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ABSTRACT

We describe an extension of the most recent version of the Planck Catalogue of Compact Sources (PCCS2), produced using a new multi-band
Bayesian Extraction and Estimation Package (BeeP). BeeP assumes that the compact sources present in PCCS2 at 857 GHz have a dust-like
spectral energy distribution (SED), which leads to emission at both lower and higher frequencies, and adjusts the parameters of the source and its
SED to fit the emission observed in Planck’s three highest frequency channels at 353, 545, and 857 GHz, as well as the IRIS map at 3000 GHz.
In order to reduce confusion regarding diffuse cirrus emission, BeeP’s data model includes a description of the background emission surrounding
each source, and it adjusts the confidence in the source parameter extraction based on the statistical properties of the spatial distribution of
the background emission. BeeP produces the following three new sets of parameters for each source: (a) fits to a modified blackbody (MBB)
thermal emission model of the source; (b) SED-independent source flux densities at each frequency considered; and (c) fits to an MBB model
of the background in which the source is embedded. BeeP also calculates, for each source, a reliability parameter, which takes into account
confusion due to the surrounding cirrus. This parameter can be used to extract sub-samples of high-frequency sources with statistically well-
understood properties. We define a high-reliability subset (BeeP/base), containing 26 083 sources (54.1% of the total PCCS2 catalogue), the
majority of which have no information on reliability in the PCCS2. We describe the characteristics of this specific high-quality subset of PCCS2
and its validation against other data sets, specifically for: the sub-sample of PCCS2 located in low-cirrus areas; the Planck Catalogue of Galactic
Cold Clumps; the Herschel GAMA15-field catalogue; and the temperature- and spectral-index-reconstructed dust maps obtained with Planck’s
Generalized Needlet Internal Linear Combination method. The results of the BeeP extension of PCCS2, which are made publicly available via
the Planck Legacy Archive, will enable the study of the thermal properties of well-defined samples of compact Galactic and extragalactic dusty
sources.

Key words. catalogs – cosmology: observations – submillimeter: general

1. Introduction

The Planck1 satellite (Planck Collaboration I 2016) was designed
to image the temperature anisotropies of the cosmic microwave

⋆ Corresponding authors:
P. Carvalho, e-mail: f.pedro.carvalho@gmail.com;
M. López-Caniego, e-mail: mlopez@sciops.esa.int;
J. A. Tauber, e-mail: jtauber@cosmos.esa.int
1 Planck (http://www.esa.int/Planck) is a project of the European
Space Agency (ESA) with instruments provided by two scientific consor-
tia funded by ESA member states and led by Principal Investigators from
France and Italy, telescope reflectors provided through a collaboration
between ESA and a scientific consortium led and funded by Denmark,
and additional contributions from NASA (USA).

background (CMB) with a precision limited only by astrophys-
ical foregrounds. To achieve its objectives, Planck observed the
entire sky in nine broadband channels between 30 and 857 GHz.
The Planck all-sky maps contain not only the CMB, but also a
variety of diffuse sources of “foreground” emission – especially
the Milky Way from radio to far-infrared wavelengths, as well
as extragalactic backgrounds such as the cosmic infrared back-
ground (CIB) and Sunyaev–Zeldovich emission from clusters of
galaxies. In addition to diffuse emission, the Planck maps con-
tain emission from compact Galactic objects (cold dense clumps,
supernova remnants, etc.) and a wide variety of unresolved exter-
nal galaxies.

The Planck Catalogue of Compact Sources (PCCS;
Planck Collaboration XXVIII 2014) contains compact sources
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extracted from the Planck maps using the first 15 months of
data. The source-detection algorithm was independent at each
frequency and consequently the PCCS comprises nine indepen-
dent lists. The second version of the catalogue (PCCS2; Planck
Collaboration XXVI 2016) was produced using the full-mission
data, obtained between 13 August 2009 and 3 August 2013.

At the frequencies observed by the High Frequency Instru-
ment (HFI; 100–857 GHz), the diffuse sky background consists
mainly of cirrus, i.e., dust emission from our own Galaxy, which
covers a large part of the sky, is bright, and spatially fluctu-
ates in a complex way (Low et al. 1984). The presence of this
cirrus significantly complicates the detection and validation of
compact sources, particularly because the statistical properties of
this background are poorly understood, and since this cirrus con-
tains localized structures that can be easily confused with gen-
uinely compact sources. In addition, most of the compact sources
expected in the frequency range 217–857 GHz, both Galactic
and extra-galactic, have a dust-dominated spectrum similar to
that of the cirrus.

