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ABSTRACT

Using the Planck full-mission data, we present a detection of the temperature (and therefore velocity) dispersion due to the
kinetic Sunyaev-Zeldovich (kSZ) effect from clusters of galaxies. To suppress the primary CMB and instrumental noise we derive
a matched filter and then convolve it with the Planck foreground-cleaned “2D-ILC ” maps. By using the Meta Catalogue of X-ray
detected Clusters of galaxies (MCXC), we determine the normalized rms dispersion of the temperature fluctuations at the positions
of clusters, finding that this shows excess variance compared with the noise expectation. We then build an unbiased statistical
estimator of the signal, determining that the normalized mean temperature dispersion of 1526 clusters caused by the kSZ effect is
〈(∆T/T )2〉 = (1.64 ± 0.48) × 10−11, which gives a detection at the 3.2 σ level. We convert the temperature dispersion of uniform
weight into a measurement of the line-of-sight velocity dispersion, by using estimates of the optical depth of each cluster (which
introduces additional uncertainty into the estimate). We find that the velocity dispersion is 〈v2〉 = (154 000 ± 72 000) ( km s−1)2,
which is consistent with findings from other large-scale structure studies, and provides direct evidence of statistical homogeneity
on scales of 600 h−1Mpc. Our study shows the promise of using cross-correlations of the kSZ effect with large-scale structure in
order to constrain the growth of structure.

Key words. Cosmology: observations – cosmic microwave background – large-scale structure of the Universe – Galaxies: clusters:
general – Methods: data analysis

1. Introduction

The kinetic Sunyaev-Zeldovich (hereafter kSZ; Sunyaev
& Zeldovich 1972, 1980) effect describes the temperature
anisotropy of the cosmic microwave background (CMB) ra-
diation due to inverse Compton scattering off a moving
cloud of electrons. The effect can be written as

∆T

T
(r̂) = −σT

c

∫
ne (v · r̂) dl, (1)

where σT is the Thomson cross-section, ne is the electron
density, v · r̂ is the velocity along the line-of-sight, and

⋆ Corresponding author: Y.-Z. Ma, ma@ukzn.ac.za

dl is the path length in the radial direction. By adopt-
ing a so-called “pairwise momentum estimator,” i.e., us-
ing the weights that quantify the difference in temperature
between pairs of galaxies, the effect was first detected by
Hand et al. (2012) using CMB maps from the Acatama
Cosmology Telescope (ACT). The detection of the kSZ ef-
fect has been further solidified using the same pairwise mo-
mentum estimator with other CMB data, including WMAP
9-year W-band data, and Planck’s four foreground-cleaned
maps (Planck Collaboration Int. XXXVII 2016), and again
more recently using a Fourier space analysis (Sugiyama
et al. 2017). These measurements represent detections at

1
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the 2–3 σ level. In addition, in Planck Collaboration Int.
XXXVII (2016) the kSZ temperature map (δT ) was esti-
mated from Planck full-mission data and cross-correlated
with the reconstructed linear velocity field data (v ·n̂) from
the Sloan Digital Sky Survey (SDSS-DR7) to compute the
correlation function 〈∆T (v · n̂)〉. For this cross-correlation,
3.0–3.2 σ detections were found for the foreground-cleaned
Planck maps, and 3.8 σ for the Planck 217-GHz map.

There has been a lot of previous work investigating how
to use kSZ measurements to determine the peculiar velocity
field. This idea was first proposed by Haehnelt & Tegmark
(1996), suggesting that on small angular scales the pecu-
liar velocities of clusters could be inferred from CMB ob-
servations. Aghanim et al. (2001) estimated the potential
uncertainty of the kSZ measurements due to contamina-
tion by the primary CMB and thermal Sunyaev-Zeldovich
(hereafter tSZ) effect. In Holzapfel et al. (1997), the pecu-
liar velocities of two distant galaxy clusters, namely Abell
2163 (z = 0.201) and Abell 1689 (z = 0.181), were esti-
mated through millimetre-wavelength observations (the SZ
Infrared Experiment, SuZIE). Furthermore, Benson et al.
(2003) estimated the bulk flow using six galaxy clusters at
z > 0.2 from the SuZIE II experiment in three frequency
bands between 150 and 350 GHz, constraining the bulk flow
to be < 1410 km s−1 at 95 % CL. In addition, Kashlinsky &
Atrio-Barandela (2000) and Kashlinsky et al. (2008, 2009)
estimated peculiar velocities on large scales and claimed
a “dark flow” (>∼ 1000 km s−1) on Gpc scales. However,
by combining galaxy cluster catalogues with Planck nomi-
nal mission foreground-cleaned maps, Planck Collaboration
Int. XIII (2014) constrained the cluster velocity monopole
to be 72 ± 60 km s−1 and the dipole (bulk flow) to be
< 254 km s−1 (95 % CL) in the CMB rest frame. This in-
dicates that the Universe is largely homogeneous on Gpc
scales, consistent with the standard Λ cold dark matter
(ΛCDM) scenario with adiabatic initial conditions.1

This work represents the third contribution of the
Planck2 Collaboration to the study of the kSZ effect. In
Planck Collaboration Int. XIII (2014) we focused on con-
straining the monopole and dipole of the peculiar veloc-
ity field, which gives constraints on the large-scale inho-
mogeneity of the Universe. In the second paper, Planck
Collaboration Int. XXXVII (2016), we calculated the pair-
wise momentum of the kSZ effect and cross-correlated this
with the reconstructed peculiar velocity field 〈∆T (v · n̂)〉,
obtaining direct evidence of unbound gas outside the virial
radii of the clusters. A follow-up paper modelled these re-
sults to reconstruct the baryon fraction and suggested that
this unbound gas corresponds to all baryons surrounding
the galaxies (Hernández-Monteagudo et al. 2015). Even
though the large-scale bulk flow and monopole flow were
not detected in Planck Collaboration Int. XIII (2014), the
small-scale velocity dispersion in the nearby Universe, de-
termined by the local gravitational potential field, might
still be measurable. This is because the velocity of each

1 Although in principle one could still have an isocurvature
perturbation on large scales (Turner 1991; Ma et al. 2011).

2 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by
two scientific consortia funded by ESA member states and led
by Principal Investigators from France and Italy, telescope re-
flectors provided through a collaboration between ESA and a
scientific consortium led and funded by Denmark, and additional
contributions from NASA (USA).

galaxy comprises two components, namely the bulk flow
components, which reflect the large-scale perturbations,
and a small-scale velocity dispersion component, which re-
flects perturbations due to the local gravitational potential
(see, e.g., Watkins et al. 2009; Feldman et al. 2010; Ma &
Scott 2013, 2014). Therefore, although the bulk flow of the
galaxy clusters is constrained to be less than 254 km s−1,
the total velocity dispersion can still be large enough to
be detected. With that motivation, in this paper we will
look at a different aspect than in the previous two papers,
namely focusing on 1-point statistics of Planck data to con-
strain the temperature and velocity dispersion due to the
kSZ effect. This topic is relevant for large-scale structure,
since the velocity dispersion that we are trying to measure
can be used as a sensitive test for galaxy formation mod-
els (Ostriker 1980; Davies et al. 1983; Kormendy & Bender
1996; Kormendy 2001; MacMillan et al. 2006) and more-
over, a numerical value for the small-scale dispersion often
has to be assumed in studies of large-scale flows (e.g., Ma
et al. 2011; Turnbull et al. 2012). Providing such a statis-
tical test through Planck’s full-mission foreground-cleaned
maps is the main aim of the present paper.

