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Abstract

Multiview studies in Computer Vision have concentrated
on the constraints satisfied by individual primitives such as
points and lines. Not much attention has been paid to the
properties of a collection of primitives in multiple views,
which could be studied in the spatial domain or in an ap-
propriate transform domain. We derive an algebraic con-
straint for planar shape recognition across multiple views
based on the rank of a matrix of Fourier domain descriptor
coefficients of the shape in different views. We also show
how correspondence between points on the boundary can
be computed for matching shapes using the phase of a mea-
sure for recognition.

1 Introduction

Multiview analysis of scenes is an active area in Com-
puter Vision today. The structure of points and lines as seen
in two views attracted the attention of computer vision re-
searchers in the eighties and early nineties [5, 1, 3]. Simi-
lar studies on the underlying constraints in three views fol-
lowed [6, 2]. The structure of greater than four views has
also been studied [7, 8]. Two excellent textbooks have re-
cently appeared focusing on multiview geometry for Com-
puter Vision[1, 3]. The mathematical structure underlying
multiple views has been studied with respect to projective,
affine, and Euclidean frameworks of the world with amaz-
ing results.

Multiview studies have focussed on how geometric prim-
itives such as points, lines and planes are related across
views. Specifically, the algebraic constraints satisfied by
the projection of such primitives in different views have
been the focus of intense studies. The multilinear relation-
ships that were discovered have been found to be useful for
a number of tasks, such as view transfer, geometric recon-
struction and self calibration. The richness of the informa-
tion present among the geometric primitives in a collection

of them has not attracted a lot of attention. Such proper-
ties are difficult to capture in the spatial domain but can
be extracted with relative ease in a transform domain. The
analysis of boundary shapes in multiple views using Fourier
domain descriptors can provide structure not explicit in the
geometric space and provide interesting handles for solving
problems like object recognition and view transfer.

The properties of collections of primitives in multiple
views are studied in this paper. Specifically, we look at
the situation of viewing a planar shape from different view-
points. Recognizing objects from diverse viewpoints is es-
sential to interpreting the structure and meaning of a scene.
We use a Fourier domain representation for the boundary
of the object and derive recognition constraints the projec-
tions of the object must satisfy in multiple views. These
constraints are in the form of the rank of the matrix of the
descriptor coefficient values.

We present the basic problem formulation in the next
section. Numerical results to validate the theoretical claims
are presented in Section 3, along with some discussions on
the underlying issues. Section 4 presents a few concluding
remarks.

2 Problem Formulation

We are interested in exploiting the relationships between
points on the shape boundary in the domain of a Fourier
descriptor. Affine homographies have been studied in the
Fourier domain [4], in which the boundary points were rep-
resented as complex numbers. We need a richer representa-
tion to linearize the affine homography relation and so use
a vector of complex numbers as our descriptor for points on
the boundary of a shape.

Let ��� ���	��

��� ��������� ��������� ����� be the homogeneous coordi-
nates of points on the closed boundary of a planar shape.
The shape is represented by a sequence of vectors of com-



plex numbers as shown below.� � ����� �� ��� ����� �"!��� �����#�$!��� ���%�#�&!
'(

Let the image-to-image transformation of these points from
view 0 to view ) be given by a *,+-* matrix M. We have,�/. � �����10 �/2 � ��� (1)

Taking the Fourier transform on both sides we get,34 . � 56�/�10 34 2 � 56� (2)

where
34 2 and

34 . are the Fourier transforms of � 2 and � . ,
respectively. The sequences

34 . � 56� are periodic and conju-
gate symmetric.

2.1 Affine Homography

We first look at the case when the transformation be-
tween two views is affine. The third row of the matrix 7 in
Equation 1, has the special form � !8!-9:� for affine transfor-
mations. We can write Equation 1 in this case as� . � �����<; � 2 � �����>=
where A is a ?@+A? matrix, = is a translation vector and ) is the
view index, with )B�C! being considered to be the reference
view. We can discard the effect of vector = by discarding
the DC component - the Fourier coefficient corresponding
to 5D�E! (or by shifting the origin to the centroid of the
shape). The affine transformation can now be written as� . � ���F� ; � 2 � ��� in the spatial domain, and34 . � 5��F� ; 34 2 � 56� in the Fourier domain (3)

without any loss in generality. In general, correspondence
between images, i.e., information as to which image points
in different views are projections of the same 3D point, is
not available. This implies that when the boundary is seen
in two views, the description may not start from the same
point. In other words, there is an unknown shift between
the sequences of boundary points in different views. This
shift in the spatial domain translates into a rotation in the
Fourier domain. Equation 3 can now be written as34 . � 5����C; 34 2 � 56�HGJI6KMLHN (4)

where, O . is the unknown shift in view ) , P is the number of
points on the boundary of the shape, and Q"RS�UT&�6?@VB5XWMPZY