The approach of PCCS2 to this problem was the cautious
but simple one of defining a set of masks within which the cir-
rus emission was bright or complex, and labelling all compact
sources found within these masks as “suspicious”. The masks
were derived at each frequency from: (a) brightness-thresholded
total emission maps; and (b) maps of filamentary emission
derived from a difference-of-Gaussians technique. All the com-
pact sources detected in the union of these two masks were put
into separate lists, referred to as PCCS2E (E for “Excluded”),
and their reliability was not determined. The Exclusion masks
include the Galactic plane and the low-Galactic-latitude regions,
and cover from 15% of the sky at 100 GHz to 66% of the sky at
857 GHz. PCCS2E contains 2487 (43 290) sources at 100 GHz
(857 GHz), to be compared to 1742 (4891) sources in the PCCS2
“proper”2. The vast majority of compact sources detected in the
HFI maps therefore reside in the PCCS2E. While it is likely that
many of the sources within PCCS2E are not genuine compact
sources, but rather bumps or filaments in the cirrus background,
inspection by eye of the maps clearly reveals that many of the
sources are very probably genuine. Figure 1 shows a 10◦ × 10◦

patch of sky on which the locations of both PCCS2 and PCCS2E
sources are displayed. The lack of information on the reliabil-
ity of the PCCS2E sources diminishes the overall utility of the
PCCS2+2E. This new study addresses that problem.

We do this by making use of two kinds of information avail-
able in the Planck maps but not used by PCCS2. First, we
use data from multiple frequencies simultaneously. The vast
majority of high-frequency compact sources in PCCS2+2E,
both Galactic and extragalactic, radiate thermal dust emission,
which can be adequately modelled with a modified blackbody
(MBB) spectral energy distribution (SED) characterized by a
temperature and a spectral index (T , β). This smooth spectral
behaviour can be used to improve the detectability and relia-
bility of individual sources at high frequencies, while at the
same time determining the parameters of the corresponding
SEDs. This technique has been used to construct several pre-
vious Planck catalogues, including: the Catalogue of Galactic
Cold Clumps (Planck Collaboration XXVIII 2016); the Cat-
alogue of Sunyaev–Zeldovich Sources (Planck Collaboration
XXVII 2016); the List of High-Redshift Source Candidates
(Planck Collaboration Int. XXXIX 2016); the band-merged ver-

2 In the rest of this paper we shall refer to PCCS2 as the list of
sources not included in PCCS2E, and we shall call the union of both
“PCCS2+2E”.

sion of the Early Release Catalogue of Compact Sources (Chen
et al. 2016); and the Multi-frequency Catalogue of Non-thermal
Sources (Planck Collaboration Int. LIV 2018).

The second piece of information is that the brightness distri-
bution of the diffuse cirrus emission varies relatively slowly and
smoothly across the sky. This implies that its spatial-statistical
properties are likely to be homogeneous within relatively large
patches. In addition, since the cirrus itself has an SED of the
MBB type, its spatial distribution is correlated across frequency
channels. The statistical properties of the background can there-
fore be determined locally with good precision, and this infor-
mation can be used to help separate sources from backgrounds.

We have carried out a re-analysis of all the sources con-
tained in PCCS2+2E at 857 GHz3, which assumes that a single
compact source is responsible for the emission observed across
a range of frequencies, both below and above 857 GHz. We
further assume that each source can be distinguished from the
diffuse background in which it is embedded, either by being an
outlier (in the sense that its spatial distribution does not match
the statistical properties of the background) or by exhibiting a
significantly different SED. We combine multi-channel informa-
tion re-extracted from Planck and IRAS maps to: (a) assess the
reliability of detection of each source, taking into account poten-
tial confusion with the background; (b) re-determine the flux
density of each source at frequencies from 353 to 857 GHz; (c)
evaluate the spatial parameters (location and extension) of the
compact source; and (d) estimate the parameters of an MBB fit
to the emission across all the frequencies considered.

The results of this re-analysis are included in the Planck
Legacy Archive4 (PLA) as an extension of the PCCS2 and
PCCS2E 857 GHz catalogues, appending the values of the new
parameters to the original files. This extension of PCCS2 enables
extraction of sub-samples that have well understood statistical
properties, which in turn enables the study of the thermal prop-
erties of compact Galactic and extragalactic sources.

The outline for this paper is as follows. In Sect. 2, we present
the data that we use as input to the analysis. In Sect. 3, we detail
the model that we use to describe the sources and associated
backgrounds, and we outline the Bayesian algorithm that we use
to analyse each source and the main parameters that it outputs
(details are given in Appendix A). In Sect. 4, we describe the
simulations that we have built and used to tune and validate the
algorithm and some of the main results. In Sect. 5, we describe
how we produce and filter the new information added to the
PCCS2+2E catalogue. In Sect. 6, we carry out a global char-
acterization of the results of this analysis. In Sect. 7, we validate
the results of this analysis against PCCS2 and other catalogues,
and (for diffuse emission parameters) against dust maps derived
from Planck data. In Sect. 8, we summarize our results, and pro-
vide recommendations for users of the new source information.