This paper is organized as follows. In Sect. 2, we de-
scribe the Planck CMB data and the X-ray catalogue of
detected clusters of galaxies. In Sect. 3, we discuss the fil-
ter that we develop to convolve the observational map, and
the statistical methodology that we use for searching for the
kSZ temperature dispersion signal. Then we present the re-
sults of our search along with relevant statistical tests. In
Sect. 4, we discuss the astrophysical implications of our re-
sult, the conclusions being presented in the last section.
Throughout this work, we adopt a spatially flat, ΛCDM
cosmology model, with the best-fit cosmological parameters
given by Planck Collaboration XIII (2016): Ωm = 0.309;
ΩΛ = 0.691; ns = 0.9608; σ8 = 0.809; and h = 0.68, where
the Hubble constant is H0 = 100h km s−1 Mpc−1.

2. Data description

2.1. Planck maps

2.1.1. Maps from the Planck Legacy Archive

In this work we use the publicly released Planck 2015
data.3 The kSZ effect gives rise to frequency-independent
temperature fluctuations that are a source of secondary
anisotropies. The kSZ effect should therefore be present
in all CMB foreground-cleaned products. Here we investi-
gate the four Planck 2015 foreground-cleaned maps, namely
the Commander, NILC, SEVEM, and SMICA maps. These
are the outputs of four different component-separation al-
gorithms (Planck Collaboration Int. XXXVII 2016) and
have a resolution of θFWHM = 5 arcmin. SMICA uses
a spectral-matching approach, SEVEM adopts a template-
fitting method to minimize the foregrounds, NILC is the
result of an internal linear combination approach, and
Commander uses a parametric, pixel-based Monte Carlo
Markov chain technique to project out foregrounds (Planck
Collaboration XII 2014; Planck Collaboration IX 2016;
Planck Collaboration X 2016). All of these maps are pro-
duced with the intention of minimizing the foreground con-
tribution, but there could nevertheless be some residual

3 From the Planck Legacy Archive,
http://pla.esac.esa.int .
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Fig. 1. Top left: Stack of the NILC CMB map in the direc-
tions of Planck SZ (PSZ) galaxy clusters. Top right: Stack
of the 2D-ILC CMB map in the direction of PSZ galaxy
clusters. This sample provides a very stringent test of the
tSZ leakage, since the PSZ positions are the known places
on the sky with detectable SZ signal. The stacked NILC

CMB map clearly shows an excess in the centre, which is
due to residual contamination from the tSZ effect, while
the 2D-ILC CMB map has a signature in the centre that is
consistent with the strength of other features in the stacked
image. Bottom left: Stack of the NILC CMB map in the
directions of MCXC clusters. Bottom right: Stack of the
2D-ILC CMB map in the direction of 1526 MCXC clusters
(see Sect. 2.2 for the detail of the catalogue). For a different
set of sky positions, the results are broadly consistent with
those for the PSZ clusters. All these maps are 3◦ × 3◦ in
size, and use the same colour scale.

contamination from the tSZ effect, as well as other fore-
grounds (e.g., the Galactic kSZ effect, see Waelkens et al.
2008). We use the HEALPix package (Górski et al. 2005) to
visualize and mainpulate the maps.

2.1.2. The 2D-ILC map

The 2D-ILC Planck CMB map has the additional bene-
fit of being constructed to remove contamination from the
tSZ effect, provided that the tSZ spectral energy distribu-
tion is perfectly known across the frequency channels. The
2D-ILC CMB map has been produced by taking the Planck
2015 data and implementing the “constrained ILC” method
developed in Remazeilles et al. (2011a). This component-
separation approach was specifically designed to cancel out
in the CMB map any residual of the tSZ effect towards
galaxy clusters by using spectral filtering, as we now de-
scribe.

For a given frequency band i, the Planck observation
map xi can be modelled as the combination of different
emission components:

xi(r̂) = ai sCMB(r̂) + bi stSZ(r̂) + ni(r̂), (2)

where sCMB(r̂) is the CMB temperature anisotropy at pixel
r̂, stSZ(r̂) is the tSZ fluctuation in the same direction, and
ni(p) is a “nuisance” term including instrumental noise and

Fig. 2. Profiles for stacked patches (see Fig. 1) of the
NILC CMB map (black diamonds) and the 2D-ILC CMB
map (blue triangles) at the positions of PSZ clusters (top
panel) and MCXC clusters (bottom panel). The profile of
the stacked Planck 217-GHz map is also shown as a refer-
ence (green squares). The central deficit in the flux profile
of the stacked NILC CMB map (black diamonds) is due to
residual tSZ contamination.

Galactic foregrounds at frequency i. The CMB fluctuations
scale with frequency through a known emission law param-
eterized by the vector a, with nine components, accounting
for the nine Planck frequency bands. The emission law of
the tSZ fluctuations is also known and can be parameter-
ized by the scaling vector b in the Planck frequency bands.
The kSZ signal is implicitly included in the CMB fluctua-
tions, since CMB anisotropies and kSZ fluctuations share
the same spectral signature.

Similar to the standard NILC method (Basak
& Delabrouille 2012, 2013), the 2D-ILC approach
makes a minimum-variance-weighted linear combi-
nation of the Planck frequency maps. Specifically

ŝCMB(r̂) = w
T
x(r̂) =

∑9
i=1 wixi(r̂), under the condition

that the scalar product of the weight vector w and the

CMB scaling vector a is equal to unity, i.e.,
∑9

i=1 wiai = 1,
which guarantees the conservation of CMB anisotropies in
the filtering. However, 2D-ILC (Remazeilles et al. 2011a)
generalizes the standard NILC method by offering an
additional constraint for the ILC weights to be orthogonal

3
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Fig. 3. Left: Full-sky distribution of 1526 MCXC X-ray clusters (Piffaretti et al. 2011; Planck Collaboration Int. XIII
2014) in Galactic coordinates. The dark blue area is the masked region, and the clusters are shown in orange. Right:
Redshift histogram of 1526 X-ray clusters, with bin width ∆z = 0.025.

to the tSZ emission law b, while guaranteeing the conser-
vation of the CMB component. The 2D-ILC CMB estimate
is thus given by

ŝCMB(r̂) = w
T

x(r̂), (3)

such that the variance of Eq. (3) is minimized, with

w
T

a = 1, (4)

w
T
b = 0. (5)

Benefiting from the knowledge of the CMB and tSZ spectral
signatures, the weights of the 2D-ILC are constructed in or-
der to simultaneously yield unit response to the CMB emis-
sion law a (Eq. 4) and zero response to the tSZ emission
law b (Eq. 5). The residual contamination from Galactic
foregrounds and instrumental noise is controlled through
the condition (Eq. 3). The exact expression for the 2D-ILC

weights was derived in Remazeilles et al. (2011a) by solving
the minimization problem (Eqs. 3, 4, and 5):

ŝCMB(r̂) =

(
b

TC−1
x

b
)

a
TCx

−1 −
(
a

TC−1
x

b
)

b
TCx

−1

(
aTC−1

x a
) (

bTC−1
x b

)
−
(
aTC−1

x b
)2 x(r̂),

(6)

where Cij
x

= 〈 xi xj 〉 are the coefficients of the frequency-
frequency covariance matrix of the Planck channel maps;
in practice we compute this locally in each pixel p as

Cij
x

(p) =
∑

p′∈D(p)

xi(p
′)xj(p′). (7)

Here the pixel domain D(p) (referred to as “super pixels”)
around the pixel p is determined by using the following
procedure: the product of frequency maps xi and xj is con-
volved with a Gaussian kernel in pixel space in order to
avoid sharp edges at the boundaries of super pixels that
would create spurious power (Basak & Delabrouille 2012,
2013).

Before applying the 2D-ILC filter (Eq. 6) to the
Planck 2015 data, we first pre-process the data by per-
forming point-source “inpainting” and wavelet decompo-
sition, in order to optimize the foreground cleaning. In
each Planck channel map we mask the point-sources de-
tected at a signal-to-noise ratio (S/N) > 5 in the Second

Planck Catalogue of Compact Sources PCCS2 (Planck
Collaboration XXVI 2016). The masked pixels are then
filled in by interpolation with neighbouring pixels through
a minimum curvature spline surface inpainting technique,
as implemented in Remazeilles et al. (2015). This pre-
processing of the point-source regions will guarantee reduc-
tion of the contamination from compact foregrounds in the
kSZ measurement.