Let us define a measure called the cross-conjugate prod-
uct (CCP) on the Fourier representations of two views as[ 
�!%�\)��]� 
 34 2 � 5����\^�_ 34 . � 56�� 
 34 2 � 5����\^�_`; 34 2 � 56�JG I K L NaY (5)

The matrix ; can be expressed as a sum of a symmetric
matrix and a skew symmetric matrix as ;b�c;edf�D;gd R
where ; d �Fhi 
j;k�<; _ � and ; d R#�Fhi 
�;lTm; _ � . The
skew symmetric matrix reduces ton8o ! 9TS9 !qp �
where n �kr h i Tmr i h is the difference of the off-diagonal
elements of ; . We now have[ 
j!X�a)��]� s h �ts i� 34 2 � 5�� ^a_ 
�; d �>; d R@� 34 2 � 56�AG I K L N Y (6)

The term
34 2 � 56� ^a_ ;-d 34 2 � 56� of the above equation is purely

real and the term
34 2 � 56� ^a_ n8o ! 9TS9 !qp 34 2 � 56� is purely

imaginary. The phases of s h and s i depend only on the
shift O . . Thus, O . can be recovered from the inverse Fourier
transform of s h or s i , if known. However, we can only
compute

[ 
j!X�a)�� , a combination of s h and s i , which is not
directly useful to recover the shift.

We observe that the effect of the transformation matrixu
on s i is restricted to a scaling by a factor n . We can define

a new measure v , ignoring scale, for the sequence
34 . asv`
j)��w� 34 . � 5�� ^a_ o ! 9TS9 !qp 34 . � 56��Y (7)

It can be shown thatvB
�)��x�y
 34 . � 56�
�a^a_ o ! 9TS9 ! p 34 . � 56��y
�; 34 2 � 56�JGJI�KzLHN�� ^�_ o ! 9TS9 !mp ; 34 2 � 56��GJI6KzLHN�y
 34 2 � 5����\^�_#;{_ o ! 9TS9 ! p ; 34 2 � 56��}| ; |~vB
�!~� (8)

Equation 8 gives a necessary condition for the sequences
34 .

and
34 2 to be two different views of the same planar shape,

or in other words, the values of the measure v`
���� in the two
views should be scaled versions of each other. This extends
to multiple views also. We can express it differently in mul-
tiple views. Consider the 7�+&
�PUTe9J� matrix formed by the
coefficients of the vB
�� � measures for M different views.

� � ���� vB
�!~�:��9:� �:��� vB
�!~�:� P�T�9z�vB
�9J�:��9:� �:��� vB
�9J�:� P�T�9z����:� �:��� �:���vB
�7�T�9J�:��9:���:����vB
�7�T�9J�:� P�T�9z�
'���(

The necessary condition for matching of the planar shape
in 7 views then reduces to

rank 
 � �"��9�Y (9)
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It should be noted that this recognition condition does not
require correspondence between views and is valid for any
number of views.

Can we also estimate the shift O . that would align corre-
sponding points in two views? The answer is yes, using a
measure vA���\� for a fixed � given byv ���\� 
j)������"��

� . � 56�
�a^a_ o ! 9TS9 !qp � . � �X� (10)vX���\� correlates each Fourier descriptor coefficient with a
fixed one within each view. Following a chain of reasoning
similar to the one above, we can show thatvA���\�~
j)������x� | u |�vA���\�~
j!%������G:� i\� LHN�� RJ�%�:�j��� Y (11)

Equation 11 states that the phases of v ���a� 
j)��j��� andv ���\� 
�!%�j��� differ by a value proportional to the shift O .
and the differential frequency 5�Tt� . Therefore, the ratio�� `¡�¢ � .�£ �:��  `¡�¢ � 2�£ �:� will be a complex sinusoid. The value of O . can be
computed from the inverse Fourier transform of the quotient
series. Thus, we can compute the correspondence between
points on the shape boundary across views by determiningO . as above, starting with no prior knowledge.

