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Figure 1: Shape detection and regularization. The input point set (5.2M points) has been acquired via a LIDAR scanner,
from the inside and outside of a physical building. 200 shapes have been detected, aligned with 12 different directions in 179
different planes. The cross section depicts the auditorium in the upper floor and the entrance hall in the lower floor. The closeup
highlights the steps of the auditorium which are made up of perfectly parallel and orthogonal planes.

Abstract

We present a method for planar shape detection and regularization from raw point sets. The geometric modeling
and processing of man-made environments from measurement data often relies upon robust detection of planar
primitive shapes. In addition, the detection and reinforcement of regularities between planar parts is a means to
increase resilience to missing or defect-laden data as well as to reduce the complexity of models and algorithms
down the modeling pipeline. The main novelty behind our method is to perform detection and regularization in
tandem. We first sample a sparse set of seeds uniformly on the input point set, then perform in parallel shape
detection through region growing, interleaved with regularization through detection and reinforcement of regular
relationships (coplanar, parallel and orthogonal). In addition to addressing the end goal of regularization, such
reinforcement also improves data fitting and provides guidance for clustering small parts into larger planar parts.
We evaluate our approach against a wide range of inputs and under four criteria: geometric fidelity, coverage,
regularity and running times. Our approach compares well with available implementations such as the efficient

RANSAC-based approach proposed by Schnabel and co-authors in 2007.

1. Introduction

Shape detection from 3D point clouds is a multi-faceted
problem aimed at explaining data by discovering primitive
shapes. Turning a large amount of raw sampling data into a
higher-level representation also leads to complexity reduc-
tion and hence yields more practical algorithms for appli-
cations. Object classification methods can learn information
from labeled collections of primitive shapes in order to cat-
egorize new unknown objects by comparison. Entire scenes
can be analyzed via the arrangement of classified objects and
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shapes, e.g., for classifying objects in indoor environments
[KAJS11] or recognizing specific structures [VGSRO04]. Sur-
face reconstruction methods for objects or entire scenes also
benefit from a collection of primitive shapes that brings use-
ful geometric priors in interactive, e.g., [SSS*08, ASF*13],
and automatic, e.g., [SDK09, LA13], contexts. For urban or
indoor reconstruction in particular, primitive shape detection
is commonly performed as first step [MWA™13]. Primitive
shapes are also amenable to the meaningful recovery of hid-
den or missing parts of objects. The arrangement of prim-
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itive shapes is often used to infer the semantics from raw
measurement data.

Beyond detection of the shapes themselves, one more step
is to detect the regular relationships (regularities) between
the shapes and to reinforce them - a process referred to as
regularization. Due to practical reasons and manufacturing
constraints, man-made objects and environments are often
compositions of primitive shapes and exhibit a large num-
ber of regularities such as parallel, coplanar and orthogonal
relationships. When dealing with defect-laden and missing
data, an increasing number of reconstruction methods rely
upon these regularities when deriving the surfaces from a
collection of shapes. Some shape detection approaches al-
ready consider domain-specific information by, e.g., favor-
ing approximate regularities. However, only the exact reg-
ularity of the detected shapes has substantial impact upon
the complexity of the algorithms downstream the model-
ing pipeline. For, e.g., reconstruction approaches proceed-
ing by space partitioning, coplanar and parallel primitives
reduce significantly both the number of cells of the parti-
tion and the overall visual complexity of the reconstructed
scenes [CLP10].

In this work we focus on the automated detection and
regularization of primitive shapes from unorganized point
clouds. Point cloud is the de facto standard data format
for surface reconstruction methods and can be generated
from laser scanners, structured light cameras such as Kinect,
or multi-view stereo. We further focus on planar primitive
shapes as our man-made environment is mostly composed
of planar parts, and parts of curved surfaces can be approxi-
mated with smaller planar shapes (Figure 1). We consider the
3 main relationships (parallelism, orthogonality and copla-
narity) that form the major regularities in urban scenes and
can reinforce detection by non-local fitting. Covering more
of the many possible regularities such as equidistant place-
ment and co-angularity would introduce more conflicts be-
tween relationships and thus negatively impact data fidelity.

1.1. Previous work

Shape detection. The automated detection of primitive
shapes is an instance of the general problem of fitting
mathematical models to data. There is a wide variety of
shapes in all dimensions, the simplest example in the early
days of Computer Vision being the detection of 1D shapes
such as line segments in 2D images. The rapid technological
advances and affordability that characterized the acquisition
devices have stimulated research for detecting 2D shapes in
3D point clouds. Furthermore, the detection of 3D shapes
such as cuboids in images [XRT12] is used to understand
the arrangement of 3D objects in indoor scenes. We review
next several shape detection approaches for measurement
data.

RANSAC. The random sample consensus (RANSAC)

[FB81] has been widely used for shape detection, e.g.
[SHFH11]. Based on stochastic sampling and probabilities,
it constructs iteratively many shape hypotheses from few
samples and verifies them against the input data in order to
select the shapes with highest number of inliers. In addition
to being a non-deterministic algorithm, RANSAC only pro-
duces satisfactory results with a probability that depends on
the number of iterations. The latter is potentially huge as it
depends on, e.g., the number of triplets of points required to
determine a 3D plane. Schnabel et al. [SWKO7] proposed a
fast RANSAC-based method for detecting several types of
primitive shapes in point-cloud data. This approach is sat-
isfactory in particular when the shapes are heterogeneous
in size, as it optimizes for the probability to not miss the
largest shapes. It is however less efficient on large-scale ur-
ban scenes containing a large number of small shapes.

Hypothesis-then-selection. As for RANSAC this ap-
proach generates many hypotheses from the input data. In a
subsequent step labeling is performed to assign one hypoth-
esis to each input sample while minimizing a global energy
designed to, e.g., favor regularity. Pham et al. [PCYS12] ap-
plied this approach to homography detection in images using
graph-cut for energy minimization.