The inpainted Planck maps are then decomposed into
a particular family of spherical wavelets called “needlets”
(see, e.g., Narcowich et al. 2006; Guilloux et al. 2009).
The needlet transform of the Planck maps is performed
as follows. The spherical harmonic coefficients ai, ℓm of the
Planck channel maps xi are bandpass filtered in multipole
space in order to isolate the different ranges of angular
scales in the data. The 2D-ILC weights (Eq. 6) are then
computed in pixel space from the inverse spherical har-
monic transform of the bandpass-filtered ai, ℓm coefficients.
The frequency-frequency covariance matrix in Eq. (7) is
actually computed on the bandpass-filtered maps. In this
way, component separation is performed for each needlet
scale (i.e., range of multipoles) independently. Due to their
localization properties, the needlets allow for a filtering in
both pixel space and multipole space, therefore adapting
the component-separation procedure to the local conditions
of contamination in both spaces (see Delabrouille et al.
2009; Remazeilles et al. 2011b; Basak & Delabrouille 2012,
2013).

The upper left panel of Fig. 1 shows the result of stack-
ing 3◦ × 3◦ patches of the NILC Planck CMB map in the
direction of known galaxy clusters, while the top right panel
shows the result of stacking the 2D-ILC Planck CMB map
in the direction of the same set of galaxy clusters.4 The
Planck SZ sample provides a very stringent test, because
these are the places on the sky where Planck detected a sig-
nificant y signature. We see that stacking of the NILC CMB
map shows a significant tSZ residual effect in the direction
of galaxy clusters. Conversely, the stacking of the 2D-ILC

Planck CMB map (right panel of Fig. 1) appears to show
substantially reduced tSZ residuals, due to the 2D-ILC fil-

4 The Planck PSZ1 catalogue of galaxy clusters from the 2013
Planck data release has been used to determine the position of
known SZ clusters.
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tering. In the lower panels of Fig. 1 we show the results
of the stacking procedure for the specific cluster catalogue
that we will be using for the main analysis in this paper
(see next section for details).

The profiles of the stacked patches are plotted in Fig. 2.
The excess of power due to tSZ residuals in the NILC CMB
map would clearly lead to a significant bias in any attempt
to detect the kSZ signal at the positions of the galaxy clus-
ters. As a baseline reference, the flux profile of the Planck
217-GHz map, stacked in the directions of these galaxy clus-
ters, is also plotted in Fig. 2 (green squares). The tSZ signal
should in principle vanish in observations at 217 GHz, since
that is effectively the null frequency for the tSZ signature;
in practice it is non-zero in the Planck 217-GHz map be-
cause of the broad spectral bandpass. In fact there is an
offset of about 20 µK in the flux profile of the stacked 217-
GHz map at the position of PSZ clusters. There is also still
a residual offset in the 2D-ILC CMB map; however, it is
smaller by a factor of about 2 than the tSZ signal in the
baseline Planck 217-GHz map (see top panel of Fig. 2),
and dramatically better than for the NILC map. This sug-
gests that the method employed for the 2D-ILC map was
successful in removing the tSZ signal.

The residual flux of the stacked 2D-ILC CMB map in the
direction of galaxy clusters can be interpreted as the result
of possibly imperfect assumptions in the 2D-ILC filter and
the exact tSZ spectral shape across the Planck frequency
bands. There may be several reasons behind incomplete
knowledge of the tSZ spectrum: detector bandpass mis-
match; calibration uncertainties; and also relativistic tSZ
corrections. In addition, even if the kSZ flux is expected
to vanish on average when stacking inward- and outward-
moving clusters in a homogeneous universe, there is still a
potential selection bias (since we use a selected subset of
clusters for stacking) that may result in a non-zero average
kSZ residual in the offset of the 2D-ILC map. Although it
is not easy to estimate the size of all these effects, we are
confident that they cannot be too large because the resid-
ual offset in the 2D-ILC map is negligible compared to the
tSZ residuals in Planck CMB maps, and smaller by a factor
of 2 with respect to the baseline Planck 217-GHz map.

Regarding residual Galactic foreground contamination,
we checked that the angular power spectrum of the 2D-ILC

CMB map on the 60 % of the sky that is unmasked is
consistent with the angular power spectrum of the Planck
SMICA CMB maps. There is therefore no obvious excess
of power due to Galactic emission. We also checked the
amount of residual dust contamination of the kSZ signal
on small angular scales in the direction of the galaxy clus-
ters, where dusty star-forming galaxies are present (Planck
Collaboration Int. XLIII 2016). Considering the Planck
857-GHz map as a dust template, we scaled it across the
Planck frequency bands using a modified blackbody spec-
trum with best-fit values from Planck Collaboration Int.
XLIII (2016), i.e., β = 1.5 and T = 24.2 K. This provides
dust maps at each frequency band. We then applied the ILC
weights that go into the 2D-ILC CMB+kSZ map (Eq. 6)
to the thermal dust maps. This provides an estimate of the
map of the residual dust contamination in the 2D-ILC map.
We then stacked the residual dust map in the direction of
the galaxy clusters from either the PSZ or the MCXC cat-
alogue, and computed the profile of the stacked patch as
in Fig. 2. We found that the residual flux from the dust

stacked in the direction of the galaxy clusters is compatible
with zero.

Residual cosmic infrared background (hereafter CIB)
and instrumental noise in the CMB maps will add some
scatter to the measured kSZ signals in the directions of
galaxy clusters, but should not lead to any bias in the
stacked profile. However, any additional source of extra
noise will lead to bias in the variance of the stacked profile.
Since CIB and noise are not spatially localized on the sky
(unlike kSZ and tSZ signals) this bias can be estimated us-
ing off-cluster positions, e.g., for the matched-filtering anal-
ysis performed in Sect. 3.2.

In order to quantify the amount of residual noise in the
2D-ILC CMB map, we apply the 2D-ILC weights (calculated
from the Planck full-survey maps) to the first and second
halves of each stable pointing period (also called “rings”).
In the half-difference of the resulting “first” and “second”
2D-ILC maps, the sky emission cancels out, therefore leav-
ing an estimate of the noise contamination in the 2D-ILC

CMB maps, constructed from the full-survey data set.

The 2D-ILC CMB map shows approximately 10 % more
noise than the NILC CMB map; this arises from the addi-
tional constraint imposed in the 2D-ILC of cancelling out
the tSZ emission. At the cost of having a slightly higher
noise level, the 2D-ILC CMB map benefits from the ab-
sence of bias due to tSZ in the directions of galaxy clusters.
For this reason, the 2D-ILC CMB map is particularly well
suited for the extraction of the kSZ signal in the direction of
galaxy clusters and we shall focus on it for the main results
of this paper.

2.2. The MCXC X-ray catalogue

To trace the underlying baryon distribution, we use the
Meta Catalogue of X-ray detected Clusters of galaxies
(MCXC), which is an all-sky compilation of 1743 all-
sky ROSAT survey-based samples (BCS, Ebeling et al.
1998, 2000; CIZA, Ebeling et al. 2010; Kocevski et al.
2007; MACS, Ebeling et al. 2007; NEP, Henry et al. 2006;
NORAS, Böhringer et al. 2000; REFLEX, Böhringer et al.
2004; SCP, Cruddace et al. 2002) along with a few other
catalogues (160SD, Mullis et al. 2003; 400SD, Burenin et al.
2007; EMSS, Gioia & Luppino 1994; Henry 2004; SHARC,
Romer et al. 2000; Burke et al. 2003; WARPS, Perlman
et al. 2002; Horner et al. 2008). We show stacks and pro-
files for this catalogue on the Planck map in Figs. 1 and 2.
While selecting sources from this catalogue, we use the lu-
minosity within R500 (the radius of the cluster within which
the density is 500 times the cosmic mean density), L500,
and restrict the samples to have 1.5 × 1033 W < L500 <
3.7 × 1038 W within the band 0.1–2.4 keV (see Piffaretti
et al. 2011). As well as L500, for each cluster the catalogue
gives M500, the mass enclosed within R500 at redshift z, i.e.,
M500 = (4π/3)500ρcrit(z)R3

500, estimated using the empiri-
cal relation L500 ∝ M1.64

500 in Arnaud et al. (2010). Further
details of catalogue homogenization and calibration are de-
scribed in Piffaretti et al. (2011) and Planck Collaboration
Int. XIII (2014).

