 

clearly hold. 

The general case k >- 3, m > 1 (see Fig. 2.1 for an illustration of this step). 

(i) Generate inductively the sequence S ' =  S(k, m -  1); by induction, it 

contains 6 fans of  size m - 1  each and is composed of ( m - l ) - 6  

symbols whose names are (d, a )  (1-< d-< m -  1 is the index of the 

symbol in the fan of  S' containing it, and 1 <- a -< 6 is the index of 

this fan in S'). 

(ii) Create/~ copies of S'. For each 1 <-/3 <--/3, rename each symbol (d, a)  

in the/3th copy S~ of  S' as (d, a,/3). 

(iii) Generate inductively the sequence S* = S(k-  1, 6);  by induction it 

contains/3 fans of  size 6 each. Rename the symbols (a, /3)  of  S* as 

(m, a,/3), where a is the index of  that symbol within its fan, and/3 

is the index of that fan in S*. Duplicate the last element (m, 6,/3) 

in each of the/~ fans of S*. 

(iv) For each 1 -< a -< 6, 1 - / 3  <-/3, extend the ath fan of S~ by duplicating 

its last element ( m - 1 ,  a,/3), and by inserting the corresponding 

symbol (m, a,/3) of  S* between these duplicated appearances of  

(m - 1, a,/3). This process extends the (m - 1)-fans of  S~ into m-fans 

and adds a new element after each extended fan. 

(v) Finally construct the desired sequence S(k, m) by merging the /3 

copies S~ of  S' with the sequence S*. This is done by replacing, for 
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each 1 <-/3 <-/3, the /3th fan of S* by the corresponding copy S~ of 

S', as modified in (iv) above. Note that the duplicated copy of the 

last element in each fan of S* (formed in step (iii) above) appears 

now after the copy S~ that replaces this fan. Finally, the symbols of 

S(k, m) are renamed so that symbol (d, a,/3) becomes (d, y), where 

3' = a + a ( / 3 -  1). 

To establish property (a), note that S(k, m) consists of 

Nk(m) =/3.  (m--1)Ck(m--1)+6lCk_,(6~) 

= Ck- , (Ck(m - 1))Ck(m - 1)(m - 1)+ Ck_l(Ck(m -- 1))Ck(m -- 1) 

=roCk(m) 

different symbols. Property (b) is trivial by induction, because the fans of 

S(k, m) are precisely the extended fans of the copies S~ of S'. 

2.4. Structure and Length Theorems 

We now establish several important properties of the sequences S(k, m). The 

proof of these properties will be inductive and there is some interdependence 

between them, for which reason it is convenient to group these properties into 

the following single theorem. 

Theorem 2.1. 

properties: 

(a) 

(b) 

(c) 

(d) 

For each k, m >- 1 the sequence S = S( k, m) satisfies the following 

S is a DS(Nk(m) ,  3) sequence. 

Each symbol of  S appears in precisely one fan and makes there its first 

( lefimost ) appearance in S. 

For k >_2 and for each 3, < - ~,, the last element (m, 7) of the 3'th fan of  S 

forms the beginning of  a contiguous subsequence that is the reverse of  that fan: 

(m, 3,) ( m - l , y ) . - . ( 2 , 3 ' )  (1,3'). 

(Note that this sequence is the initial portion of  a chain of  S.) 

For each chain c of  S, let f be the rightmost fan preceding c or overlapping 

c (in the latter case, c is either a singleton chain contained in the fan f or 

the chain which starts with the last element o f f ) .  Let el, c 2 , . . . ,  c, be the 

chains appearing in S between f and c, for some t >- O. Let a be the first 

( leftmost) element of  c; then either this appearance of  a is within f (in which 

case there are no intermediate chains ci), or else a must also appear in one 

of  the preceding chains ci. 

Notes. (1) For each y-< ~/and each d < m, the element (d, y) in the yth fan of 

S forms a 1-element chain. Note that property (d) is trivially correct for these 

singleton chains. 

(2) Property (b) implies in particular that S starts with a fan. 
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(3) Unless c is one of the singleton chains metnioned in (1) above, the first 

chain cl in property (d) is the chain mentioned in (c) (whose initial portion is 

the reverse of  the fan f ) .  Note that property (d) clearly holds for the case c -- cl. 

(4) While properties (a)-(c) describe the inherent structure of  the sequences, 

property (d) is used later (in Section 3.5.4.3) only to prove some (crucial) 

properties of  the geometric construction. 

Proof. The proof  proceeds by double induction on k and m. The base case k = 1 

is trivial: S(1, m) is plainly a DS(m, 3) sequence, (b) and (d) are trivial, and (c) 

is vacuous in this case. 

The case k = 2 is also easy. Here ~ = 2 and S(2, m) is obviously a DS(2m, 3) 

sequence, so (a) follows. Properties (b), (c), and (d) are also immediate. 

Next consider the case k > 2, m = 1. Here S(k, l) = S(k - 1, 2) (with its symbols 

being renamed),  so property (a) holds by induction. Property (b) is also trivial 

because the only change in the fan structure between S(k - 1, 2) and S(k, 1) is 

that each fan is split into two subfans. Since each fan is now of  size 1, property 

(c) is trivial too. Finally, since the chain structure in S(k, 1) is identical to that 

in S(k - 1, 2), (d) also follows immediately by induction. 

Finally consider the general case k >  2, m > 1. We first prove property (a). 

First note that no two adjacent elements of  S = S(k, m) are equal: indeed, by 

induction hypothesis, no two adjacent elements in either S* or in any S~ are 

equal; all these sequences have pairwise disjoint sets of  symbols (after renaming), 

and the merging process clearly does not introduce any new duplication of  

adjacent elements in S (all duplicated elements get separated by some other 

symbol). 

Now suppose to the contrary that S(k, m) contains a subsequence of  the form 

a .  • • b- • • a . .  • b- • • a, for some pair of  distinct symbols a and b. By induction 

hypothesis, it is clearly impossible for both a and b to belong to S* or to belong 

to the same S~. Moreover, for each fll < f12 the entire copy S~, of  S' lies in S to 

the left of  S~2; thus a and b cannot belong to different copies S~,, S~2 of S'. 

Thus either a belongs to S* and b to some S~ or vice versa. In the first case, 

by the induction hypothesis (b) on S*, the first appearance of a is in the 

appropriate fan of S*. Because of  the replacement process, only this first appear- 

ance will be inserted into some S~ (and thus appear  in S between two elements 

of  S~); Therefore, the subsequence a -  • • b .  • • a -  • • b- • • a cannot appear  in S. 

The same argument also rules out the second case in which b belongs to S* and 

a to some S~. 

Thus S(k, m) is a DS(m.  ~, 3) sequence and property (a) holds. 

Property (b) readily follows from the construction: all the symbols in each S~ 

satisfy this property by induction hypothesis. In addition, each symbol of  S* 

appears (in S*) in precisely one fan, where this appearance is its leftmost one 

in S*. Since each such first appearance in S* is inserted into a fan of  some S~, 

which then becomes a fan of  S, p roper ty  (b) holds also for the symbols of  S*. 

As to property (c), let f be the 7th fan of  S (where we write 7 = (a,  13)). Then 

by construct ionf is  the concatenation of the a th  f a n f '  of  S~ and the corresponding 

element (m, ct, fl) of  S*. By induction hypothesis, the portion of S~ starting at 
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the last element of  f '  begins with the subsequence ( m - l ,  y ) - - - ( 1 ,  y). The 

construction then implies that the portion of S from the last element o f f  must 

begin with the extended subsequence ( m ,  y ) ( m  - 1, y )  • • • (1, y), thus (c) holds 

for S. 