Accumulation space. Accumulation space methods rely
upon voting in parameter space of the shapes sought after.
Many primitive shape hypotheses are locally fitted to data
samples and accumulated in parameter space. The final
shapes are extracted via clustering of the corresponding
density function in parameter space, through, e.g., mean
shift [Che95]. The Hough transform is a common accumu-
lation space method [Hou62], designed to detect simple
parametric shapes such as lines and circles in grayscale
images [Dav05]. Such transform is to some extend robust to
occlusions and noise. Another common accumulation space
method is the Gaussian sphere mapping used for instance for
pipeline detection from complex industrial areas [QZN14].
Local primitive shapes are mapped via their normal onto the
unit sphere, so that, e.g., points on a cone accumulate as a
ring on the unit sphere. However, there is no connectivity in-
formation between those points as only the normals and not
the point locations are considered. In addition, accumulators
are sensitive to discretization artifacts, which has motivated
robust extensions through, e.g., randomization [BM12]. For
more details on the Hough transform for plane detection we
refer to Borrmann er al. who evaluate the performance and
accuracy of different accumulation space layouts [BELN11].

Region growing. Another popular method for shape
detection originated from image processing is region
growing. The main idea is to emit a local hypothesis by
fitting a shape to an initial seed point, then consolidate this
hypothesis by propagation to neighboring points. Shapes
are extracted sequentially after propagation terminates.
Contrary to RANSAC and Hough transform based methods,
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region growing inherently detects parts that are connected.
For 3D data provided as depth images fast region growing
methods have been proposed by Holz [HB12]. However,
depth images differ from unorganized point clouds where
adjacency information between samples is missing. In
addition, the position of the acquisition device is in general
not available, hampering the use of the empty space defined
by the line of sight. Rabbani et al. [RvDHVO06] introduced
a smoothness constraint for region growing. Instead of
extracting parametric shapes they aim at clustering complex
structures such as curved pipes, and favor undersegmenta-
tion.

Global regularization. Very few approaches detect
and jointly regularize to minimize complexity. Li et
al. [LWC*11] build upon the efficient RANSAC approach
from Schnabel er al. [SWKO7]. They detect relationships
from the set of detected primitives and perform global
optimizations to regularize, by re-fitting these primitives
to the detected relationships. They deal with several types
of primitive shapes and consider relationships such as
parallelism, orthogonality, co-axiality and positioning. This
method performs regularization after complete detection,
then re-start detection until only few points are left un-
detected or a maximum number of iterations is reached.
Although this method allows for flexible optimization, the
running times are in the order of minutes for point sets with
less than a few 100k points and less than 100 primitives.
Zhou et al. [ZN12] perform iterative shape detection and
regularization, specialized to the modeling of buildings from
airborne LIDAR. This approach is very domain-specific and
performs regularization iteratively only from coarse to fine
scales without fine-to-coarse regularization.

At first glance the accumulation space approaches look
appealing for regularization, as they map the input data onto
the parameter space where regularization is easier through,
e.g., quantification. However, the computational complex-
ity and memory consumption depend on the number of de-
grees of freedom of the primitives sought after. Searching for
planes in 3D requires at least 3 dimensions in accumulator
parameter space (2 for orientation, 1 for distance to origin),
leading to high memory consumptions and running times.
Clustering a density function with, e.g., points in accumu-
lator space inherently yields planes that are coplanar. How-
ever, we observe that such clustering algorithm is sensitive
to the choice for the origin, as moving the origin changes the
neighborhood in parameter space. Finally, and albeit the ac-
cumulation in the parameter space might be done in parallel,
the extraction remains sequential, thus accumulation space
methods are unfit to applying efficient global regularization
during extraction.
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1.2. Positioning

Our first positioning is an approach that considers regular-
ization not just as an end but also as a means to improve
the shape detection step. Detection and regularization work
in tandem in the sense that regularization helps to improve
detection and vice-versa. More specifically, the regulariza-
tion is non-local and hence improves the robustness of the
shape detection process through increasing signal to noise
ratio, similar in spirit to non-local methods used for denois-
ing [BCMOS]. Symmetrically, discovering the regularities
during detection helps reducing the overall complexity of
the regularization process. Our approach departs from Glob-
Fit in the sense that we detect and discover the regularities
progressively instead of iterating between complete detec-
tion and regularization. Regularization performed early is
our means to quickly correct imperfect decisions and guide
the detection process toward increased robustness to noise
and outliers.

Our second positioning is scalability and efficiency via a
parallel algorithm implemented on GPU. In real use cases
shape detection is merely a preprocessing step for further al-
gorithms. In addition, the amount of data is quickly increas-
ing as, e.g., modern laser scanners acquire millions of points
within seconds, and consumer-grade sensors such as Kinect
generate depth images in real-time. Most current approaches
are sequential, which does not scale well to large point sets.

1.3. Contributions
Our method provides the following contributions:

o Interleaved detection and regularization: We introduce
a novel approach where detection and regularization act
in tandem to progress toward complete detection of prim-
itives shapes, as well as detection and reinforcement of
the regularities.

e Non-local fitting: The non-local relationships between
primitive shapes are used to perform an efficient con-
strained optimization that refit regularized shapes to the
associated points.

e Scalability: Our approach operates in parallel and all
steps are designed for efficient execution on GPU. This
yields a high scalability amenable to efficient processing
of large data sets - we process 2M points in a handful of
seconds.

e Evaluation: We evaluate the performance of our ap-
proach on several different representative data sets and un-
der four criteria. We compare the detection performance
and the regularity of the set of primitive shapes detected.