For each cluster in the MCXC catalogue, the proper-
ties we use in the rest of this paper are the sky position
(Galactic coordinates l, b), the redshift z, and the mass
M500. In Sect. 4 we will use M500 and z to estimate the
optical depth for each cluster.
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Fig. 4. Measured (black dots) and predicted (red line)
power spectra from the Planck 2D-ILC map. The predicted
spectrum is based on the best-fitting ΛCDM model con-
volved with the squared beam B2

ℓ , with the noise added.
These are estimated using the pseudo-Cℓ estimator de-
scribed in Hivon et al. (2002).

Fig. 5. Optimal matched filter (black line) for point-source
detection in the Planck 2D-ILC map (Eq. 14). For compar-
ison, the power spectra of the CMB signal (red line) and
noise map (blue dashed line) are shown, along with their
sum (brown line).

Since in the CMB map, the Galactic plane region is
highly contaminated by foreground emission, we use the
Planck Galactic and point-source mask to remove 40 % of
the sky area. The number of MCXC sources outside the sky
mask is Nc = 1526 (which we use throughout the paper)
and their spatial and redshift distributions are shown in
Fig. 3. The full-sky distribution is presented in the left panel
of Fig. 3, and one can see that the distribution of MCXC
clusters is roughly uniform outside the Galactic mask. The
redshift of MCXC clusters peaks at z = 0.09, with a long
tail towards higher redshift, z >∼ 0.4.

3. Methodology and statistical tests

3.1. Matched-filter technique

The foreground-cleaned CMB maps (SEVEM, SMICA, NILC,
Commander, and 2D-ILC) contain mainly the primary CMB
and kSZ signals, so in order to optimally characterize the
kSZ signal, we need to use a spatial filter to convolve the

Fig. 6. Filtered (with Eq. 14) and masked 2D-ILC map in
dimensionless units (i.e., ∆T/T ).

maps in order to downweight the CMB signal. Here we use
the matched-filter technique (e.g., Tegmark & de Oliveira-
Costa 1998; Ma et al. 2013), which is an easily implemented
approach for suppressing the primary CMB and instrumen-
tal noise.

Most of Planck’s SZ-clusters are unresolved, so we treat
them as point sources on the sky. In this limit, if cluster i
has flux Si at sky position r̂i, the sky temperature ∆T (r̂)
can be written as

∆T (r̂) = c
∑

j

Sj δ(r̂, r̂j) +
∑

ℓm

aℓmYℓm(r̂), (8)

where δ is the Dirac delta function, c is the conversion factor
between flux and temperature, and the spherical harmon-
ics characterize the true CMB fluctuations. The sky signal,
obtained from the Planck telescope is

∆T obs(r̂) = c
∑

j

Sj

(∑

ℓ

2ℓ + 1

4π
Pℓ(r̂ · r̂j) Bℓ

)

+
∑

ℓm

anoise
ℓm Yℓm(r̂), (9)

where anoise
ℓm is the true CMB signal convolved with the

beam plus the detector noise, i.e., anoise
ℓm = Bℓa

CMB
ℓm + nℓm

(assuming that this is the only source of noise). The beam
function of Planck foreground-cleaned maps in ℓ-space is
close to a Gaussian with θFWHM = 5 arcmin, i.e., Bℓ =
exp(−ℓ2σ2

b/2), with σb = θFWHM/
√

8 ln 2. Residual fore-
grounds in the Planck CMB maps and in the 2D-ILC CMB
map have been minimized in the component-separation
algorithms, as demonstrated in Planck Collaboration IX
(2016) for the public Planck CMB maps and in Planck
Collaboration Int. XIII (2014) for the 2D-ILC CMB map.
Figure 4 compares the angular power spectrum, Cℓ, directly
estimated from the map by using the pseudo-Cℓ estima-
tor (Hivon et al. 2002), and the spectrum predicted by
using the best-fit ΛCDM model and noise template. One
can see that the measured spectral data scatter around the
predicted spectrum, and that the two spectra are quite con-
sistent with each other.
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Table 1. Statistics of the values of (∆T/T ) × 105 at the
true 1526 cluster positions and for 1526 randomly-selected
positions.

True positions Random positions

Mean . . . . . . . . . −0.015 −0.021
Variance . . . . . . . 1.38 1.23
Skewness . . . . . . 0.37 0.09
Kurtosis . . . . . . . 4.44 3.29

In order to maximize our sensitivity to SZ clusters, we
further convolve ∆T obs(r̂) with an optimal filter Wℓ:

∆T̃ (r̂) = c
∑

j

Sj

(∑

ℓ

2ℓ + 1

4π
Pℓ(r̂ · r̂j) Bℓ Wℓ

)

+
∑

ℓm

anoise
ℓm Wℓ Yℓm(r̂), (10)

where we are seeking the form of Wℓ that will maximize
cluster signal-to-noise ratio. In the direction of each cluster,
the filtered signal is

∆T̃c(r̂j) = cSj

[∑

ℓ

(
2ℓ + 1

4π

)
BℓWℓ

]
≡ (cSj)A, (11)

and we want to vary Wℓ to minimize the ratio

σ2 = Var

(
∆T̃noise

A

)
=

∑
ℓ

2ℓ+1
4π Cnoise

ℓ W 2
ℓ(∑

ℓ
2ℓ+1

4π Bℓ Wℓ

)2 , (12)

where Cnoise
ℓ ≡ B2

ℓ CCMB
ℓ + Nℓ, and we take CCMB

ℓ to be
the ΛCDM model power spectrum. Since A in Eq. (11) is
a constant, we minimize Eq. (12) by adding a Lagrange
multiplier to the numerator (see, e.g., Ma et al. 2013), i.e.,
we minimize

∑

ℓ

2ℓ + 1

4π
Cnoise

ℓ W 2
ℓ − λ

(∑

ℓ

2ℓ + 1

4π
Bℓ Wℓ

)2

. (13)

We then obtain

Wℓ =
Bℓ

B2
ℓ CCMB

ℓ + Nℓ
=

Bℓ

Cnoise
ℓ

, (14)

which we plot in Fig. 5 as a black line, along with the pri-
mary CMB Cℓ, the noise map, and their sum. One can see
that the filter function Wℓ gives lower weight in the pri-
mary CMB domain while giving more weight in the clus-
ter regime, ℓ >∼ 2000. We then convolve the five Planck
foreground-cleaned maps with this Wℓ filter, noting that
the noise power spectrum Nℓ in Eq. (14) of each foreground-
cleaned map is estimated by using its corresponding noise
map. After we perform this step, the primary CMB features
are highly suppressed (Fig. 6), and the whole sky looks es-
sentially like a noisy map, although it still contains the kSZ
information of course.

3.2. Statistical method and tests of robustness

We now proceed to estimate the kSZ temperature disper-
sion and perform various tests. The filtered map contains

Fig. 7. The histograms of 1526 ∆T/T values of 2D-ILC

map at the cluster catalogue positions (red bars), and ran-
domly selected positions (black bars). The statistics of the
true cluster positions and random positions can be found
in Table 1.