To prove (d), note first that no chain of  S* or of  any S~ was broken by the 

construction. Actually, it is easily checked that, by the way in which symbols of  

S* and of the S ; ' s  are renumbered in S, the only changes in chains caused by 

our construction are the extension of chains immediately following fans of the 

copies S~ by the corresponding element of  S* inserted at the end of such a fan, 

and the "detachment"  of  each chain c of  S* that immediately follows a fan f of  

that sequence from f. (Note that c itself has not changed in this latter case, and 

that f is no longer a fan of S, but is distributed among the fans of some S~.) 

Now let c be a chain of  S, and let c~ . . . .  , c, be the sequence of chains lying 

in S between c and its preceding fan f. If  c is not one of the special chains 

mentioned above, then c must be a chain of  S* or of  some S~. In either case the 

(nonempty!) collection c ~ , . . . ,  c, of  chains must contain all chains of  S* (resp. 

of  S~) lying between c and the fan immediately preceding c in S* (resp. in S~), 

where the first such chain may have been extended in S. Thus in this case (d) 

follows by induction hypothesis. 

Next, suppose c is an extended chain of  some S~. But then (d) is trivial, 

because the (new) first element of  c is also the last element of  the preceding fan 

in S. 

Finally, suppose c is a chain of S* that has been detached from its preceding 

fan f. Suppose f is the/3th  fan of S*. Then in this case the first element q of  c 

is equal to the last element of  f, which has been inserted into the las t  fan f '  of  

S~. It thus follows from the construction that the fan of  S immediately preceding 

c is f '  extended by q, and that q belongs to the first chain of S following that 

fan; thus (d) clearly holds for these chains too. 

This completes the induction step and thus proves the theorem []  

Next we prove that for each k, m - 1 the length tr(k, m) of S(k, m) satisfies 

or(k, m ) >  ( k m  - 2 ) -  Ck(m)+  1 

(e.g., o-(2, m ) >  ( 2 m - 2 )  • 2+  1 = 4 m - 3 ,  which indeed holds, because o-(2, m) = 

5 m - 3  as is easily checked). 

The following recurrence formulas for o-(k, m) follow easily from the inductive 

construction of S ( k ,  m): 

o-(1, m) = m, 

o'(2, m) = 5m - 3, 

o'(k, 1) = o - ( k -  1, 2), k > 2 ,  

o'(k, m) =/3 .  o-(k, m - 1 ) + o - ( k - 1 ,  c7)+ t i . / 3+ f l ,  k >  2, m >  1. 
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(To see the last equality, note that the first term on the right-hand side is the 

total length of the /3  copies S~ of  S', and that the second term is the length of  

the sequence S*. The third term is due to the fact that for each of the f t . /3  

symbols (m, a, /3) of S*, its first appearance in S* is inserted into the a th  fan of 

S~ and causes the last element of  that fan to be duplicated. Finally, the fourth 

term is due to the fact that the last element in each of the /3  fans of S* is also 

duplicated in S.) 

Theorem2 .2 .  Define Zk(m)=cr(k,m)/Ck(m); then for each k, m>- I we have 

Z k ( m ) > k m - 2 + - -  
C~(m) 

(which clearly implies the lower bound on o'(k, m) stated above). 

Proof We proceed by the standard double induction on k and m. For k = 1 we 

have 

Z , ( m ) = m >  l • m - 2 4  - -  
1 

C~(m) 
m - 1 .  

For k = 2 we have 

5m - 3  5 3 1 3 
Z2(m) 2 2 m - 2  > 2 "  m - 2 + C 2 ( m ) - Z m - - 2 "  

For m = 1, Ck(1)= 2Ck_l(2) and thus by induction hypothesis 

o.(k, 1) o r (k - l ,2 )  Zk_,(2) 2 (k -1 ) -2+( l /Ck_ , (2 ) )  
Z k ( 1 )  - -  - - - . ~  

Ck(l) 2Ck-,(2) 2 2 

1 
= k -  1 - 2 + - ~  

c~(1)" 

Finally, for k > 2 and m > 1 we have 

Z~(m) - 
cr(k,m) f l . o ' ( k , m - 1 ) + o - ( k - l , ~ ) + a ,  fl+fl 

Ck(m) ~, 

or(k, m -  1) o ' ( k -  1, 8 ) + f i  
4- + I  

Zk-,(Ck(m--1))+ l 
= Z k ( m - - l ) ~ "  ~-1. 

C k ( m -  1) 
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Thus, by induct ion hypothesis  

Z k ( m ) >  k ( m - 1 ) - 2 4  
C k ( m -  1) 

(k - 1) Ck(m - 1) - 2 +  ( t /Ck_ , (Ck(m -- t))) + 1 
+ ~-I 

C ~ ( m - 1 )  

= [ k ( m - 1 ) + ( k - 1 ) +  l ] - 2 4  

1 
= km - 2 - t - - -  

Ck(m)" 

And this proves the theorem. 

C k ( r n - 1 ) .  Ck_,( Ck(m--1))  

m cx~ Theorem 2.3. There exists a set of increasing integers { k}k=l such that 

tr( k, ink)=lq(Nk(mk)a(Nk(rng))) .  

Proof. For  a given k, choose mk = Ck+~(k-3). Then define 

nk = N~(mk), 

and since Nk(m) = m" Ck(m) we now have 

nk = Ck+,(k - 3 ) .  Ck(Ck+,(k -- 3)) = Ck+,(k - 2) ~ Ak+,(k + l) 

which implies 

a(nk)<--k+l,  

and so 

tr(k, mk) >-- knk --2Ck(rnk) >-- (k - 2 ) n k  

>- ( a (nk ) - -3 )  • nk. 

Thus o'(k, mk) is o f  the same order  of  magni tude as nk" a(nk). 

[] 

[]  

3. Conversion of the Sequences S(k, m) to Collections of Segments 

3.1. Basic Definitions and Notations 

The following definitions refer to a collection G = G(k, m) of  closed straight 

segments in the plane, none  o f  which is vertical (in fact in our  construct ion all 

segments in G have positive slope). We further assume that no endpoint  o f  any 

segment in G lies on any other  segment in G. Using the notat ion o f  the previous 

section, we write 

G(k, m) = (/a,~l 1 ~ d ~ m, 1-< y<- ~} 
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so that the segment Id.v will realize the symbol (d, 3') of S(k, m) as described below. 

For each nonvertical segment its starting point is its left endpoint and its ending 

point is its right endpoint. 

A point P is hidden by a segment l if the vertical line passing through P 

intersects i at a point lying below P. A segment is hidden by l if all its points are 

hidden by I. 

A point P is seen (below G) if it is not hidden by any segment of G. A segment 

is seen if  one of  its points is seen. 

The lower envelope Yc  of G is the pointwise minimum of the segments of G 

when we view these segments as graphs of partially defined linear functions over 

the x-axis. Y~ is a piecewise linear function consisting of  subsegments of the 

segments in G; Y~ is not necessarily continuous. 

G is contiguous if the domain of definition of Yc is some closed interval. 

Thus G is contiguous iff no vertical line can separate G into two parts without 

crossing it. Note that if G~ and G2 are two contiguous sets of segments that are 

both crossed by the same vertical line then G~ w G2 is contiguous as well. 

The lower envelope sequence Ec of G is the sequence of indices of the segments 

of G as they appear in its lower envelope from left to right. As noted in [7], E~ 

is a DS(n, 3) sequence, because any appearance of a (not necessarily contiguous) 

subsequence of the form 

( a - . .  b , - .  a - . .  b . . .  a) 

in Ec implies that the two distinct segments la and lb cross each other twice; it 

is also clear that no two adjacent elements of E~ are equal. 