The measure v ���a� can also be adopted for the purpose of
recognition. However, this approach would not be discussed
in this paper for want of space.

The general projective homography relating two differ-
ent views of the same planar shape can be reasonably ap-
proximated by an affine homography. This approximation
seems to be a practical one as most real life configurations
of imaging a scene from multiple view points, possess struc-
ture that are very close that of affine homographies. This
assumption is also validated by the results for general ho-
mographies, which are presented in the next section.

3 Results and Discussions

We present the results from a number of experiments
conducted to affirm the validity of the formulations in the
previous section. For the first experiment, we use the planar
boundary of an aircraft in a reference view for the study.
Other views were generated using affine homographies to
map points in the reference view into the new views. The
shape boundaries in the views were sampled so that each
shape was represented by 1024 points.

Measure for Recognition( v ): Four affine homography
related views of an aircraft are shown in figure 1. The

�
matrix for these four views was formed using the measures
of v for each view as described earlier. The rank of this
matrix

�
was found to be 1 using SVD (the number of non-

zero singular values gives the rank of the matrix) , as the
largest four singular values were 51138.4, 0.0056, 0.0028,
and 0.0026.

Figure 1. Four affine-transformed views of an
aircraft.

Measure for Determining Point Correspondence( v ���a� ):
We test the effectiveness of our technique for esti-

mating correspondences through the shift O . . Figures 2
and 3 show the inverse Fourier spectrum of the ratiov ���\� 
�)���9J�aW�v ���\� 
�!%�:9H� , when the shifts aligning corre-
sponding points in the two affine views are 150 and 300
respectively.

Figure 2. Graph showing the amplitude of the
IDFT of

�  B¡�¢ � .
£ h ��J B¡�¢ � 2�£ h � against the shift for an affine
homography when the synthetic shift is 150.

Robustness of Recognition: In the next experiment, we
study the recognition accuracy when a zero mean random
noise is added to the position of the synthetically trans-
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Figure 3. Graph showing the amplitude of the
IDFT of

�  B¡�¢ � .�£ h ��J B¡�¢ � 2:£ h � against the shift for an affine
homography when the synthetic shift is 300.

formed shapes related by affine homographies. The high-
est two singular values for different maximum noise levels
are shown in Table 1, for both cases when the image po-
sitions are real numbers and when the image positions are
discretized. The ratio of the highest to the next singular
values does suffer, but there was still more than an order of
magnitude separation between the top two even with a noise
of 20% in the positions of the boundary points. Clearly, the

Real Discrete
Noise Singular Values Singular Values
Level Highest Next Highest Next

0 247476 0.00187 213036 73.0211
0.5% 232918 63.6448 229286 124.335

3% 211296 356.347 228500 483.168
5% 208896 839.34 209417 1233.88

10% 193925 1424.26 197214 2069.28
15% 190745 2324.85 176999 3251.64
20% 180199 3887.51 166523 4931.72

Table 1. Impact of noise on singular values.

recognition is excellent in all cases with the degradation in
performance along expected lines.

In the next experiment we demonstrate the performance
on a real projective homography. Figure 4 shows three dif-
ferent views of the logo of the International Institute of
Information Technology. The ratio of the highest singu-
lar value to the next highest singular value of the

�
ma-

trix for various combinations of views is presented in Ta-
ble 2. When the

�
matrix was constructed for all the three

views the two highest singular values were 1.02679e+06
and 2878, i.e. the rank of the matrix can be considered to
be 1.

(a) (b) (c)

Figure 4. Three different views of IIIT’s logo.

Views a b c
a - 431.048 505.847
b 431.048 - 292.71
c 505.847 292.71 -

Table 2. Ratio of highest singular value to the
second highest singular value of the matrix
of v measures for different combinations of
views shown in figure 4.

4 Conclusions

We derived multiview relations for a collection of points
using Fourier domain descriptors in this paper and demon-
strated a new multiview recognition strategy for planar
shapes without explicit correspondences. This scheme can
also compute the correspondence between matching shapes.
This philosophy can be extended to other collections of
points such as textures in multiple views. We are also work-
ing on extending the recognition to non-planar objects.
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