2. Overview

Our algorithm takes as input a raw point set and proceeds
as follows. A set of seeds are distributed uniformly over the
input points via the cells of a hierarchical space decomposi-
tion - an octree. From these seeds we start detecting primitive
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shapes through region growing (Section 3). During growing
we repeatedly interrupt the shape detection process in or-
der to detect non-local relationships between the shapes that
have been detected so far (Section 4). The shapes are regu-
larized according to these relationships (Section 5), and we
iterate until complete detection, i.e., until no more points can
be assigned. We provide below a pseudo-code of the Alg. 1,
and Figure 2 depicts the overall process.

Algorithm 1 Interleaved detection and regularization
generate octree
compute kNN

¢ < leafCells
repeat
for all ¢; do in parallel
if NOT hasActiveShape (c;) then
findSeed (c;)
end if
growShapes (c;)
end

g < detectRelations

for all groups of shapes g; do in parallel
regularization (g;)
adjustCoplanarity (g;)

end

until no new points assigned

Our motivation for such methodology stems from the fol-
lowing observation: Knowledge about dominant directions
and non-local relationships between a preliminary set of
shapes detected from the input data can aid further detec-
tion by guidance. The key is thus to derive such relationships
from the input data early during the detection process, which
is possible only if a sufficient number of shapes are already
detected. To provide many shape hypotheses early in the de-
tection process and to achieve short running times, we detect
a high number of independent shapes in parallel. As parallel
methods are efficient only when the amount of synchronized
access is minimized, we favor a region growing approach
that operates locally by expanding the borders of a connected
region. In addition, region growing is an incremental pro-
cess, providing knowledge about a primitive shape before it
has been entirely detected. Note that after each region grow-
ing performed in parallel, each shape is refitted to its asso-
ciated points to improve data fidelity. The regularities are
detected and turned into a graph of relationships between
shapes which represent a set of regularity hypotheses. To re-
inforce the detected relationships between shapes we simu-
late non-local fitting from these hypotheses, and verify the
fidelity of the regularized shapes with respect to the associ-
ated points. Albeit outliers must be accepted when seeking
for outlier robustness, the shape is not regularized and we

rollback to the former detected shape when a too large frac-
tion of the points does not fit well. Such rollback provides
us with resilience to bad decisions taken in the early steps
of the detection process, and to imperfect choices of seed
points. Detaching points that are no longer faithful to the
shape provides guaranteed data fidelity, i.e., maximum Eu-
clidean distance between input points and extracted shapes.

3. Shape Detection

Primitive shapes are detected through region growing. A
shape is represented as a set of points and associated fitting
plane. Growing is achieved either by adding neighbor points
to shapes in parallel, or by hierarchical pairwise merging of
shapes when they are detected as being both adjacent during
growing, and coplanar during the regularity detection step.
However, to avoid the need for synchronized access, we re-
strict the growing of each shape to its cell. As we deal with
unstructured point clouds and growing in parallel on GPU,
several key ingredients need to be defined: a local neighbor-
hood, an error metric to decide propagation and the criteria
to best select seed points.

Local neighborhood. Unstructured point clouds do not
provide neighborhood information required for region grow-
ing. A typical solution is the range search to determine the
neighbors, e.g., in a spherical neighborhood. However, for
point clouds acquired by laser scanners this is impractical
due to highly variable density and anisotropy. We rely in-
stead upon a K-Nearest Neighbor (kNN) graph data struc-
ture to determine point-neighborhood during growing, as it
better adapts to variable point density.

Growing error metric. The error metric used to decide
whether a neighbor point well fits a shape for growing in-
volves two error tolerance parameters: € defines the maxi-
mum Euclidean distance between a point and the plane of a
shape, and o defines the maximum angle deviation between
the normal of a point and the normal of the plane of a shape.
The shape propagation is illustrated by Figure 4.

Seed point selection. The choice of seed points to initial-
ize parallel region growing has some impact on the qual-
ity of results and running times. We define two criteria: pla-
narity of neighborhood and minimal distance to the cell cen-
ter. For planarity we favor seeding points with a high num-
ber of unassigned neighbors (out of the kNN) that well fit a
plane, according to the error metric. Neighbors already as-
signed to another shape are not considered for fitting. Such
planarity criterion indicates the presence of a planar struc-
ture, favorable to growing, but our experiments showed that
seeding closer to cell centers avoids considering already as-
signed neighbor points and hence supports faster growing.
However, we give a strict priority to the planarity criterion
and use the distance to the cell center as a second priority as
the first does usually not lead to a unique choice. Seed points
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Seed selection Shape propagation

Regularity detection

MNon-local fitting

Regularized shapes

Figure 2: Interleaved detection and regularization. Our method operates a concurrent region growing process for detecting
shapes, depicted by different colored points in the first step. The region growing process is interleaved with a regularization
of the shapes. Relationships between shapes are detected from locally fitted planes and reinforced by non-local fitting of the
shapes during detection. Fidelity to the input points is verified by checking the regularized shape against the associated points.
A small number of outliers is acceptable to allow for resilience to outliers and noise (see green shape). A major deviation of a
regularized shape from the input points triggers a fallback to local fitting for further propagation (see purple shape).

are repeatedly selected during the detection process, when
no shape can grow further in this cell and there are unas-
signed points left. Region growing is restricted to operate
within one cell of the space partitioning. With one exception
however: When the growing shape hits the boundary of the
cell, neighbor points from other cells well fitting the shape
are marked as best candidate seed points. Figure 5 depicts
a point set with probability function to be selected as seed
points.