We have also included several appendices as follows. In
Appendix A we detail the statistical machinery that we use. In
Appendix B we describe how we have used our simulations to
characterize and test the results. In Appendix C we comment on
our Bayesian approach to contamination analysis, as opposed to
a more classical frequentist approach. Finally, in Appendix D
we include for reference the resulting SEDs that we obtain for a
small number of well-known sources.

3 We have not attempted to re-detect and extract sources from the map,
but instead use as starting point of our analysis the locations of all
sources already existing in PCCS2+2E. However, all the photometric
data used in our analyses are re-extracted from the Planck maps.
4 https://www.cosmos.esa.int/web/planck/pla
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Fig. 1. Left: a 10◦ × 10◦ mid-Galactic-latitude (bII ≈ 45◦) region of the Planck 857 GHz map superimposed on the PCCS2+2E filament mask
(grey contours). PCCS2 sources are yellow diamonds and PCCS2E sources are red triangles. The selected region contains complex backgrounds
with localized features such as filaments and cirrus, causing the mask to break up into numerous islands. Many PCCS2+2E sources trace these
structures, suggesting that some of the sources are parts of filamentary structures broken up by the source-finder and not genuine compact sources.
Right: central 4.9◦ × 4.9◦ of the picture on the left, showing more clearly the spatial distribution of the PCCS2 and PCCS2E sources relative to the
mask.

Parts of this paper describe details of our methods, and are
necessarily long and technical. For readers whose main interests
are the use of our results, we recommend to focus on Sects. 3.1
and 3.2, which describe our source and background models, and
Sects. 5 and 6, which describe how we generate catalogue infor-
mation, and how we then select a “base” catalogue of reliable
sources. Section 7 compares our results to other catalogues, and
can be skimmed unless such comparisons are important to the
reader. Our main results are summarized in the final section, and
Appendix D provides some specific examples of well-studied or
interesting sources extracted from our catalogue.

2. Data

We use the 857 GHz source list of the Second Planck Cata-
logue of Compact Sources (Planck Collaboration XXVI 2016)
to provide the initial source locations for our multifrequency
Bayesian analysis. The angular resolution of Planck was high-
est at 857 GHz (corresponding to 4′.7), and this list contains the
largest number of sources of any individual frequency in PCCS2.
The 857 GHz source list contains flux densities for each source
detected at 857 GHz, as well as estimates of flux densities at 545
and 353 GHz at the same locations. We note that the 857 GHz
list does not contain any indication of the reliability of individ-
ual sources; the highest frequency at which such an indication is
given is 353 GHz.

Our analysis then uses the Planck all-sky temperature
maps at 353, 545, and 857 GHz from the Planck 2015 release
(Planck Collaboration I 2016) to derive the characteristics of
sources and their surrounding background. These maps are
provided in the Planck Legacy Archive in HEALPix (Górski
et al. 2005) format with Nside = 2048. The description of these

maps can be found in Planck Collaboration VII (2016). In addi-
tion, we use the 3000 GHz IRIS map, a reprocessed IRAS map
described in Miville-Deschênes & Lagache (2005), with the
same pixelization as the Planck maps5.

Since the start of this work, a new generation of Planck maps
has been released, which is referred to as the 2018 or Legacy
release (Planck Collaboration I 2020). However, a new cata-
logue of compact sources has not been extracted from the Legacy
maps. Therefore, we continue using the Planck 2015 maps that
are the source of PCCS2.

3. Methodology

There is a long history of astronomers constructing catalogues,
and many different approaches have been implemented, depend-
ing on the source and background properties. When the sources
are unresolved and the background has no correlations, then the
optimal approach is simply to use a point-spread-function filter
(e.g., Stetson 1987) or thresholding methods appropriate for iso-
lated sources, perhaps with varying noise levels, using software
such as SExtractor (Bertin & Arnouts 1996). When the statisti-
cal properties of the background are known, one can instead use
a matched-filter approach (e.g., Tegmark & de Oliveira-Costa
1998; Barreiro et al. 2003). If the background is more com-
plex, if the sources themselves are partially resolved, or if the
observed fields are crowded, the task of making a reliable cata-
logue becomes much more difficult. Several methods have been
used to extract compact sources from confused Galactic regions,
for example, using second derivatives and multi-Gaussian fit-
ting as in CuTEx (Molinari et al. 2011), using higher-resolution

5 For clarity, we do not use the DIRBE-inpainted maps which filled in
the IRAS gaps.
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data and multi-scale extraction as in getdist (Men’shchikov
2013) applied to Herschel data, a similar multi-scale approach
with Gaussclumps applied to LABOCA data (Csengeri et al.
2014), or associating contiguous bright regions as a single source
in Clumpfind (Williams et al. 1995) or FellWalker (e.g.,
Nettke et al. 2017) for SCUBA-2 data. A completely different
strategy focuses on estimating the background properties simu-
laltaneously with the source properties, and that is the approach
we follow here.