Table 2. Rms values for the true sky positions of 1526
MCXC catalogue clusters (σMCXC), along with the mean
(σran) and scatter (σ(σran)) of the values of the rms for
5000 random catalogues, where each catalogue consists of
1526 random positions on the sky.

Map σMCXC × 105 σran × 105 σ(σran) × 105

2D-ILC . . . . . . . . 1.17 1.10 0.022
SMICA . . . . . . . . . 1.11 0.97 0.019
NILC . . . . . . . . . . 1.09 0.97 0.019
SEVEM . . . . . . . . . 1.12 1.00 0.020
Commander . . . . . 1.09 1.03 0.020

the kSZ signal and residual noise, and from this we plot the
histogram of 1526 ∆T/T values at the cluster positions (see
red bars in Fig. 7). We can also randomly select the same
number of pixels on the sky and plot a histogram for that.
The two histograms have almost zero mean value (Table 1),
but in the real cluster positions yield a larger variance than
the random selections, i.e., the real cluster positions give a
slightly broader distribution than for the randomly selected
positions (Table 1). We also show results for the skewness
and kurtosis of the two samples in Table 1, and one can see
that for these statistics the real cluster positions also give
larger values than for the randomly-selected positions. This
suggests that there may be additional tests that could be
performed to distinguish the real cluster kSZ signals; how-
ever, we leave that for future studies, and for the rest of
this paper we just focus on investigating whether the slight
broadening of the distribution is due to the kSZ effect.

3.2.1. Test of thermal Sunyaev-Zeldovich effect residuals

The first test we want to perform is to check whether the
measured kSZ (∆T/T ) value at each cluster position suffers
from residuals of the tSZ effect. The mapmaking procedures
of SMICA, NILC, SEVEM, and Commander minimize the vari-
ance of all non-CMB contribution to the map, but they are
not designed to null the tSZ component. By contrast, the
2D-ILC map is designed to also null the tSZ contribution,

7
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Fig. 8. Histogram of the N−1
c

∑
j(∆Tj/T ) values of 5000 random catalogues on the sky (each having Nc = 1526), with

different colours representing different Planck foreground-cleaned maps. The 68 % width of the 2D-ILC, SMICA, NILC,
SEVEM, and Commander histograms are 2.86, 2.49, 2.48, 2.53, 2.62 (×10−7), respectively. The vertical lines represent the
average ∆T/T values at true MCXC cluster positions for each map. One can see that only for the 2D-ILC map is this
value within the 68 % range of the random catalogue distribution, while others are quite far off. This indicates that,
except for the 2D-ILC map, the public Planck maps have residual tSZ contamination at the cluster positions.

Fig. 9. Distribution of the rms for 5000 mock catalogues
(yellow histogram); here each catalogue consists of Nc ran-
domly chosen positions on the filtered 2D-ILC map. The
mean and rms of the 5000 random catalogues are 1.10×10−5

and 2.15 × 10−7, respectively (shown as the black dashed
vertical line and the solid black arrow). For the Nc true
MCXC cluster positions, the rms is 1.17 × 10−5 (red verti-
cal dashed line).

and therefore should provide a cleaner measurement of the
kSZ effect (but with a slightly higher noise level).

We first choose 5000 randomly selected catalogues from
each Planck foreground-cleaned map, each being a collec-
tion of 1526 random positions on the sky. We then calculate
the average value of (∆T/T ) for each random catalogue and
plot the resulting histograms in Fig. 8. The five different
colours of (overlapping) histogram represent the different
Planck maps. One can see that they are all centred on zero,
with approximately the same widths. Since the 2D-ILC map
has nulled the tSZ component in the map, it does not min-
imize the variance of all foreground components and as a
result, its width in Fig. 8 (2.86) is slightly larger than for all

other maps; in these units, the 1 σ width of the histograms
for SMICA, NILC, SEVEM and Commander are 2.49, 2.48, 2.53,
and 2.62, respectively. This indicates that the noise level in
the filtered 2D-ILC map is slightly higher than for the other
four maps.

We then calculate the average value of ∆T/T at the
true cluster positions for the five Planck foreground-cleaned
maps as the vertical bars in Fig. 8. One can see that only
the average value of the 2D-ILC map lies close to zero and
within the 68 % width of the noise histogram, while the val-
ues of all other maps are quite far from the centre of the
noise distribution. This strongly suggests that at each of
the true cluster positions the (∆T/T ) value contains some
contribution from the tSZ effect, so that the tSZ effect con-
tributes extra variance to the foreground-cleaned maps.

3.2.2. Test with random positions

We now want to test whether this slight broadening of the
distribution is a statistically significant consequence of the
kSZ effect. So for the 5000 randomly selected catalogues, we
calculate the scatter of the 1526 (∆T/T ) values. We then
plot (in Fig. 9) the histogram of 5000 rms values of these
random catalogues, and mark the rms value of the true
MCXC cluster positions for reference. One can see that the
mean of the 5000 rms values of the random catalogues is
1.10 × 10−5, and that the scatter of the 5000 rms values of
the random catalogue has a width around 2.15×10−7. The
rms value of the 1526 true MCXC position is 1.17 × 10−5,
larger than the mean value at more than the 3 σ level.

In Table 2, we list the rms value for the true sky po-
sitions of the 1526 MCXC catalogue sources (σMCXC, the
mean (σran), and standard deviation (σ(σran)) for 5000 ran-
dom catalogues for different foreground-cleaned maps. One
can see that although the absolute value of each map varies
somewhat, the second column (σran) is consistently smaller
than the first column (σMCXC) by roughly 0.07–0.13×10−5,
which, specifically for 2D-ILC is about 3 times the scatter
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Table 3. Same as Table 2 for the 2D-ILC map, but chang-
ing the assumed size of the clusters in the filtering func-
tion (Eq. 14).

σMCXC × 105 σran × 105 σ(σran) × 105

Point source . . . 1.17 1.10 0.022
3 arcmin . . . . . . 1.19 1.12 0.022
5 arcmin . . . . . . 1.26 1.19 0.023
7 arcmin . . . . . . 1.42 1.36 0.026

of the rms among catalogues (σ(σran)). This consistency
strongly suggests that the kSZ effect contributes to the ex-
tra dispersion in the convolved ∆T/T maps at the clus-
ter positions (since the 2D-ILC map is constructed to re-
move the tSZ effect). If we use the SMICA, SEVEM, NILC, and
Commander maps, the detailed values will vary slightly due
to the different calibration schemes of the maps, but the de-
tection remains consistently there. The difference between
σMCXC and σran is slightly larger in the SMICA, NILC, and
SEVEM maps due to residual tSZ contamination, shown as
the vertical bars in Fig. 8.

This all points towards the broadening of the ∆T/T
histogram being a consequence of the kSZ effect; hence we
identify it as additional temperature dispersion arising from
the scatter in cluster velocities detected through the kSZ
effect. In Sect. 4, we will interpret this effect in terms of the
line-of-sight velocity dispersion of the SZ clusters, which is
an extra variance predicted in linear perturbation theory in
the standard picture of structure formation (Peebles 1980).

3.2.3. Test with finite cluster size

We now want to test how much our results depend on the
assumption that SZ clusters are point sources. A cluster on
the sky appears to have a radius of θ500, which is equal to
θ500 = R500/DA, where R500 is the radius from the centre
of the cluster at which the density contrast is equal to 500
and DA is the angular diameter distance to the cluster. The
peak in the distribution of θ500 values for the MCXC clus-
ters lies at around 3 arcmin, so we multiply the filter func-
tion (Eq. 14) with an additional “cluster beam function”

Bc
ℓ = exp(−ℓ2σ2

b/2), where σb = θ500/
√

8 ln 2. We pick
three different values for the cluster size, namely θ500 = 3,
5, and 7 arcmin, and see how our results change.