Hierarchical pairwise merging. The space partitioning is
created during preprocessing without knowledge about the
structure of the input point cloud. A planar part may have
been split into several cells and hence detected in parallel

1. iteration
14% coverage

& i

Figure 3: Iterations. After iteration 1, more than 1.000
shapes are detected in parallel. After iteration 2, 52% of the
input points are assigned to 250 larger shapes. After iter-
ation 3, 65% of the input points are assigned to 140 even
larger shapes. Upon termination (iteration 7), 86 shapes
cover 88% of the input points.
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Figure 4: Growing error metric. We grow a shape by adding
neighbor points, indicated by a gray circle, of the bound-
ary points, depicted as yellow. Each neighbor point within
the e-domain around the shape and a small deviation of the
normal to the shape normal is associated to the shape. Two
points in the neighborhood, marked as green, satisfy this
condition. Two other points, depicted as red, fail the condi-
tion by a major deviation of the normal or a position outside
of the e-domain. Growing is carried out for the neighbor-
hood of the two newly associated points, depicted in yellow
in the right picture.

in different cells. Two shapes belonging to the same planar
surface are detected as being coplanar during the regularity
detection step. They are merged into one shape if they are
also detected as being adjacent during growing, see Fig. 3.

Finalization. A shape is considered to be finalized, i.e., not
active, if no more neighbor points can be assigned.

4. Regularity Detection

We consider three types of relationships between shapes:
parallel, orthogonal and coplanar. Given a configuration of
shapes with associated points the regularity detection step
constructs a conflict-free graph of relationships. The nodes
of this graph represent groups of parallel shapes that are con-
nected to groups of orthogonal shapes. This graph is later
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used during the regularization step. Parallel shapes are de-
tected via mean shift clustering in the Gauss normal map,
while orthogonal relationships between clusters of parallel
shapes are greedily added in a second step by comparing
their mean directions. Coplanarity relationships are detected
later and are not represented through the graph. For each reg-
ularity detection step the relationships are re-learned from all
shapes and the graph is rebuilt entirely.

Parallelism. We first generate clusters of parallel shapes. A
parameter [ is used to specify the tolerance angle deviation
between two shape normals. A simple pairwise comparison
is not sufficient as a constellation of three shapes a,b and ¢
may already conflict if |nq - nj,| > cosP and |ny, - ne| > cosp,
but |ng - ne| < cosp. Instead we perform a Gauss-map clus-
tering. Each shape is projected onto the unit sphere by its
normal and assigned a weight equal to the number of asso-
ciated points. As we consider unoriented normals we also
consider the mirrored point on the sphere. The peaks are ex-
tracted via mean-shift, restricted to one hemisphere, using a
Gaussian kernel with 6 = B. All shapes within one peak are
considered to be parallel facing in the direction of the peak.

Orthogonality. In a next step we add orthogonal relation-
ships to the graph, by pairwise comparison of the directions
of the parallel clusters. Initially we put all clusters into a
pool, then perform a greedy selection, starting by remov-
ing the cluster with highest number of points, as this clus-
ter is expected to provide the highest confidence. Two clus-
ters ¢; and ¢, are considered to be orthogonal if |n¢, - ne,| <
cos (5 —PB). All clusters orthogonal to the current one, are
connected to the current one by an orthogonal edge and re-
moved from the pool. We repeat this greedy selection by
choosing the next cluster with the highest number of points
remaining in the pool. Upon termination the graph consist-
ing of several disconnected subgraphs.

Given an indoor scan of a Manhattan world environment for

) RO high prob.
L. SORIIEIR

. low prob.

Figure 5: Seed point selection. The point set of a mechan-
ical part is colored by the probability of a point to be cho-
sen as a seed point for the region growing process. Points
close to sharp features are assigned a low probability as
their neighborhood is non-planar. On flat parts of the sur-
face points closer to the cell center of the space decompo-
sition are favored as they allow for a faster expansion not
being bounded by the borders of the cell.

instance, all shapes of the structures are ideally contained in
one subgraph. The center-node of the subgraph represents
the largest number of points associated to parallel shapes,
in this case probably the direction of floor and ceiling. Two
nodes are connected to the center-node, each containing the
shapes of one wall direction.

Coplanarity. Coplanarity relationships are detected only
after reorienting the shapes in the regularization step (Sec-
tion 5), as shapes detected to be approximately parallel have
already been regularized to be exactly parallel. For each
group of parallel shapes we perform a clustering based on
the distance between the planes. More specifically, the (clus-
tered) shapes are projected onto points on the line defined
by their shared normal through the origin. Each shape is
weighted by the number of points associated to the shape.
We then cluster the shapes through mean-shift applied to
these projections, through a Gaussian kernel parameterized
withc =¢€.

5. Regularization

Provided a set of shapes with associated points and a graph
of relationships, we regularize the shapes by performing
constrained plane re-fitting where constraints are in accor-
dance to the graph. Plane fitting is performed through prin-
cipal component analysis (PCA), extended to fit multiples
planes with a fixed relative orientation.

The best least squares fitting plane to a set of points of a
shape S; passes through the center of mass y;, and its normal
is aligned to the vector with minimal variance of the points.
PCA provides an orthogonal basis aligned to the principal
variation of the data by extracting the eigenvectors of the co-
variance matrix cov;.

The eigenvectors of cov; denote the orthogonal directions
of variation and the corresponding eigenvalues quantify the
amount of variation. Only the eigenvector X of the smallest
eigenvalue needs to be determined as this corresponds to the
orientation of the plane. As we perform iterative re-fitting
with reliable initial guesses and perform all computations in
parallel on GPU we find it more efficient to compute the
smallest eigenvalue through the power iteration method ap-
plied to the inverted covariance matrix.