The "transition" points in which the current segment in Y~ changes are of 

three possible types: 

(1) Changes caused by the start of a new segment below any other segment. 

These include the leftmost start of a segment of G or a start of any segment 

after a region in which Yc is undefined. These points will be denoted as 

S-points. 
(2) Changes caused by the presently lowest segment of G crossing another 

segment (which will thus become lowest). These points are denoted as 

C-points. 
(3) Changes caused by the presently lowest segment of G reaching its ending 

point when there is no segment below it. These points are denoted as 

E-points. 

The set I I x ( G )  (where X is any combination of  S, C, and E) is the set of the 

x-coordinates of  the transition points of  type in X. For example, IIcE(G) is the 

set of all x-coordinates of ending and crossing points in Y~. 

A graph fan  in G(k, m) is a subset of  m line segments {1~.~}~'~ for some y 

(these m line segments are used to represent the 3,th fan of  S(k, m)). 

A tube T = (xt_, xH, YL, YH, {t~}~=~) is a set of relatively open straight line 

segments ti (with left endpoint (xt, Yl) and right endpoint (x h, yh)) of  positive 

slope contained in the rectangle [XL, xH]X[yL, y~] (SO XL<XI<X h <XH and 

YL ¢Z yt < yh < YH for each 1 <- i -< r), The rectangle is the tube's frame. 
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YL 
xt. 

xt4 
YH 

Fig. 3.1 

, A straight line T defined by y = ax + b is said to pass through a tube T (written 

1 ~ T) if ! crosses each t, ~ T from below, so that Yl > a .  xl + b and y~ < a-  x h + b 

(see Fig. 3.1). The slope of T is obviously greater than that of  any t~ in T (and 

is thus positive). The segments (ti) are not part of  G, and are used only to control 

the lines which pass through T so that they pass in a specific range of  positions 

in the plane. 

A segment 1 is said to pass through T when the (infinite) line containing l 

passes through T (even though 1 itself need not cross any ti in T). A line T 

passing through a tube can cross the outer frame in any two sides excluding 

combinations which force ~ to have negative slope. 

A tube T is valid if there exists at least one line T~ T. 

Two lines T~ and T2 that pass through a tube T cross inside the tube T if their 

crossing point is contained inside the tube's frame but not on its boundary (see 

Fig. 3.2). 

A line T~ is above a line 1"2 relative to a tube T if both lines pass through T, 

7 

Fig. 3.2 
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New limitinq 

Fig. 3.3 

7 

they cross inside it, and ]'~'s slope is greater than that of ]'2. It is obvious that for 

any x > x~, ] ' l(x)> ]'2(x) (looking at ~,- as linear functions). We also say that ]', 

is above 12 for X>Xo if l l ( x )>  12(x) for X>Xo (again, looking at ~ as linear 

functions). 

If two lines ]'1 and T2 pass through a tube T and cross inside it, the tube can 

be limited by T 1 and ]'2 to produce a modified tube T'. The modification is done 

by adding to the set of  segments of T two new segments (inside the frame 

boundary) so that any line passing through the modified tube will fall between 

]'1 and ]'2 (see Fig. 3.3). 

It can easily be shown that the resulting tube T' is valid, that every line l'~ T' 

also passes through the original T and falls between /'1 and ]'2 outside the frame 

and that the slope of every line l'~ T' is between the slopes of ]'1 and 12. Note 

that some lines passing between ]'1 and 1"2 might not pass through T'. 

The limiting operation is not uniquely defined--any operation which forces 

lines passing through T' to be between T~ and ]̀ 2 would be fine. 

Note that since the segments {t~} defining a tube are relatively open, a tube 

defines an open domain of lines passing through it--in particular there is no line 

with maximal or minimal slope among these lines, although the appropriate 

supremum and infimum do exist. 

A tube is essentially an open, convex structure of l ines--if  ]'1, ]'2~ T cross 

inside T then any line containing their crossing point and having a slope between 

those of the two lines also passes through T. Thus for such a pair 11,12 there is 

always a line T~ T which lies between them. 

A tube T is equivalent to a pair of convex polygons between which any line 

]'~ T must pass. These are respectively the convex hulls of the right and of the 

left endpoints of the segments t~ and are thus contained in the frame of T. If a 

tube is valid these polygons will be disjoint and arranged so that any line separating 

them has positive slope (any line passing through the tube can serve as a separator 

between them). 
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Adding constraint segments to the tube while keeping it valid (e.g., when 

limiting a tube) is equivalent to enlarging both r-gons while keeping them convex 

and disjoint. 

Two tubes Tl, T2 are parallel (written T, II T2) if 7"2 is a planar translate of  T, 

by some vector u. Thus for every T~ ~ 7"1 there is a matching parallel line T2~ 7"2 

created by translating T~ by the same vector u. 

A tube Tj is steeper than T2 (written "/'1 > 7"2) if for every [1 ~ TI and [2 ~ T2 

the slope of l', is greater than that of T2. The reverse relation TI < T2 is defined 

in a similar way. 

3.2. The Induction Base 

We will now define a valid constraint C(k, m) and show that for any C(k, m) 

we can construct a matching set of line segments G(k, m) which satisfies the 

constraint C. We will recursively construct G(k,m) from G(k ,m-1)  and 

G ( k - 1 ,  d),  which have to satisfy certain properties so that they will fit to- 

gether. This will be achieved by generating induced constraints C(k, m - 1) and 

C ( k -  l, d)  from C(k, m), and require G(k, m -  1) and G ( k -  1, ~) to satisfy 

these respective constraints. This is the point in which the combinatorical construc- 

tion of S(k, m) differs from the construction of  G(k, m). 

Specifically, a valid constraint C(k, m) = (T, XL, XH, YL, YH) over the m seg- 

ments in a single graph fan of G(k, m) consists of  a rectangular outer frame 
T "  [XL,XH]X[yL,YH] and of a set of  m valid tubes T = {  s}~l,  which satisfy the 

following properties: 

V1. The tube frames are ordered "from northwest to southeast" (herein re- 

ferred to as " N W  to SE'" order) inside the outer frame so that 

xL < x, . (7",) ,  

XH(T/) < XL(Ti+,) for !<--i<--m--1, 

x.(T,.)<x., 

YH > YH(L), 

yL(T~)>yH(Ti+l) for l<--i<--m-t, 

yL( Tm)> YL 

(thus all the segments defining each of the tubes are contained in the 

outer frame). 

V2. TjlIT p for any l<-j,p<-m-1. 

V3. Tin>T,,,-1. 
V4. There exist lines u ~ T,,_, and v ~ Tm which cross each other at a point 

to the right of XH. 
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YL 

X H 

YH 

/ 
? 

Xl. 

Fig. 3.4 

Notes. (1) See Fig. 3.4 for an illustration of  a constraint. 

(2) Conditions V1-V4 are actually independent of  k. The dependence of 

C(k, m) on k is implicit in the recursive construction given below, and is reflected 

in the inner structure of  the tubes T~. 

Lemma 3.1. Let C = C(k,  m) be a valid constraint and let M = {li ~ Ti}i%~ be any 

set of m segments such that the starting point of  each l~ is inside the frame of its 

corresponding tube T~. Furthermore, assume that l-IcE(M) is outside [XL, XH]. Take 

the portions of  these segments lying inside the x range [XL, XH] tO create M #. Then 

the sequence R = E M ,  (in which each appearance of  l~ is encoded as i) is 

(1 2 . . .  m). 