We list our findings in Table 3; one can see that the
detailed values for three cases are slightly different from
those of the point-source assumptions, but the changes are
not dramatic. More importantly, the offsets between σMCXC

and σran stay the same for various assumptions of cluster
size. Therefore the detection of the temperature dispersion
due to the kSZ effect does not strongly depend on the as-
sumption of clusters being point sources.

3.3. Statistical results

3.3.1. Statistics with the uniform weight

We now want to perform a more quantitative calculation
of the significance of detection. Since the convolved map
mainly consists of the kSZ signal at the cluster positions
plus residual noise, we write the observed temperature fluc-

Table 4. Statistics of the variables ŝ2 due to the kSZ effect
for different CMB maps.

Map E[s2] × 1011
(
V [s2]

)1/2

× 1011 S/N

2D-ILC . . . . . . . . 1.64 0.48 3.4
SMICA . . . . . . . . . 3.53 0.37 9.4
NILC . . . . . . . . . . 2.75 0.38 7.3
SEVEM . . . . . . . . . 3.19 0.40 8.1
Commander . . . . . 1.47 0.42 3.5

Table 5. Statistics of the weighted variables ŝ2
w for different

choices of weights in the 2D-ILC map. We use both linear
and squared weights for each of optical depth, luminosity,
mass, and θ500 = R500/DA, where DA is the angular di-
ameter distance of the cluster. The third column lists the
frequency P (s2

w < 0) of finding a value of s2
w smaller than

zero, and the fourth column lists the equivalent signal-to-
noise ratio (see Appendix C).

Weight E[s2
w]

(
V [s2

w]
)1/2

P (s2
w < 0) S/N

×1011 ×1011

Uniform . . . . . . . 1.64 0.48 0.07% 3.2
τ . . . . . . . . . . . . 1.65 0.50 0.11% 3.1
τ 2 . . . . . . . . . . . . 1.62 0.55 0.38% 2.7
θ500 . . . . . . . . . . 3.33 0.64 0.02% 3.5
θ2

500 . . . . . . . . . . 6.86 1.72 0.39% 2.7
L500 . . . . . . . . . . 1.34 0.91 6.94% 1.5
L2

500 . . . . . . . . . . 0.65 2.15 32.4% 0.5
M500 . . . . . . . . . 1.91 0.65 0.43% 2.6
M2

500 . . . . . . . . . 1.81 1.36 8.75% 1.4

tuation at the cluster positions as
(

∆T

T

)
≡ δ = s + n, (15)

where δ, s, and n represent the observed ∆T/T value, the
kSZ signal contribution, and the residual noise, respectively,
all of which are dimensionless quantities. Now we define the

estimator ŝ2 as

ŝ2 =
1

Nc

∑

i

δ2
i − 1

Nc

∑

i

n̂2
i , (16)

where the summation includes all of the Nc = 1526 cluster
positions. For the first term δi, we use the Nc true clus-
ter position as the measurement of each observed ∆T/T .
For the second term, we randomly select Nc pixels outside
the Galactic and point-source mask that are not cluster po-
sitions. The calculation of the first term is fixed, whereas
the second term depends on the Nc random positions we
choose. Each randomly selected set of Nc positions corre-
sponds to a mock catalogue, which leads to one value of
s2. We do this for 5000 such catalogues, where each mock
catalogue has a different noise part (n̂i) in Eq. (16), but the
same observed δi. Then we plot the histogram of s2 values
for these catalogues in the left panel of Fig. 10. One can see
that the s2 distribution is close to a Gaussian distribution
with mean and error being s2 = (1.64 ± 0.48) × 10−11.

One can use a complementary method to obtain the

mean and variance of ŝ2, i.e., E[s2] and V [s2]. We lay out
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Fig. 10. Left– Distribution of 5 000 values of s2 with uniform weight (Eq. 16) on each position for the 2D-ILC map.
Right– Distribution of v2 calculated from Eq. (28), P (v2 < 0) = 2.48 %. We have tested with 50 000 values of s2 and the
results are consistent with 5 000 values.

this calculation in Appendix A, where we directly derive
these results:

E[s2] = δ2 − µ2(n);

V [s2] =
1

Nc

[
µ4(n) − µ2

2(n)
]

. (17)

Here µ2 and µ4 are the second and fourth moments of the
corresponding random variables.

For the moments of δ, we use the measurements at the
1526 cluster positions. For the estimate of the noise, we
take all of the unmasked pixels of the convolved sky. In or-
der to avoid selecting the real cluster positions, we remove
all pixels inside a 10 arcmin aperture around each cluster.
These “holes” at each cluster position constitute a negli-
gible portion of the total unmasked pixels, and our results
are not sensitive to the aperture size we choose. As a result,
we have approximately 3 × 107 unmasked pixels to sample
the noise. We then substitute the values into Eq. (17) to
obtain the expectation values and variances.

In Table 4, we list the mean and rms value of ŝ2.
Comparing with the 2D-ILC map, one can see that the
SMICA, NILC, and SEVEM maps give larger values of E[s2]
and therefore apparently higher significance levels, which
we believe could be due to the fact that the residual tSZ
effect in these maps contributes to the signal. However, the
Commander map gives a reasonable estimate of the disper-
sion, since it appears to be less contaminated by tSZ residu-
als (see Fig. 8). As discussed in Sect. 2.1.2, the mapmaking
procedure of the 2D-ILC product enables us to null the tSZ
effect so that the final map should be free of tSZ, but with
larger noise. This is the reason that we obtain a somewhat
lower significance in Table 4 for 2D-ILC compared to some
of the other maps. We will therefore mainly quote this con-
servative detection in the subsequent analysis.

3.3.2. Statistics with different weights

The results so far have been found using the same weights
for each cluster position. We now examine the stability of
the detection using weighted stacking. In Eq. (16) we de-
fined stacking with uniform weights, which can be general-

ized to

ŝ2
w =

∑
i

(
δ2

i − n̂2
i

)
wi∑

i wi
, (18)

where wi is the weight function. We certainly expect
“larger” clusters to contribute more to the signal, but it
is not obvious what cluster property will be best to use.
In Table 5, we try different weighting functions wi, with
the first row being the uniform weight, which is equiva-
lent to Eq. (16). In addition, we try as different choices of
weighting function the optical depth τ and its square τ2,5

the angular size θ500 and its square θ2
500, the luminosity

L500 and its square L2
500, and the mass M500 and its square

M2
500. Since some of these may give distributions of s2

w that
deviate from Gaussians, we also calculate the frequencies
for finding s2

w smaller than zero, P (s2
w) < 0. The smaller

this P -value is, the more significant is the detection.
From Table 5, we see that most weighting choices are

consistent with uniform weighting though with reduced sig-
nificance of the detection, the exceptions being the choices
of θ500 or θ2

500. For wi = θ500,i and wi = θ2
500,i, we have P -

values of 0.0002 and 0.0028, respectively, yielding (1-sided)
significance levels of 3.5 σ and 2.7 σ. Their distributions de-
viate slightly from a Gaussian, with a tail toward smaller
values.

The increased detection of excess variance using θ500

weighting stems from our choice of using a single cluster
beam function for all clusters. In Sect. 3.2.3 we tested the
robustness of our results to the choice of cluster beam func-
tion, finding little dependence. Nevertheless, such a test as-
sumed all clusters had the same angular size, while in reality
there is a large spread in the angular sizes of the clusters.
By weighting with θ500 we are able to recover some of this
lost signal in a quick and simple way, which we tested by
comparing results for larger clusters versus smaller clus-
ters. Despite this, it we find that the increased significance
is mainly due to the increased value for E[s2

w ] and not a
decrease in the noise. This tension may be evidence of sys-
tematic effects in the data, which should be further inves-
tigated when better data become available.

5 The calculation of optical depth is shown in Sect. 4, and
Eq. (27) in particular.
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Fig. 11. Histogram of the optical depth τ derived using
Eq. (27) for 1526 X-ray cluster positions.