We extend the common plane least squares fitting to the
fitting of clusters of planes with a fixed relative orienta-
tion (either parallel or orthogonal) by combining the co-
variances matrices into one a single matrix. The covariance
matrix measures the variance relative to the centered data
and is therefore translation invariant. For a cluster of parallel
shapes the covariance matrices cov; of each shape’s point set
are thus simply added. For clusters of parallel shapes that are
mutually orthogonal we choose as “master” shape the one
with largest number of points and all clusters of orthogonal
shapes connected in the graph are rotated around their center
of mass to match the master shape. Rotation R; is specified
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Figure 6: Constrained non-local refitting. The orientation of regularized shapes is defined in one fitting step to guarantee
exact parallelism and orthogonality between regular shapes. The points of parallel shapes are translated by moving the center
of mass into a single location (left). Points of mutually orthogonal shape clusters are combined by rotating the points by %
around the cross product of the mean direction of each group (middle). The normal of the least-squares fitting plane is the best
fit orientation for the parallel shapes and the inverse rotated normal for the orthogonal groups respectively (right).

by using the cross-product between the normals of S; and of
the master shape as axis and 7 as rotation angle. We weight
the influence of each set of points by multiplying their co-
variance matrix by a weight set to the number of points:

cov = Z(\Si|-cov,~) €))

1

The regularized planes of the shapes are then given by the
backward transformed direction and the individual barycen-
ter 1; or the mean barycenter for coplanar shapes, see Fig.
6:

(R ®)p— (R F)u = 0 @

6. Implementation Details

Our algorithm is implemented in C++ and in CUDA using
compute capability 1.1. We use the CGAL library for fast
normal estimation when not provided with the input points.
Execution of an algorithm on GPU requires a structuring
into single kernels, i.e. functions, that are called from
CPU and executed in parallel by blocks of threads. Further
information about CUDA and GPU architecture can be
found in the CUDA documentation.

During the preprocessing we generate an octree and com-
pute the approximate K Nearest Neighbors (akNN) for each
input point. We choose an octree for space partitioning as
it provides a decomposition into compact cells and can be
implemented very efficiently on the GPU. The 3D morton
code is a space filling curve, that follows a depth-first
traversal of an octree. We calculate the arc-length of each
point on the curve and sort the points by radix sort. Karras et
al. [Kar12] recently published an efficient method following
this approach. A precision of 30 bits for the morton code,
which correspond to a maximal octree depth of 10, proved
to be sufficient in our experiments.

To compute the akNN we rely on the octree data structure
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created to distribute the work with a fine partitioning. We
identified that maintaining the buffers of the k nearest
neighbors, i.e., indices and distance, for each point during
calculation is expensive. Resorting the buffer is minimized
if the nearest neighbors are considered first. Therefore we
start by pairwise comparison of points within an octree
leaf cell first. In the next step neighboring octree cells are
identified by traversing the octree and only points close to
the boundary of neighboring cells are further processed. We
restrict the search for the n nearest neighbors for each octree
cell to its adjacent cells.

The main information is kept in three data structures in
global memory during processing. First, we define a shape
structure data type specific to one octree cell containing the
local fit and regularized plane equation, mean and covari-
ance values for fitting as well as affiliation with a group of
parallel shapes and merged shapes. As dynamic allocation
of memory is costly or not available on older GPUs, we
preallocate an array of memory and provide access via
atomic increment of an index to next free structure. New
shape structures are only instantiated during the findSeed
step.

The second data structure stores the leaf cells of the octree.
The octree structure itself is discarded as only the leaf
cells are required to access the points within the range of
those cells. Additionally, the cell data structure is used to
propagate seed points across cells (see 3). A ring buffer with
accessed via atomic operations is used for synchronized
access.

The last data structure is the shape index, a map from a
point to the associated shape structure.

The findSeed step translates to a single kernel launch with
a number of blocks equal to the number of octree leaf
cells. In case of no active shape inside a cell a new shape is
instantiated by taking the next propagated seed point from
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the ring buffer in the cell structure or otherwise by searching
the points within the cell. In case of searching the points
in the range of a cell are divided among the threads of the
block and the most suitable seed point for each thread is
stored in shared memory. A subsequent reduction retrieves
the chosen seed point.

Algorithm 2 growShapes - kernel
¢ « cells|blockldx]
f < c.firstIndex
| < c.lastIndex

for all s < active shapes do
map buf fer[i] < shapelndex][i], for i € [f,1]
for n iterations do
for all i € [f,!] do in parallel
if buf fer[i] = to be visited then
if metric(s, p;,n;) then
set KNN of p; in buffer

end if
end if
end
end for

sum reduce g
sum reduce covy
refit(s, us, covs)

end for

The growShapes step also translates to a single kernel
launch and instantiates one block per octree leaf cell, see
Alg. 2. Within a block all active shapes of one cell are grown
subsequently by first performing a coalesced map operation
from the shape index in the range of the cell into a separate
buffer used for growing. The value in the buffer indicates
the state of a point: not visited, to be visited, associated or
rejected. In case of regularized shapes, points are filtered
that do no longer satisfy the error metric, see Fig. 4. A map
was chosen for tracking the recently added points instead of
a list to avoid synchronization mechanisms.

The growing is performed via a scatter operation of the
buffer into itself. The metric is evaluated for points marked
as to be visited are tested, and the KNN are marked as to be
visited if not yet visited. Keeping track of the highest and
lowest index of to be visited allows to restrict the mapping
operation in each iteration to this interval. The shape index
is updated with the points added to the shape. The state of
the shape is set to inactive if no additional points could be
found during growing.

Refitting the shape to the associated points is performed
by a sum reduction of the positions to retrieve the mean
of the points. A second reduction yields the covariance
matrix. The inverse power iteration to retrieve the eigen-
vector is performed by a single thread in each block, but

is performed quickly as it requires only little memory access.