Proqf For each 1 - < i < j - < m  the tube T~ lies NW to Tj. Thus li cannot 

pass below the starting point of lj and hide it as this would force l~ to have a 

negative slope. Thus R contains the (not necessarily contiguous) subsequence 

(1 2 • • • m). Furthermore, if  R contains a subsequence of the form (x- • - y .  - • x) 

then there must exist a point in I IcE(M) inside [XL, Xr~], contrary to assumption. 

Thus R = ( 1  2 . . .  m). [] 

3.3. The Induction Scheme 

In order to convert the sequence of  symbols S(k, m) into the corresponding 

collection of segments G(k, m), we use a doubly inductive scheme that follows 

the inductive construction of S(k, m). Our construction shows that, given a valid 
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constraint C = C(k, m), there exists a set G(k, m) of segments satisfying certain 

properties (P1-P5 below), related to the constraint C; the most important of 

these properties is E~k.m~ = S(k, m). Before presenting the formal (and rather 

complex) construction, we offer an intuitive description of the inductive step for 

the general case (k>-3, m > 1); the other base cases are considerably simpler. 

Here is a brief summary of the properties that G = G(k, m) has to satisfy. This 

set has to consist of ¢/disjoint subsets (fans) of m segments each (property P2) 

and each fan has to meet the constraints imposed on G by an appropriate copy 

of C, where these ¢/copies of C are placed in the plane from NW to SE (property 

P1). Specifically, for each l<-d<-m, l< -y<-~  the segment ld, v in G (the dth 

segment in the yth fan) corresponds to the dth tube Td in the yth copy of C, in 

the sense that the starting point of this segment is inside the tube frame of Td 

(property P2A) and the segment passes through the tube (property P2B) (this 

last property forces all segments of G to have positive slope). 

The transition points along Yc,--S-, C-, and E-points--have to satisfy the 

following properties. The starting points of the segments of G are all S-points 

(i.e., each segment starts below all other segments in G). (This follows from the 

properties that each segment starts inside a tube frame, that there is an NW to 

SE order among the tube frames and among the outer frames of copies of C, 

and that all the segments of G have positive slope.) We furthermore require that 

all other transition points (in [IcE(G)) lie outside the x-ranges of  the outer frames 

of the copies of C (property P3A). 

These properties are used in the inductive merging process described below. 

Some additional properties (P3B, P4A, and PS) are used to establish correctness 

of our inductive process. Finally, property P4B states that G(k, m) is indeed the 

desired set of segments, i.e., EG(k,m)---- S(k, m). 

The inductive pattern of our construction for the general case is as follows: 

(1) We construct from C(k, m) a modified constraint C'(k, m - 1), by discard- 

ing the last tube T,, and a few additional modifications. 

(2) On top of this constraint we build inductively a set of segments G ' =  

G(k, m -1). The construction duplicates the original constraint C t~ times 

(3) We use these copies of C to construct a new constraint C* = C*(k-  1, 6). 

This C* is based on the 8 copies of the discarded tubes T,, (one in each 

of the t~ copies of C). 

(4) We then construct inductively another set of segments G * =  G(k-1 ,  ~) 

matching the constraint C*. This construction creates /~ copies of C*. 

(5) G is then constructed as the union of G* with/~ translated copies of G', 

each lying within a corresponding copy of the constraint C* (each copy 

of C* encompasses a single copy of G'). 

The intuitive reason why the constraints C(k, m) are needed is that when we 

construct G* inductively we already have a set G', which constrain G* by 

requiring that each of its segments "pierce" an appropriate copy of G'  at exactly 

one place, i.e., at the end of an appropriate fan. The tubes serve this purpose in 

a twofold manner; first, they specify the location for the starting points of the 

segments of G* (at which the required piercing has to take place), and, secondly, 
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they constrain the slopes of  the segments of  G* so as to ensure that none of 

them appears again after this initial piercing below any of the copies of  G'. 

3.4. The Conversion Theorem 

Having presented this "bird 's  view" of  our construction, we next proceed to 

describe it formally. 

Theorem 3.2. Given integers k, m >- 1 and a valid constraint C = C( k, m), one 

can construct a set G(k, m) of  segments so that: 

P1. 3' = Ck(m) disjoint translates of  C are created and placed in the plane so 

that their outer frames are ordered from N W  to SE. 

P2. G( k, m) consists of  ~, . m segments Id.v, 1 <--- d <- m, 1 <- 3" <- ~/; these segments 

are grouped into ~/ disjoint subsets ( l~.v, . . . ,  I m,~)~=l, each forming a fan 

of  size m, and satisfy: 

P2A. The starting point of  each ld. ~ is inside the corresponding dth tube Td. 

in the 3"th copy of  C. 

P2B. The segment ld, v passes through the tube Td, v. 

P3. Segment properties: 

P3A. The set I IcE(G(k,  m)) is disjoint from the x-range [XL, X , ]  of the 

outer frame of  any copy of  C. 

P3B. Any other crossing or ending point of  segments in G(k, m) may have 

x-coordinate lying inside an x-range [ XL, X , ]  of  some outer frame, 

but then the point must lie above this frame (i.e., above yn). 

P4. General properties: 

P4A. G(k, m) is contiguous. 

P4B. E G ( k , m ) = S ( k ,  m). 

P5. In each portion of  YG representing a chain c o f  S(k, m) of  more than one 

element, each segment I has a slope lower than the segment l' preceding it 

in c and l crosses l' from above (at a point in I I c ( G ) ) .  (In other words, c 

is represented by a convex portion of  Yc  ; see Fig. 3.6.) 

Notes. (1) In our inductive construction, we will follow the notations of  Section 

2 and re-index each segment la. v of G(k, m) a s  Id, c,,~ , where 1 --- a -< ~, 1 -</3 - /3 ,  

and y = a + t i ( / 3 -  1). 

(2) Note that properties P1 and P2 imply that after leaving the outer frame in 

which it starts, a segment of  G can never enter another outer frame or pass 

below it. 

3.5. Proof of  Theorem 3.2 

3.5.1. The Case k = l .  See Fig. 3.5. The sequence S(1, m) to be converted is 

((1, 1) (2, l)  • - .  (m, 1)). 

In this case </= 1 and thus no additional copies of  C(1, m) need be created. Take 

u ~ T,,_~ and v ~ T,, as given by V4 and let Xo be the x-coordinate of  their crossing 

point. For each i < m take 1~.1 to be a segment contained in the line passing 
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Fig. 3.5 

through Ti which matches the line containing u, so that I~ starts inside the tube 

frame of T~ and ends at some x e (XH, X0). Take l,,,~ to be a segment contained 

in v, starting inside the frame or T,, and ending at x = x0. 
1 m The theorem clearly holds for G(1, m ) = {  ~.~};=~: 

P1. Trivial (~/= 1). 

P2. Both P2A and P2B are trivial. 

P3. To prove P3A note that the segments do not cross at all since {li,~}~:~"-~ 

are parallel and end before crossing l,,,t. Their ending points all lie to 

the right of x . .  Thus all points in HcE(G) lie to the right of  [Xe, x . ] .  

P3B is trivial. 

P4. P4A is trivial, and P4B is a direct consequence of Lemma 3.1. 

P5. Inappl icable-- there  is no multielement chain. 

3.5.2. The Case k = 2 .  As mentioned in Section 2, the case k = 2  is treated 

separately only for exposition sake. It can actually be obtained inductively, as 

the case of  general k mentioned in Subsections 3.5.3 and 3.5.4 below. However, 

the explicit constructive given here is somewhat simpler than the inductive 

construction. This case is illustrated by Fig. 3.7. The sequence S(2, m) to be 

converted is 

((1,1) (2,1) . . .  ( m - l , 1 )  (re, l) ( m - l , 1 )  . . .  (1,1) 

(1,2) (2,2) . . .  ( r n - l , 2 )  (m, 2) ( m - l , 2 ) . . .  (1,2) 

(2, 2) (3, 2) • • • (m, 2)). 