4. Implications for the peculiar velocity field

We now want to investigate what the temperature disper-
sion indicates for the variance of the peculiar velocity field.
As shown in Eq. (1), the dimensionless temperature fluc-
tuation is different from the dimensionless velocity field
through the line-of-sight optical depth factor τ . Since the
coherence length of the velocity field is order 100 h−1 Mpc
(Planck Collaboration Int. XXXVII 2016), i.e., much larger
than the size of a cluster, the velocity can be taken out of
the integral, giving

∆T (r̂)

T
=

(
−v · r̂

c

)
τ, with τ = σT

∫ +∞

0

nedl. (19)

In order to convert the kSZ signal into a line-of-sight ve-
locity we therefore need to obtain an estimate of τ for each
cluster. In Planck Collaboration Int. XIII (2014), the val-
ues calculated are explicitly given as the optical depth per
solid angle, obtained based on two scaling relations from
Arnaud et al. (2005) and Arnaud et al. (2010). Here we
adopt a slightly different approach, which is to determine
the τ value at the central pixel of each galaxy cluster.

Many of the previous studies of the tSZ effect have
used the “universal pressure profile” (UPP, Arnaud et al.
2010; Planck Collaboration Int. V 2013) and isothermal β
model (Cavaliere & Fusco-Femiano 1976, 1978) to model
the pressure and electron density profiles of the clus-
ters (Grego et al. 2000; Benson et al. 2003, 2004; Hallman
et al. 2007; Halverson et al. 2009; Plagge et al. 2010).
Because the UPP is just a fitting function for pressure,
it is difficult to separate out the electron density and the
temperature unless we use the isothermal assumption. In
fact, Battaglia et al. (2012) demonstrated that the UPP
is not absolutely universal, and that feedback from an ac-
tive galactic nucleus can change the profile in a significant
way. The functional form of the β model can be derived
from a parameterization of density under the assumption
of isothermality of the profile (e.g., Sarazin 1986). However,
since isothermality is a poor assumption for many clus-
ters (Planck Collaboration Int. V 2013), we only consider
the β model here as a fitting function. Measurements of
cluster profiles from the South Pole Telescope (SPT) have
found that the index β = 0.86 provides the best fit to the
profiles of SZ clusters (Plagge et al. 2010), and therefore we
use this value of β in the following discussion.

The electron density can be written as

ne(r) =
ne0[

1 + (r/rc)
2
]3β/2

, (20)

where rc = rvir/c is the core radius of each cluster, with
c being the concentration parameter. Here we adopt the
formula from Duffy et al. (2008) and Komatsu et al. (2011)
to calculate the concentration parameter given the redshift
and halo mass of the cluster:

c =
5.72

(1 + z)0.71

(
Mvir

1014h−1M⊙

)−0.081

. (21)

In the catalogue, M500 and redshift z are given, so one can
use these two quantities to calculate the virial mass Mvir of
the cluster. The calculation is contained in Appendix B.

The radius rvir is calculated through

Mvir =
4π

3
[∆(z)ρc(z)] r3

vir, (22)

where ρc(z) is the critical density of the Universe at redshift
z, and ∆(z) depends on Ωm and ΩΛ as (Bryan & Norman
1998)

∆(z) = 18π2 + 82[Ω(z) − 1] − 39[Ω(z) − 1]2, (23)

with Ω(z) = Ωm(1 + z)2
/[

Ωm(1 + z)3 + ΩΛ

]
. Thus,

τ = (σT ne0 rc)f1(β),

f1(β) =

∫ +∞

−∞

dx

(1 + x2)3β/2
=

√
π Γ
(
− 1

2 + 3
2 β
)

Γ
(

3
2 β
) , (24)

where Γ is the usual gamma function. To determine ne0, we
use 4π

∫ r500

0 ne(r)r2dr = Ne, where

Ne =

(
1 + fH

2mp

)
fgasM500. (25)

Here the quantity fH = 0.76 is the hydrogen mass fraction,
mp is the proton mass, and fgas = (Ωb/Ωm) is the cosmic
baryon fraction, while M500 is the cluster mass enclosed in
the radius r500. Thus,

ne0 =
Ne

4πr3
cf2(c500, β)

,

f2(c500, β) =

∫ c500

0

x2dx

(1 + x2)3β/2
, (26)

where c500 = r500/rc ≃ cvir/2.0 is the concentration param-
eter for R500.

Combining Eqs. (24), (25), and (26), we have

τ =

(
σT

4πr2
c

)(
f1(β)

f2(c500, β)

)(
1 + fH

2mp

)
fgasM500. (27)

In Fig. 11, we plot the histogram of the optical depth values
of the 1526 clusters in the sample. The mean and standard
deviation are given by τ = (3.9±1.2)×10−3. Note that the
uncertainty quoted here describes the scatter in the mean
τ values for the whole of the sample.

We convert the temperature dispersion data listed in
Table 4 to the line-of-sight velocity dispersion measurement
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Table 6. Statistics of the line-of-sight velocity dispersion
v2 ≡ (v · n̂)2.

Map E[v2]
(
V [v2]

)1/2

S/N

(100 km s−1)2 (100 km s−1)2

2D-ILC . . . . . . . . 15.4 7.2 2.1
SMICA . . . . . . . . . 27.0 5.6 4.8
NILC . . . . . . . . . . 26.1 5.6 4.7
SEVEM . . . . . . . . . 23.8 5.9 4.0
Commander . . . . . 13.5 6.3 2.1

by using the modelled value of τ . Our procedure is as fol-

lows. For each estimate of ŝ2, we calculate its v2 value and
then we obtain an averaged value of v2 via

v2 =
c2

Nc

Nc∑

i=1

s2
i

τ2
i

. (28)

We then do this for the 5000 values of ŝ2, and plot the
distribution in the right panel of Fig. 10 for the 2D-ILC

map. We also present results for v2 in Table 6, where we
can see that for the conservative case, i.e., the 2D-ILC map,
the velocity dispersion is measured to be v2 = (15.4±7.2)×
(100 km s−1)2. From the right panel of Fig. 10, we can see
that the distribution is not completely Gaussian, but has a
tail towards smaller v2. The frequency P (v2 < 0) is 2.1 %,
which would correspond to a detection of the dispersion of
peculiar velocity from 1526 MCXC clusters at the 2.0σ level
(using Appendix C).

In studies of peculiar velocity fields, the most relevant
quantity is the linear line-of-sight velocity (v), or in other

words
〈
v2
〉1/2

. We find
〈
v2
〉1/2

= (390 ± 270) km s−1 (68%
CL) for the 2D-ILC map. One can see that the value we
find is consistent with the velocity dispersion estimated
through studies of the peculiar velocity field (e.g., Riess
2000; Turnbull et al. 2012; Ma & Scott 2013; Carrick et al.
2015).

Here we need to remember that what we measured is
the line-of-sight velocity dispersion, which contains both
the large-scale bulk flow, and the small-scale velocity and
intrinsic dispersion (see, e.g., Ma & Scott 2014). The pre-
diction for the rms bulk flow, equation (22) of Planck
Collaboration Int. XIII (2014) (or equation 4 in Ma & Pan
2014), is based on linear perturbation theory for the ΛCDM
model and works only for the large-scale bulk flows. The
small-scale motions and intrinsic dispersion are not fully
predictable from linear perturbation theory because they
depend on sub-Jeans scale structure evolution, which in-
volves nonlinear effects. However, this small-scale velocity
and intrinsic dispersion are nevertheless physical effects,
which are non-negligible in general (Carrick et al. 2015).
One should consider that the line-of-sight velocity disper-
sion that we have measured is a combination of two ef-
fects, namely large-scale bulk flows and small-scale intrinsic
dispersion, where the second component is generally non-
negligible.