Algorithm 3 regularization
sum scan for Gauss map creation

repeat

peaks <— mean shift in parallel

filter peaks

shape groups <—remove shapes from Gauss map
until Gauss map is empty

master shape groups <— construct relationship graph

for all s < active shapes do in parallel
sum scan covg
end

for all master shape groups do in parallel
constrained fitting
end

for all shapes do in parallel
verify alignment
end

The regularization step consists of several kernels, see
Alg. 3. At first the Gauss map clustering is performed to
identify parallel and orthogonal groups. We once generate
a set of normals covering the hemisphere roughly uniformly
and thereby defining bins for the clustering. The discretiza-
tion is chosen as the regularization angle tolerance 3, but not
lower than 10°. The first kernel counts the shapes that fall
into each bin. A sum scan is used to identify the memory ad-
dresses to reorder the shapes in a buffer such that the shapes
of each bin are linear in memory. The mean shift clustering
is performed in a loop. A kernel is launched for each non-
empty bin using the average normal in this bin as the starting
value. Grouping the shapes by bins allows to quickly reject
all but few bins for mean shift and to copy the relevant shape
structures into shared memory. We filter close-by peaks and
remove clustered shapes from the buffer. The association to
a shape group is set as a variable in the shape structure The
mean-shift is restarted with the remaining non-empty bins.
Typically only a few iterations are required.

The relationship graph is constructed by a kernel launched as
a single block as the number of groups is usually very low,
up to 22 in our experiments.

To perform the constrained fitting the covariance matrices
of shape groups that are mapped onto another shape group
have to be rotated. A kernel is launched with one block per
shape that performs a sum reduction of the rotated points
if required and writes the covariance matrix into the shape
structure. The constrained fitting is performed in a single
kernel call that performs a sum reduction, see Eqn. 1, and
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Figure 7: Robustness. We sampled the model uniformly and
tested our method while increasingly adding outliers and
Gaussian noise. With an increasing amount of noise and out-
liers small shapes are more difficult to detect. The closeup
depicts a section with narrow windows that is affected by the
increase of noise. However, the coarse structures are still de-
tected for a strong amount of defects, depicted by the full set
of detected shapes in the upper row.

MO 0% 108,015

performs the refit as in growShapes. As the number of mas-
ter shape groups is known from relationship construction,
the kernel is launched with one block for each.

The coplanarity adjustment is performed in a single kernel,
one block launched per shape group. We map the shapes of
each group into shared memory, as the only required infor-
mation are the projected position on the direction, the num-
ber of points and the index of the shape structure in the
global array. A mean shift is performed in each thread. We
chose the starting position for each thread by uniformly di-
viding the range of projected positions.

The verification of the realigned shapes is formulated as a
mapping operation, where all points of a shape are detached
in the shape index, that do no longer satisfy the metric, see
Fig. 4.

7. Experiments

Benchmark. Surface reconstruction and shape detection
have common topics of research, hence a set of common
criteria for evaluation have been established [BLN*13].
Depending on the type of input data and defects such as
missing data or outliers, some criteria such as the Hausdorff
distance may not be relevant. To measure geometric fidelity
we choose the mean distance of a detected shape to its
associated points. The coverage, i.e., percentage of points
assigned to primitive shapes, is used as indicator for com-
pleteness of the detection. The running times listed in Table
1 include all preprocessing steps such as octree generation
and kNN. For evaluation we used a MacBook Pro laptop
with Core 17 4850HQ and a GeForce GT 750M graphics
card.

Evaluating the regularity of a set of primitive shapes
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Our method

84 directions

Figure 8: Kinect. This Manhattan world scene has been
acquired by a mobile robot using Kinect sensors and reg-
istered into a single point set. Schnabel’s method detects
many shapes but they are not very well aligned due to the
high amount of noise and clutter and imprecise registration.
Our methods identifies the main directions of the Manhattan
world and aligns the shapes with those directions during de-
tection. This allows for compensation of the imprecise regis-
tration, see lower image row for comparison with Schnabel’s
method.

is still quite unexplored. We measure the complexity of
a set of planar shapes by the degrees of freedom of the
corresponding planes. High complexity refers to low regu-
larity and vice-versa. A plane has three degrees of freedom:
two for the orientation and one for the signed distance to
the origin. For a group of parallel shapes we count only
two degrees of freedom for orientation. For two or more
pairwise orthogonal set of shapes we consider three degrees
of freedom in total for the orientation. Coplanar shapes
count for one.

We compare our method against three other methods to
evaluate the shape detection performance and the regularity:
a region growing method (RegGrow) for detecting planar
shapes in unstructured point data [LM12], the efficient
RANSAC-based shape detection method (RANSAC) pro-
posed by Schnabel et al. [SWKO07], and GlobFit [LWC*11],
an iterative regularization method relying upon the afore-
mentioned RANSAC method. For rigorous comparison
we set the parameters of these methods to provide results
with similar mean errors and minimum number of points
per shape. While RANSAC and GlobFit can handle other
types of shapes we restrict the methods to planar shapes for
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Figure 9: Regularity vs. coverage. Favoring strong regular-
ity may come at the cost of coverage. We applied our method
to the LIDAR data set ’Euler’ with different parameters. Col-
ored scale refers to the shape area. The full reconstruction
with low regularity is shown in the upper left. A high amount
of clutter in the entrance hall can be seen on the upper right
closeup with a low regularity, i.e. 388 different directions.
The two closeups in the lower figure show the variation in
detection of irregular shapes, clutter, while favoring a higher
regularity, i.e., 5 and 10 different directions. Many small
shapes on clutter are detected while the shapes on structural
parts remain mostly untouched.

comparison.

We choose several data sets for evaluation, ranging from
architectural scenes acquired via laser scanners and Kinect
sensors to a point set acquired by Multi-View Stereo (MVS)
using the approach from Vu et. al [VKLPO09]. The Kinect
point set covers an indoor Manhattan world scene [GM-
RFM14]. On defect-laden inputs our experiments show that
the interleaved regularization improves the shape detection
step through detected relationships, see Figure 8.