Here 9 = 2  so we have to create two copies of  C(2, m). 

Fig. 3.6 
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[ ]  

f., 

Fig. 3.7 

Construct GI,  a set of m line segments, as follows: take lines u~ T,.-I and 

v ~ T,. that cross to the right ofxH as given by V4. Use them as the lines ],.-i,i, 1.,,1 

containing l.,_~,~ and l.,.~, respectively. Continue by adding more lines from 1,.-2.1 

backward. Each ~.1 will pass through T~, will have a slope smaller by some 

(sufficiently small) e than the slope of the previous line (~+1.1), and will cross 

~+t,i to the right of the previous crossing point (between ~÷1,1 and ~+2.0. Define 

each segment Ii.1 to be contained in ~.~, to start inside T~, and to end just after 

the crossing point with ~-1.~ (before the next crossing point). Terminate 11,~ to 

the right at some point after 12.~ is terminated. 

The existence of such a set G1 is guaranteed by V4, and by the properties that 

T1 to T,._~ are parallel, and that a tube defines an open domain of lines passing 

through it. It is easy to check that 

Eo~=((1,1) (2,1) . . -  ( m - l , 1 )  (re, l) ( m - l ,  1) - - .  (1,1)). 

In order to create the full G make a copy G2 = {11.2, • • •, I.,,2} of GI by translating 

GI sufficiently far in an SE direction, and extending the segments so that they 

realize the last m - 1 symbols as well (as shown in Fig. 3.7). It is easy to check that 

Eo~ = ((1, 1) (2, 1 ) . . .  ( m - l ,  1) (m, 1) ( m - l ,  1 ) . . - ( 1 ,  1) 

(2, 2) (3, 2) . . .  (m, 2)). 
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Extend the first segment in the first fan G1 to the right so that it extends just after 

the starting point of  the segment lj.2 (in the second copy). Take G -- G(2,  m) to 

be the union of G1 (modified this way) and G2. 

The desired properties hold for G: 

P1. Trivial (~/= 2). 

P2. Both P2A and P2B are trivial. 

P3. To prove P3A note that the x-coordinates of all crossing and ending points 

of  the segments of  G lie outside the x-ranges of  both copies of  C, with 

a single exception: the ending point of  11 in the first (NW) copy G1 is 

above the second outer frame. Since this endpoint is not in I-IcE(G) both 

P3A and P3B follow. 

P4. Each G, is contiguous by construction and the extension of 11 ensures that 

the union G is contiguous as well (proving P3A). P4B follows immediately 

from Lemma 3.1 and the structure of  the construction. 

P5. Each G, contains one multielement chain, and the construction makes it 

clear that both chains satisfy P5 (the chains at the end of G2 are singleton 

chains). 

3.5.3. The Case k>2 and m=I. In this case S(k, 1 ) = S ( k - l ,  2), so we will 

use an appropriately constructed G(k - 1, 2) for our desired G(k, 1), making sure 

that this G ( k - l ,  2) will match the (degenerate) constraint C(k,  1) and satisfy 

properties P1-P5 of the theorem. The valid constraint C = C(k, 1) has a single 

tube T1 inside an outer frame (note that in this case the conditions V1-V4 of the 

constraint are mostly vacuous). 

Construct a new constraint C ' =  C ( k - 1 , 2 )  from C as follows: create a 

translate C, of  C far enough in the SE direction so that the outer frames of both 

copies have disjoint x-ranges and disjoint y-ranges. Take a line w ~ T~(C) and 

its corresponding translate w'~ T~(CI) in C~. Limit the tube of  C to lines passing 

below the line w and the tube of C~ to lines passing above the line w'. Rename 

the limited tubes ' -  T1- T~(C) and T~-- T~(CO and use them as the two tubes of  

C' .  For an outer frame of C' take any rectangle which contains the outer frames 

of  both C and C~. 

C '  is clearly valid: V1-V3 are trivially correct and V4 is correct since we can 

always choose lines u ~ T~ and v ~ T~ sufficiently close to w and w', respectively, 

so that their crossing point lies as far to the right as desired. 

By the induction hypothesis there exists a set G ' =  G ( k - l , 2 )  based on 

~' = Ck-~(2) = Ck(1)/2 copies of  C '  and consisting of ~ ' .  2 = ~/segments satisfying 

properties P1-P5 for (k - 1, 2). We now take G = G(k, 1) to be this set, renaming 

each segment Id. ~ (d = 1, 2) a s  11,2~+d__2, and indeed P1-P5 (for (k, 1)) hold for G: 

P1. As noted above, ~ = ~' • 2; the NW to SE order follows immediately from 

our construction and from P1 over G'.  
P2. Both are trivial from P2 over G'.  

P3. Both P3A and P3B are direct consequence of P3A and P3B over G'.  

P4. P4A is trivial by induction. P4B is a consequence of P4B over G' :  EG~k,l  ) = 

E~k-i.2) = S(k - 1, 2) = S(k, 1). 
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P5. Trivial from P5 over G '  (the renaming did not change the chain structure 

o f  G') .  

Thus the theorem holds for (k, 1). 

3.5.4. The General  Case  k >  2 and m >  I. See Fig. 3.8. We first construct a 

modified valid constraint  C ' =  C ( k ,  rn - 1) as follows. By V4 there exist u ~ Tm-i 

and v~ Tm which cross each other at a point  right of  xH (call it A). Since 

Tin-2 II Tin_, there is a line w ~ Tin-2 that is a matching translate of  u. This line is 

above u and thus B, its crossing point with v, is to the right o f  and above A. 

Take two lines ul,  u2~ T,,_~ so that the slope of  u2 is slightly greater than the 

slope o f  u~ which is slightly greater than that o f  u, and such that u2 is slightly 

above u~ which is slightly above u (relative to Tin_l). These lines cross v 

at points AI ,  A2, respectively, which are ordered along v between A and B. 

u~ and u2 cross w at two respective points, B~, B2 ordered along w in the order  

B, B2, B 1 . 

Take a line w~ ~ T,~_2 (below w and with slightly lower slope) which crosses 

v at C, u2 at C2, and ul at C1 (in that order),  wi should be close enough to w 

so that C2 is to the right o f  B. 

Take a line vt ~ T,, which lies slightly above v and has slope slightly greater 

v , v  

Tm- I~" ~ / u 

Enlarged 

Fig. 3.8 
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than that of  v. This line should cross the vertical line x = x H  and then 

u, u,, u2, w,, w in that order. Call these crossing points from left to right 

D. D, ,  D2, E~, E. These points are adjacent along their lines to the points 

A, A , ,  A2, C, B, respectively. 

3.5.4.t. First Induction over k, m -  1. Define C'  (over (k, m -  1)) as follows: 

(1) Its set of  tubes T' consists of m - 1 tubes T',. For each i < m - 1, T~ is the 

tube T~ limited by the two lines that are the corresponding translates of  

w and w~ in Tin-2. T '_~ is defined as T,,_~ limited by u~ and u2. Also 

limit the tube T,, by v and v, to create T',,. This last definition is used 

only later in the second induction step. 

(2) Any pair of  lines passing through T ' _ 2  and T',,_I will thus have to cross 

inside the quadrangle B, B2C2C~. Any pair of  lines passing through T ' _ ,  

and T "  will have to cross inside the quadrangle A,A2D2D~. 

(3) The outer frame of  C '  has the same xt,, YL as that of  C, but its right upper 

corner has coordinates xh = x (B)  and Yh = max(y(B),  YH) (i.e., the outer 

frame is extended so as to include B too). 