We estimate that the histogram of separation distances
between all pairs of cluster is peaked at d ≃ 600 Mpc. Since
the bulk flow contributes to the velocity dispersion mea-
surement here, then we can set an upper limit on the cosmic

bulk flow on scales of 600 h−1Mpc, 〈v2
bulk〉1/2 < 541 km s−1

(95 % CL). Such a constraint on large-scale bulk flows in-
dicates that the Universe is statistically homogeneous on
scales of 600 h−1Mpc. This is consistent with the limits
obtained from Type-Ia supernovae (Feindt et al. 2013),
the Spiral Field I-band survey (Nusser & Davis 2011; Ma
& Scott 2013), ROSAT galaxy clusters (Mody & Hajian
2012), and the Planck peculiar velocity study (Planck
Collaboration Int. XIII 2014). However, it does not allow
the very large “dark flow” claimed in Kashlinsky et al.
(2008, 2010, 2012) and Atrio-Barandela et al. (2015), In ad-
dition to ruling out such models, improved measurements
of the velocity dispersion in the future have the potential to
set up interesting constraints on dark energy and modified
gravity (Bhattacharya & Kosowsky 2007, 2008).

5. Conclusions

The kinetic Sunyaev-Zeldovich effect gives anisotropic per-
turbations of the CMB sky, particularly in the direction
of clusters of galaxies. Previous studies have detected the
kSZ effect through the pairwise momentum estimator and
temperature-velocity cross-correlation. In this paper, we
have detected the kSZ effect through a measurement of the
temperature dispersion and then we have interpreted this
as a determination of the small-scale velocity dispersion of
cosmological structure.

To do this, we first selected two sets of Planck
foreground-cleaned maps. One set contains four Planck
publicly available maps, namely SMICA, NILC, SEVEM, and
Commander, each being produced using a different algo-
rithm to minimize foreground emission. The second set,
is the Planck 2D-ILC map, which nulls the tSZ compo-
nent, while resulting in slightly larger residual noise in the
map. We then apply a matched-filter technique to the maps,
to suppress the primary CMB and instrumental noise. We
specifically consider the MCXC cluster sample. Applying
a Galactic and point-source mask to the maps, results in
1526 MCXC clusters remaining unmasked.

We measured the distribution of the ∆T/T values for
the 1526 MCXC cluster positions, and also at 1526 ran-
domly selected positions, to give a quantification of the
noise level. We found that the 1526 true cluster positions
give extra variance to the distribution, and identify this
as being due to the kSZ temperature dispersion effect. We
compare this signal to results from 5000 random catalogues
on the sky, each composed of 1526 random positions. This
extra dispersion signal is persistent in several tests that we
carry out.

We then construct estimators ŝ2 to quantify this ef-
fect. For the SMICA, NILC, and SEVEM maps, the signifi-
cance of detection is stronger than in the 2D-ILC map,
which is likely due to the fact that the residual tSZ ef-
fect in the map is correlated with the kSZ signal. However,
quoting the conservative result from 2D-ILC, we obtain
〈s2〉 = (1.64 ± 0.48) × 10−11 (68 % CL), where 〈s2〉 =

N−1
c

∑
j (∆Tj/T )

2
(Nc = 1526). This gives a detection

of temperature dispersion at about the 3.2 σ level. This
is largely consistent when we obtain results by weighting
clusters with their different observed properties.

We further estimate the optical depth of each clus-
ter, and thereby convert our temperature dispersion mea-
surement into a velocity dispersion measurement, obtain-
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ing 〈v2〉 = (15.4 ± 7.2) × (100 km s−1)2 (68 % CL) using
a Gaussian approximation. The distribution has P (v2 <
0) = 2.1 %, and the best-fit value is consistent with find-
ings from large-scale structure studies. This constraint im-
plies that the Universe is statistically homogeneous on
scales of 600 h−1Mpc, with the bulk flow constrained to
be 〈v2

bulk〉1/2 < 541 km s−1 (95 % CL).
The measurement that we present here shows the

promise of statistical kSZ studies for constraining the
growth of structure in the Universe. To improve the re-
sults in the future, one needs to have better component-
separation algorithms to down-weight the residual noise
contained in the kSZ map, as well as having more sensi-
tive and higher resolution CMB maps for removing the tSZ
signal. One also needs larger cluster catalogues, with the
uncertainty scaling roughly as 1/

√
N if the residual noise

is Gaussian.
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Appendix A: The statistics of s
2

Let us first define the kth moment of a distribution of a
random variable x to be

µk(x) ≡ E[xk] =
1

N

∑

i

xk
i . (A.1)

The ŝ2 estimator is defined in Eq. (16). Note that the ob-
served δ2

i is always taken to be the value of kSZ on the true
cluster position, so there is no randomness in δ2

i . We also
define

δ2 ≡ 1

Nc

∑
δ2

i . (A.2)

Therefore, the mean value of ŝ2 is

E[s2] = δ2 −
(

1

Nc

∑

i

E[n2
i ]

)

= δ2 − µ2(n), (A.3)

while the variance of ŝ2 is

V [s2] = E[s4] −
(
E[s2]

)2
. (A.4)

Therefore, we first calculate

s4 =

[
δ2 −

(
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n2
i

)]2

=
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δ2
)2

+
1

N2
c
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ij
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i
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. (A.5)

Therefore,

E[s4] =
(

δ2
)2

+
1

Nc
µ4(n) +

Nc − 1

Nc
(µ2(n))

2

− 2δ2µ2(n), (A.6)

where in the above derivation we have assumed that the
residual noise samples in two different pixels are uncorre-
lated, i.e., 〈ninj〉 = 0. Therefore

V [s2] =
1

Nc

(
µ4(n) − µ2

2(n)
)

. (A.7)

Appendix B: Converting M500 to Mvir

For each cluster, M500 is defined as the mass within the
radius of R500, in which its average density is 500 times the
critical density of the Universe,

M500 =
4π

3
[500ρc(z)] r3

500, (B.1)

where

ρc(z) = 2.77454h2E2(z) × 1011M⊙/Mpc3, (B.2)

and E2(z) = Ωm(1 + z)3 + ΩΛ. The quantity Mvir is calcu-
lated via Eqs. (22) and (23), and the relationship between
M500 and Mvir is (Mody & Hajian 2012)

M500

Mvir
=

m(cr500/rvir)

m(c)
, (B.3)

where c is the concentration parameter (Eq. 21) and
m(x) = ln(1 + x) − x/(1 + x). Given redshift z and mass
M500, we can thus determine r500 through Eq. (B.1). If we
substitute M500, z, and r500 into Eq. (B.3), this becomes
an algebraic equation for Mvir. This is because rvir can be
determined from Mvir through Eqs. (22) and (23), and c is
related to Mvir through Eq. (21). Therefore, we can itera-
tively solve for Mvir, given the values of M500 and z.

Appendix C: Converting P values into S/N ratios

Since the distribution of weighted s2 has longer tail than
Gaussian distribution, instead of calculating the ratio be-
tween mean and rms value of the distribution, we cal-
culate the p-value, and list them in the third column of
Table 5. We now convert them into signal-to-noise ratio.
Suppose the variable x satisfies the Gaussian distribution,
the normalized distribution is L(x) = (1/

√
2πσ) exp(−(x−

µ)2/2σ2). Then the cumulative probability to find x < 0 is

ǫ =

∫ 0

−∞

P (x)dx =
1

2
Erfc

(
µ√
2σ

)
, (C.1)

where

Erfc(x) =
2√
π

∫ ∞

x

e−t2

dt, (C.2)

is the complimentary error function.
Therefore the equivalent signal-to-noise ratio given the

value of P (s2
w < 0) is

S/N =
√

2
(
Erfc−1

(
2P (s2

w < 0)
))

. (C.3)

Therefore we use Eq. (C.3) to convert and obtain the fourth
column of Table 5.
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