The RANSAC method shows a comparatively low compu-
tation time compared to RegGrow, but is significantly slower
than our GPU-based algorithm. While the coverage of the
data is similar to ours, RANSAC does not perform any regu-
larization and therefore exhibits low regularity. The coverage
of RANSAC is similar to the one produced by our method, al-
beit the process devised to ensure connected components is
not adaptive to variable point density and has impact on the
running times. Choosing a small tolerance for connectivity
leads to a separate detection of details in densely sampled
areas and to absence of detection in sparse areas. A high tol-
erance for connectivity leads to loss of details in dense areas,
but yields reconstruction in sparse areas (Figure 10).

The RegGrow method achieves a higher coverage in almost
all experiments compared to the two other methods, but the

number of detected primitives is higher while all methods
are set to use the same minimal number of points per shape.
The comparison with our region growing mechanism shows,
that in some cases the regularity of shapes may come at the
cost of coverage, see Fig. 9.

For evaluating GlobFit we used the implementation provided
by the authors, and rely upon the output of RANSAC as in the
original publication. It can optimize for wider range of rela-
tionships, but is both memory- and compute-intensive. This
renders the method unsuitable for datasets at the scale of ur-
ban scenes, and we could compare on a single data set due to
excess of memory consumptions. On the Kinect data set the
regularization yields high regularity by enforcing a Manhat-
tan world providing a similar result to our method.

The parameters used in our experiments are listed in Table
2.

Robustness. To evaluate the robustness of our method we
manually designed a model of a house in Trimble Sketchup
and generated a defect-laden point set. Such designed model
provides us with a ground truth: we can distinguish between
points sampled from a shape and added outliers, and thus
correctly measure the coverage and fidelity to the ground
truth, see Figure 7.

The constantly recurring detection and reinforcement of
non-local regularities makes the method resilient against
outliers, noise and sparse sampling. By jointly fitting par-
allel shapes the accuracy in sparsely sampled noisy areas is
reinforced by parallel shapes from densely sampled areas,
see Fig. 8. The region-growing method inherently provides
to some extend outlier robustness due to its local propagation
mechanism.

Parameters. The algorithm requires selecting few parame-
ters: €, the Euclidean tolerance error distance between shape
and input points, o, the normal tolerance deviation between
shape and input samples, and the minimum number of points
per shape are common among shape detection methods. B is
the maximum angle deviation used to consider two planes as
parallel during the detection of regularities.

The chosen cell size for octree creation determines the num-
ber of generated leaf cells and therefore the degree of paral-
lelism in execution. Per iteration of the method at most one
seed point is chosen per cell and therefore at most one shape
per cell is detected. A separation into few large cells allows
further expansion of single shapes, but requires more iter-
ations for detecting all shapes and leads to inefficient load
balancing. Many small cells, however, lead to better load
balancing, but might add some overhead due to the increase
of shapes for regularization and fitting. A graph evaluating
the impact on cell size on performance is shown in Fig. 11.
For point sets mainly consisting of large planar shapes, e.g.
architecture captured by a laser scanner, a high cell size leads
to a higher performance. An upper cell size limit is imposed
by the hardware specification of the GPU. Choosing a cell
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Figure 10: Road. This data set was acquired from a car moving along a street. The point density strongly varies from the road
towards the top of the buildings. Our method (mid left) and the RegGrow method (mid right) exhibit resilience against varying
point density and are able to detect details close to the road as well as shapes in sparse areas. The RANSAC method does not
adapt well to the sparse sampling and is not able to detect the upper parts of the buildings, see excerpts in upper part. This
leads to a lower coverage 79.3% vs. 87.8% (our method) and 88,7% (RegGrow), see Table 1. The RegGrow method tends to a
higher number of primitives compared to the other methods, shown in the lower excerpt showing a curved part of a building.
The result of our method shows a stronger regularity compared to RegGrow.

data sets methods evaluation criteria output complexity
mean error | coverage time complexity | #shapes | #dirs | #planes
Our method 0.045 72,0% 8.7s 0.33 200 12 179
Kahn RANSAC 0.041 72,4% 34.9s 0.98 200 195 200
(5.2M pts, Fig. 1) RegGrow 0.044 76,6% 348s 0.94 295 272 290
Our method 0.014 81,0% 5.1s 0.37 133 14 120
Euler RANSAC 0.011 81,8% 26,2s 0.99 232 228 232
(3.9M pts, Fig. 9) RegGrow 0.012 87,1% 379,1s 0.97 284 273 284
Our method 0.22 43,6% 2.2s 0.30 47 3 39
Kinect RANSAC 0.26 84,8% 12.6s 1.0 84 84 84
(0.3M pts, Fig. 8) Globfit 0.24 50,5% 185s 0.34 48 3 46
Our method 1.6 87.8% 5.2s 0.49 73 22 63
Road RANSAC 1.6 79,3% 28.3s 1.0 91 91 91
( 1.4M pts, Fig. 10) RegGrow 1.52 88,7% 102s 0.96 185 177 181
Our method 0.031 83.,3% 3.2s 0.42 69 11 67
MVS alley RANSAC 0.028 82,2% 8.5s 1.0 55 55 55
( 1.1M pts) RegGrow 0.028 83,2% 29s 0.99 133 132 133

Table 1: Benchmark. The Kahn and Euler data sets represent buildings acquired by a laser scanner. The Kinect data set shows
a small indoor scene of several registered Kinect scans. The Road data set shows a urban scene recorded by a laser scanner
mounted on a car. A multi-view stereo data set, MVS alley, was used to test the methods on another kind of data featuring
stronger noise, irregular and incomplete sampling.
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Figure 11: Octree parameters. We depict the impact of the
chosen cell size of the octree upon the running time. The
Kahn data set is shown in Fig. 1, church’ in Fig. 3 and
‘thePart’ in Fig. 5. The Kahn data set has been acquired by
a laser scanner and features a high point density with low
noise. A larger cell size enables fast shape growing not lim-
ited by the space decomposition. The church data set instead
exhibits higher noise, lower point density and less points per
shape. A smaller cell size enables detecting all shapes with
fewer iterations, as only one shape per cell and iteration can
be detected.

size leading to fewer cells than the GPU can handle in par-
allel will not use the full capacity of the GPU. Otherwise,
for more detailed geometry a smaller cell size is preferable.
However, in our experiments we found a cell size of 8k suit-
able in most cases.
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Figure 12: Synergy between regularization and detection.
We evaluate the mutual benefit between detection and reg-
ularization by varying the alternating frequency. A progres-
sive detection and regularization yields higher detection rate
and regularity, at the cost of increased computational time
due to additional regularization, compared to a less pro-
gressive or even purely sequential process. A highly frequent
alternation, however, provides no additional gain for the ad-
ditional invested computations.