C '  is valid since: 

V1. The m - 1 tubes T', are clearly contained in the outer frame of C '  and are 

ordered there from NW to SE by the original V1 over C. 

V2. All T'i for i < m - 1  are parallel since the original T, (for i < m - I )  were 

parallel and matching limitations were added. 

V3. T '_~ > T',,-2 because the slopes of u~, u2 are greater than those of w, w~. 
t ! ! , V4. There exist u '~  T,,-2 and v '~  T,,_, crossing to the right of the new xH, 

indeed, by construction any pair of  lines u '~  T '_2,  v '~ T ' _ ,  cross inside 

the region B~B2C2C~ which lies to the right of B. 

By induction there exists a set of  segments G ' =  G(k, m - 1) based on 6 copies 

of  C '  and satisfying properties P1-P5 for k and m -  1. By P4 on G',  Ec ,  is the 

sequence S ' =  S(k, m - 1) used in the construction of S(k, m) given in Section 2. 

In S'  the fans do not include the "last" segments lm and have the form 

<(1,~) (2 ,~ )  "-" ( m - 2 ,  a )  ( m - l , a ) ) .  

The lower envelope sequence associated with the part of  G '  inside the x-range 

of  the outer frame of  each copy C"  of C '  (for 1 <- a <- 6) coincides with the 

corresponding fan in S' (by P1-P3 and Lemma 3.1). 

3.5.4.2. Second Induction over k - 1 ,  ft. Next define a new valid constraint 

C*(k  - 1, ~) as follows: 

(1) The induction step over C '  has created ff copies of the original C which 

are ordered in the plane from NW to SE. Let C"  denote the c~th copy of 

C'.  Each of these copies contains a copy of T ' .  The set of  tubes T* for 

C* then consists of  these & copies of  T',,, each limited by taking any line 
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(2) 

w* ~ T* (the 6th copy of T ' ) ,  by generating the corresponding translates 

w~ of w* in each T*, and by limiting T* for ct < ti to admit only lines 

below w,, and by limiting T* to admit only lines above w*. 

The outer frame of C* can be taken to be any sufficiently large rectangle 

[XL, XH] X [YL, YH] that contains all the outer frames of all copies of C'  

and all the segments of  G'. 

C* is valid since: 

V1. The 6 tubes of  C* are properly ordered as each T* is contained in the 

outer frame of  the corresponding C"  and these outer frames are ordered 

NW to SE by P1 over G'. These tubes are contained in the outer frame 

of  C* by (2) above. 

V2. All tubes T* for a < ~ are parallel by (1) above (because of  the matching 

limitations added to each). 

V3. T * >  T*_~ because of the w*-limitations in (1). 

V4. We can always choose lines w'~ T*_I, w"~ T* sufficiently close to wa_~ 

(as defined in (1) above) and to w*, respectively, so that their crossing 

point lies as far to the right as desired, so V4 follows immediately. 

Again by induction hypothesis there exists a set G* based o n / 3  copies of C* 

and consisting of  ~ = 8 . / ~  segments which satisfy properties P1-P5 for k - 1  

and c~. 

3.5.4.3. The Merging Step. We now construct the desired set G as follows. For 

each 1--</3-</~ let G~ denote the translated copy of  G'  inside the/3th copy of  

C* created by the construction of G*. G is then defined as the union of  G* and 

of  all these copies C~ of  G'  for 1 <-/3 -</3~ We also number the segments of G* 

and of the Gb's using the same renumbering as in Section 2. 

The following lemma is a consequence of Theorem 2.1(d), and establishes the 

crucial property of the merged set G, namely, that the interaction of G* with 

each G~ matches exactly the interaction between S* and the corresponding copy 

S~ of S', as described in Section 2: 

Lemma 3.3. Let 1<-/3<-~. For each l<-a<-8 the segment l*=l  .... ~ of G* 

appears below Yc~ in exactly one interval which is contained in the interior of the 

range corresponding to the first appearance of lm-l,~.~ in YGb. 

Proof. First, we claim that the slope of  I* is larger than the slope of  any segment 

in G~. Indeed, l* lies on a line that passes through a limited version of  a copy 

of  the original mth tube T,, of  C; similarly, any segment of G~ lies on a line 

that passes through a copy of  some original tube Td for d < m. Thus V3 and V4 

over C imply that the slope of  i* is larger than that of any segment of  G~. 

Let ,~ be the portion of the sequence EG~ = S'~ realized by the portion of YG~ 

lying to the right of the starting point of I*. Let x~ be the x-coordinate of this 
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starting point, and let x2 be the x-coordinate of  the crossing point of  l* and of 

Im_~.~.~ (recall that by our construction this crossing point lies inside the outer 

frame of C ' ) .  

Associate with S a sequence i of intervals on the x-axis so that the j th  interval 

I s is the projection of the portion of Ych corresponding to the j th  element of S, 

with the exception that the first interval I~ of f starts at x2. 

For x~ <-- x < -- x2, l* lies below lm_j,~.~ and/,~_~,~,~ is the lowest segment of G~ 

there. Indeed, each preceding segment l of G~ either starts inside a preceding 

copy C'~ of C '  or starts at the present copy C"  of C'.  In the first case C~,, lies 

NW to C"  and since l has positive slope it must pass above the outer frame of 

C"  and thus above i,._~,~,~. In the second case l must also be above /,~_j,~,a 

because their crossing point must be to the right of C"  (by P3A over G').  

Thus immediately after x2 the lower envelope Y c ~ t : ~  is attained by l.,_~,~,~ 

and l* lies above it. The proof  now proceeds by induction on the elements in 

the sequence S (the first of  which is clearly ( m -  1, a, /3))  and shows that for 

each element s) in S, the segment I~, of  G~ lies below l* over the corresponding 

interval/ j .  The base case j = 1 has just been observed, because s~ = (m - 1, a, /3) 

and I~ starts at x2. Suppose the claim holds for all elements in S preceding the 

j th  one, and let the j th  element of  S be the index or of  some segment l~ of  G~. 

is the tail of  S' = S(k, m - 1), and the proof  depends on the place in S'  in which 

the current appearance of  cr takes place. 

(1) I f  this appearance is at a fan of S' then it comes after the a th  fan, and 

by construction and the NW to SE order of the C'~-frames, l~ must appear 

below l* over the corresponding interval !i (because I~ starts at a point 

lying SE to the starting point of l*, and l* has a slope greater than that 

of  I~). 

(2) If  this appearance of tr is at some later chain of S' such that tr is not the 

first symbol of  that chain, then let the preceding symbol in that chain be 

tr'. By induction hypothesis, l~, lies below l* over the corresponding 

interval Is_l, and since l~, crosses l,, from below (by P5 over G')  it follows 

that l,, must lie below 1" over Is. 

(3) Finally, suppose that the present appearance of tr is as the first symbol 

of  some later chain which is not contained in a fan of S'. Then by Theorem 

2.1(d), tr also appears in S' before its current appearance so that no fan 

of  S'  lies between these two occurrences. In particular, or has a preceding 

appearance in S as its ith element for some i <j .  By induction, l~ lies 

below l* over L, and since l* has slope larger than that of  l,~, it continues 

to lie above l,~ also over I s. 

This completes the inductive proof  of  the lemma. [] 

We can now establish P1-P5 for G: 

P1. ~2 = ci . /3 copies of  C are created in the double induction process, They 

are ordered NW to SE because each of the copies of C is ordered NW 
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to SE inside each copy of C*, which are themselves ordered NW to SE 

by P1 over G*. 

P2. G consists of ~.  (rn-  1)Ck(m- 1)+ aCk_,(a)= m. Ck(m) segments (see 

also Section 2) which are grouped into ~ •/3 = ~ fans. 

P2A. By induction the starting point of  each of the segments of G is 

inside its corresponding tube f rame-- the  first induction substep 

proves it for segments ld.v, d < m; the second substep proves it for 

segments lm.v. Note that the construction did not change the tube 

frames in the original C(k, m). 
P2B. Each segment ld.v for d < m lies on a line that passes through the 

corresponding tube by the first induction substep and each segment 

l,~.v lies on a line that passes through its corresponding tube by the 

second induction substep. These tubes are just limited versions of  

the tubes in C(k, rn), so all these segments lie on lines that pass 

through the corresponding original tubes. 

P3. By P3 over G~ all points in HcE(G~) lie outside the x range of any of 

the ti copies of  the extended outer frame of C '  and other crossing/ending 

points of segments of  G~ lie either above these extended frames or outside 

their x-ranges. Thus, in particular, P3 also holds for the points in each 

IIcE(G~) with respect to the outer frames of the copies of C. 

By P3 over G* all points in HcE(G*) lie outside the /3  copies of the 

outer frame of C* and any other crossing/ending points of  segments of 

G* lie either above these outer frames or outside their x-ranges. Thus, 

again, these properties also hold for the outer frames of the copies of C. 

Thus the only type of points that still need to be considered are points 

in which segments in G* cross segments in some G~ (call these X-points). 

However, by construction of C* and of G '  there is only one such X-point  

inside the outer frame of each C'~--namely,  the point in which ! ..... 

crosses lm-i,~.~. However, this point lies inside the corresponding quad- 

rangle AIA2D2D~ and thus outside the frame of the copy of C(k, m) from 

which this C"  is constructed (see Fig. 3.8). 

From this point on, the segment I . . . .  ~ of  G* does not cross Yc;~ again 

(because of Lemma 3.3) and thus ! . . . .  B does not pass below Yc~. Also, 

since such an l . . . .  ~ in G* lies outside the outer frame of any copy of C* 

other than the /3th copy and above all such subsequent copies, 1 . . . .  

cannot cross segments from any other G~, (each contained inside one 

such frame). 

P4. General properties: 

P4A. G is contiguous since G* is contiguous (by P4A over G*), each G~ 

is contiguous (by P4A over G') ,  and each G~ has points common 

to G*, e.g., the crossing point of  1 . . . .  ~ with 1,,_~.~,~ for any a. 

P4B. E~(k,m) = S(k, m): E~, = S' by P4B over G' ,  and E ~ .  = S* by P4B 

over G*. By Lemma 3.3 and the construction of G*, for each 

1 -</3 -</3 the parts of  G* seen inside the x range of Yc~ are only 

the segments 1 . . . .  o (for 1 -< a -< 6),  each making a single appearance 

over an interval "inserted into" the interior of  the range of  the initial 
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PS. 

appearance of its corresponding segment lm_l,~,~ (in the fan contain- 

ing Im-L,.~). Thus, it is easily checked that the lower envelope 

YG(k,m) is such that: 

(1) Outside the outer frames of the copies of C* (more precisely, 

outside the x-ranges of  the copies G~ of G')  YG coincides with 

YG*. 
(2) Within the x-range of a copy G~ of G',  Lemma 3.3 implies that 

YG is equal tO Y~,  with each of the additional segments lm,~,~ 

making a single appearance in the "end"  of the corresponding 

fan, thereby splitting the range of the first appearance of the 

corresponding lm-L~.e into two subintervals. It is also easily 

checked, using P3 over G*, that the segment of G* seen immedi- 

ately to the right of the x-range of G~ is the segment l,,,~.~. 

Similarly, the segment of  G* seen immediately to the left of the 

x-range of G~ is the segment immediately preceding (in YG*) 
the flth fan of G* (in particular, no other segment of  G* has 

a lower y value for the x-coordinate of  the left edge of the outer 

frame of the /3th copy C~ of C*, and G~ is still not defined 

for this x-value). 

It therefore follows that EG~k,m~ is constructed from EG ,= S' 

and EG .=S* in exactly the same way in which S(k, m) is 

constructed from these subsequences, as described in Section 

2. Hence EG(k.m)= S(k, m). 
In the first chain after each fan of G the slopes of the segments from 

l,,_~,,~,~ to l~,,~,~ are arranged in decreasing order (by P5 over G').  l . . . .  

has a slope larger than that of  I,,_~.~,~ because of P2B over G* (each 

segment lies on a line passing through its tube) and V3 over C ( T,, > Tm_~). 

YG can be partitioned into (modified) copies YG~ of YG', and chains 

of G*. By Lemma 3.3, the only change in the chain structure of the 

various G~ is the extension of each chain immediately succeeding each 

of their fans. The preceding argument establishes P5 for such chains, and 

the induction hypothesis establishes P5 for each of the remaining chains 

of  G. 

See Fig. 3.9 for details. This completes the proof  of the main theorem. [] 

3.6. Actual Graph Construction 

In order to create G(k, m) we actually need to start the above inductive construc- 

tion with some initial valid base constraint of  size m. It is quite easy to construct 

such an initial constraint and we leave details to the reader (Fig. 3.4 illustrates 

such a possible initial constraint). By the proof  there is a G(k, m) built on top 

of copies of  this valid constraint, which satisfies, among other properties, the 

desired equality EG(k,,r,)= S( k, m ). 
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(Drown with down- distortion) 

Tmfor sorhe C' 

(the tube frome ) 

Outer frame for C' 

(a slnqle copy ) 

Outer frome for C e 

Fig. 3.9 

3. 7. Anchored Graph Construction 

It  is rather easy to modify  the construct ion so that the starting points of  the 

segments all lie on the line l(x) = - x  (or, for that  matter, an arbitrary line I with 

negative slope). We will call this construct ion anchored realization of  the sequence 

using the anchor i. 

To do this, the definition o f  a valid constraint  has to be modified so that I will 

have to cross the tubes o f  C(k, m). The segments will be selected so as to start 

on  the anchor  l. Since the case k = 2 is not  essential (and was only included for 

exposition),  we will just  have to modify  the case m = 1 so that the two copies o f  

C created for the inductive generat ion o f  G ( k -  1, 2) will be placed in the plane 

so that l will pass in the tubes in both constraints. 

This construct ion will also work for any segment or ray (half-line). After 

creating the anchored realization whose anchor  is the line l' containing l, use a 

linear mapping  to " p a c k "  G(k, m) into the x-range o f / .  

Once this is done,  we can construct a realization o f  S(k, m) whose anchor  is 

an arbitrary curve y = f ( x )  provided that the curve can be enclosed in the strip 

between two parallel nonvertical  lines. This is done by using a linear t ransforma- 

t ion to " squash"  the curve so that it is conta ined in an e-wide strip a round  a 

segment, ray, or  line l; building on top o f  l an anchored  realization, and then 
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performing the reverse linear transformation. The construction is feasible if e is 

small enough compared with the size of  the tubes. 

4. Conclusions 

Our result solves an open problem in the theory of Davenport-Schinzel sequen- 

ces, and also sets a tight bound on the complexity of  several problems in 

computational geometry whose solutions involve calculations of  the lower 

envelope of collections of  segments. Some of these problems are: 

(1) Given n segments in the plane, let C be the unbounded component  (or, 

more generally, any single connected component)  of the complement of  

the union of the segments (i.e., C consists of  points reachable from infinity 

(or from any fixed given point) without having to cross any of  the given 

segments). It has been shown recently in [ 11 ] that the (polygonal) boundary 

of C consists of  at most O(na(n))  segments, and our results clearly imply 

that this bound is tight in the worst case. 