The chosen number k of nearest neighbors impacts the
propagation speed of shapes and the ability to handle

anisotropic data. However, the kNN are stored for each in-
put sample in memory on GPU and imposes a restriction
to the maximum number of points that can be processed at
once. In our implementation for each input sample the po-
sition, the normal and two integer flags are stored on GPU.
This leads to a memory consumption of 32 Bytes + k x 4
Bytes per point. For a common choice such as k = 20 each
sample point consumes 112 Bytes. For a GPU with 1GB of
memory the maximum number of points to process at once
is around 8-9M considering a few other memory structures
(GPUs with 12GB memory are available but not yet routine).

Synergy of regularization and detection. A distinctive
property of our algorithm is the interleaved detection and
regularization. We evaluate our method with respect to se-
quential approaches by varying the frequency between de-
tection, i.e. region growing, and regularization. We use as
input our sampled ground truth model with added noise and
outliers (resp. 0.2% and 20%) and measure both coverage
(in percent with respect to the sampled points) and regular-
ity, see Fig. 12. This experiment shows that regularization
provides a guidance during detection leading to a higher fi-
delity to the sampled points. Notice that a high frequency
yields no further benefit and increase computational times.
A very low frequency or even a purely sequential approach
leads to shapes with large spatial extend. The regularization
potential of these large shapes is limited as, in general, a
change in orientation implies a large deviation from its as-
signed points.

Figure 13: Detection on curved shapes. This mechanical
part contains several cylindrical surface parts at different
scale as well as planar parts. The regularization of planar
shapes on curved surfaces may lead to the detection of ir-
regular interfaces between shapes or over-segmentation, de-
picted in the lower left close-up. Some small shapes approxi-
mating the cylindrical parts are aligned to the larger planar
shapes (right). Note however that the regularization of the
larger planar parts is not contaminated by those cylindrical
parts.

Limitations. While providing fast detection and alignment
of planar structures our method is not designed for the recon-
struction of free-form shapes. Our algorithm approximates
curved surfaces by planar patches. However, due to the con-
finement of the region growing within one cell the orienta-
tion of the space partitioning is likely to impact the detected
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Figure 14: Stability on curved shapes. The fandisk model
exhibits surface parts with different curvature. Our method
approximates curved areas by smaller planar shapes of dif-
ferent size. A small variation of the € parameter, e.g. 0.1 (left)
and 0.095 (right), might lead to larger variation in the re-
sults.

shapes on curved parts, see Fig. 13. Our method might lack
stability with respect to the € parameter on curved shapes,
see Fig. 14.

Processing data on the GPU provides the benefit of highly
parallelized processing. However, it comes with a memory
restriction limiting the size of the data sets that can be pro-
cessed. This is partially due to the kNN for the shape propa-
gation as k indices must be stored for each input sample.

8. Conclusion

We presented a method for detecting and regularizing planar
primitive shapes from unorganized point clouds acquired on
man-made physical scenes. A novel aspect of our method
consists in interleaving shape detection and regularization
so as to make the two processes mutually cooperate. Such
approach is shown to improve detection and robustness, in
particular when dealing with defect-laden data. Another con-
tribution is to design all data structures and algorithm com-
ponents with an eye on constraints of modern GPU architec-
tures. Our experiments on a variety of point clouds demon-
strate the added value of our approach in terms of efficiency,
detection quality and regularity. The main parameters of our
algorithms provides us with a means to trade coverage for
regularity.

In future work we will investigate the use of compact data
structures on GPU to improve scalability. We also wish to
understand the hierarchical relationships between shapes in
order to detect and utilize more structure from the input raw
data.
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Ourmethod | & | a | B
Kahn 0.09 0.9 8°
Euler 0.05 | 0.9 8°
Kinect 0.4 0.8 | 25°
Road 0.001 | 0.8 | 11.5°

MVS alley 0.5 0.7 15°

RANSAC € o | clustering
Kahn 0.09 | 0.9 0.09
Euler 0.04 | 09 0.04
Kinect 0.4 0.8 0.4
Road 0.001 | 0.8 0.005
MVS alley 0.4 0.7 0.5
RegGrow € o

Kahn 0.09 | 0.9

Euler 0.04 | 09

Road 0.001 | 0.8

MVS alley 0.4 0.7

GlobFit | € | o | B
Kinect | 04 | 0.8 | 25°

Table 2: Parameters used in experiments. All methods use
€ as the maximum tolerance Euclidean distance between a
point and a shape. o. denotes the normal deviation threshold
O < Mpoint * Mshape- B denotes the normal tolerance between
shapes to be considered as parallel during regularization.
RANSAC requires one additional parameter for clustering
neighbored points by distance. Globfit operates on top of
RANSAC hence uses the same parameters for detection. Pa-
rameter € is used for coplanarity alignment in Globfit. The
minimum number of points for all methods is set to 500 for
the Kahn, Euler and Road data sets, 200 for Kinect and 100
for MVS alley.
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