(2) Given a polyhedral terrain tr having n faces in 3-space and a point a lying 

above it, we wish to calculate the "horizon" as seen from a, i.e., the lower 

envelope of all the rays emerging from a and not penetrating into tr. It 

has been recently shown in [4] that the combinatorial complexity of  such 

a horizon is O(not(n)), and our construction can be easily adapted to 

yield a terrain tr for which the horizon as seen from some given point has 

fit(not(n)) complexity, proving that the above bound is tight in the worst 

case. 

(3) Given m bivariate piecewise-linear functions having overall n (triangular) 

faces, their pointwise minimum is also a piecewise-linear function. 

Recently it was shown in [16] that the number of  faces in this minimum 

is at most O(n2a(n)).  Our construction can be easily modified to yield 

such a collection of  piecewise-linear functions whose lower envelope has 

fit(n2a(n)) faces. Indeed, take our construction in the x - z  plane and sweep 

each segment in the y-direction to obtain n rectangular faces; add n sharp 

parallel wedges pointing downward, whose bottom edges are all parallel 

to the x-axis and are at the same height, such that each of  them cuts the 

entire collection of  the first kind of faces. It is then easy to check that the 

lower envelope of  the resulting collection consists of fit(n2ot(n)) subfaces. 

This problem arises in the design of efficient algorithms for planning a 

purely translational collision-free motion of a convex polyhedral object 

amidst polyhedral obstacles. 

(4) Let T be a set of  n triangles in E2; call a line t a transversal of T if  it 

intersects each triangle of  T. Let the stabbing region S(T)  of  T be the set 

of  (dual) points p = (~r~, ~2) such that the lines 

D(p)  : y = 7rlx - zr2 

are transversals of  T. It is known that the stabbing region for a single 
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triangle is the "corr idor"  bounded between the upper envelope and the 

lower envelope of the three lines that are dual to the vertices of the triangle. 

It follows that S (T)  is the region lying below the pointwise minimum of 

these individual upper envelopes and above the pointwise maximum of 

the lower envelopes. This easily implies that the combinatorial complexity 

of  the stabbing region is O(na(n)), and our construction can be used to 

construct a set of  n triangles whose stabbing region has complexity 

l~(nct(n)), showing that this bound is tight in the worst case. 

There are many problems related to our result that are still open. For example, 

can one realize nonlinear DS(n, 3) sequences by collections of  cubic polynomials? 

As mentioned above, Sharir [ 14] has recently obtained an improved lower bound 

of the form A2s+~(n)=l-l(n~S(n)) for each s-> 1. What is the simplest type of 

function, each pair of  which intersect in at most 2s + 1 points, which can be used 

to realize this lower bound? 

Also, many recent algorithms in computational geometry and motion planning 

involve calculation of lower envelopes of  collections of  functions, and study these 

envelopes using Davenport-Schinzel sequences (see [3], [9], and [10], for 

example). However, the functions that arise in these problems are generally not 

piecewise linear. It is therefore of interest to attempt to extend our results to 

realizations of  nonlinear Davenport-Schinzel sequences using the specific types 

of  functions arising in these problems. 

Another open problem is related to the results in [11]. Given two simple 

polygons P and Q, having respectively m and n edges, let 3' denote the boundary 

of the unbounded connected component  of  the complement of the difference 

P - Q = {x - y :  x ~ P, y ~ Q}. Calculation of 3' is used in [11] for planning a purely 

translational motion of  Q which separates it from P. It is shown in [11] that 3' 

is a polygonal curve consisting of O(mna(mn)) segments. An interesting open 

problem is whether our construction can be modified to show that this bound is 

tight in the worst case. 
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Appendix 1. Some Values of Ck(m) and Ak(m) 

N ° The functions {Ck: [~0 '') }k=l are defined as 

Cl(m) = 1, m->0, 

Ck(0) =2 ,  k_>2, 

Ck(m)=Ck(m--1)'Ck_l(Ck(m--1)), k>-2 ,  m>-l, 

and a few initial values of  these functions are given below. In the preceding 
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sections, the values of Ck(m) for m = 0 are usually ignored, and the (equivalent) 

definition 

Ck(1)=2"  Ck_,(2), k->2, 

is used instead. The following three shorthand notations are also used: 

a = C ~ ( r n -  1), 

#= C~_,(C~(rn-1)), 

~, = Ck(m) = &- # (by definition). 

Ck(m) 

m 

k 0 1 2 3 4 5 6 7 

1 1 1 

2 2 2 

3 2 4 

4 2 16 

5 2 2:2 

6 2 

7 2 

1 1 1 1 1 1 

2 2 2 2 2 2 

8 16 32 64 128 256 
221 2221+22 

-9" o o  The functions {Ak: l~l N}k=~ are defined as 

Al (m)=2m,  m>-l ,  

Ak(1)=2,  k-->l, 

Ak(m)=Ak_l (Ak(m--1) ) ,  k>_2, 

and a few of  their initial values are given below: 

Ak(m) 

m_>2, 

m 

k 1 2 3 4 5 6 7 

1 2 4 6 8 10 12 14 

2 2 4 8 16 32 64 128 

3 2 4 t6 216 tower(5) tower(6) 

4 2 4 2 l~ tower(216) 

5 2 

2 

where tower(n) is a power tower of  the form 2 2- with n two's. 
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Appendix 2. Some Examples of the Sequences S(k, m) 

Following are values for a few small sequences. The fan elements are shown in 

boldface. The sequences for k = 1 are 

S(1, 1) = (1, 1), 

S(1, 2) = (1, 1)(2, 1), 

S(1, 3) = (1, 1)(2, 1)(3, 1), 

and so on. The entire sequence consists of just a single fan. The sequences for 

k = 2 are 

S(2, 1 )=(1 ,1 )  (1,2), 

S(2, 2) = (1, 1)(2, 1)(1, 1) (1, 2)(2, 2)(1, 2)(2, 2), 

S(2, 3) = (1, 1)(2, 1)(3, 1)(2, 1)(1, 1) 

(1, 2)(2, 2)(3, 2)(2, 2)(1, 2)(2, 2)(3, 2), 

S(2, 4) = (1, 1)(2, 1)(3, 1)(4, 1)(3, 1)(2, 1)(1, 1) 

(1, 2)(2, 2)(3, 2)(4, 2)(3, 2)(2, 2)(1, 2)(2, 2)(3, 2)(4,.2), 

and so on. For k--3  it will only be possible to show the first two sequences: 

S ( 3 , 1 ) = ( 1 , 1 )  (1,2) (1,1) (1,3) (1,4) (1,3)(1,4),  

(this is just S(2, 2) with its symbols renamed). S(3, 2) is constructed from/3 = 2 

copies of  S' = S(3, 1) (over disjoint alphabets) which are merged with S* = S(2, 4); 

the sequence has eight fans. After symbol renaming, the final result is 

S(3, 2) = (1, 1)(2, 1)(1, 1) (1, 2)(2, 2)(1, 2) (1, 1) 

(1, 3)(2, 3)(1, 3) (1, 4)(2, 4)(1, 4) (1, 3)(1, 4) (2, 4)(2, 3)(2, 2)(2, 1) 

(1, 5)(2, 5)(1, 5) (1, 6)(2, 6)(1, 6) (1, 5) 

(1,7)(2,7)(1,7) (1 ,8 ) (2 ,8 ) (1 ,8 ) (1 ,7 ) (1 ,8 ) (2 ,8 ) (2 ,7 ) (2 ,6 ) (2 ,5 )  

(2, 6)(2, 7)(2, 8) 

The next sequences are two complex to be shown. 
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