We carry out an independent Bayesian likelihood analy-
sis (see e.g., Hobson et al. 2009) for each source contained
in the 857 GHz catalogue of PCCS2+2E, and for the back-
ground surrounding it. The likelihood analysis takes as input four
maps (353, 545, and 857 GHz from Planck 2015, and 3000 GHz
from IRIS). We implement this analysis in software called the
Bayesian Estimation and Extraction Package, and refer to it as
BeeP. The analysis of each source assumes a model of the signal
due to the source, and another due to the background.

3.1. Source model

We model the signal s j due to the jth source as

s j(x;Θ j) = A j f (φ j)τ(x − X j; a j), (1)

where A j is an overall amplitude for the source at some chosen
reference frequency, which we take to be 857 GHz6, f contains
the emission coefficients at each frequency, which depend on the
emission-law parameter vector φ j of the source (see below), and
τ(x− X j; a j) is the convolved spatial template at each frequency
of a source centred at the position X j ≡ {X j,Y j} and character-
ized by the shape parameter vector a j. Thus, the parameters to
be determined for the jth source are its overall amplitude, posi-
tion, shape, and emission law, which we denote collectively by
Θ j = {A j, X j, a j,φ j}.

If we make explicit the dependence of the source signal with
the frequency channel (i), we have

s ji(x;Θ j) = A j fi(φ j)
[
τ̂(x − X j; a j) ∗ Bi(x)

]
, (2)

where Bi(x) is the beam point-spread function of channel
i. In this study we are mostly targeting completely unre-
solved objects, i.e., beam-shaped “point sources”; however,
since PCCS2+2E also includes extended objects, we model the
intrinsic shape of a source as a symmetrical two-dimensional
Gaussian,

τ̂(x; a ≡ r) ≡ 1
2π r2

exp

(
− x2 + y2

2 r2

)
, (3)

where a ≡ r is the source radius.
The intrinsic spatial profile of the source τ̂(x; a j) (before any

instrumental distortion) is assumed to remain unchanged across
frequencies7. To allow the intrinsic source size to vary with fre-
quency would require more parameters and increased uncertain-
ties to account for a situation that corresponds to a minority of
sources. We have therefore chosen to impose a single, constant
size parameter for a given source.

6 The reference frequency does not need to be the centre of one of the
data channels.
7 The source shape is also convolved with the pixel window function
at each frequency and this is taken into account in our analysis. In this
particular case the pixel window function does not change across maps.

As mentioned in Sect. 1, the frequency spectra of most of
the compact objects found in the Planck-HFI maps can be well-
represented by an MBB spectrum (Planck Collaboration XXVI
2016); however, the SEDs of a minority of sources, for instance
blazars, are not well-described by a modified blackbody. There-
fore, we fit all sources with both MBB and “Free” models. In
the latter, the emission coefficient fνi at each channel is a free
parameter. The MBB spectrum is written as

ln fν = β ln

(
ν

ν0

)
+ ln

[
Bν(T )
Bν0 (T )

]
, (4)

where the spectral parameters φ = {β,T } are the dust emissivity
spectral index and temperature, respectively, Bν(T ) is the Planck
law of blackbody radiation, and ν0 is once again the reference
frequency. We normalize f so that fν = 1 at ν = ν0.

The Free model is written as

f = [ fν1 , · · · , fνn ]T , (5)

where the emission coefficients fνi are free parameters. In effect,
this model is a way to estimate source flux densities in each chan-
nel without imposing an SED, but still assuming that there is a
single source at all frequencies. This extra flexibility comes at
the cost of a larger model complexity, since it requires more
free parameters. The flux-density estimates for the Free model
are those that can most closely be compared to the ones already
present in PCCS2+2E.

The location of the centre of the source is represented in
Eq. (2) by X j. Our analysis initially assumes that the source is
centred at the location defined in the 857 GHz list of PCCS2+2E.
However, the source centre may be expected to vary slightly
from channel to channel, and for this reason we allow our
method to deviate from the initial values in an attempt to find the
best overall location. Furthermore, during this investigation we
realized that many of the source locations listed in PCCS2+2E
are not well determined: in many cases we see that the cen-
tres of one or more sources are located around the edge of a
well-defined blob of emission (e.g., Fig. 2). This problem affects
about 10% of all sources in PCCS2+2E for the higher-frequency
channels, and is inherent to the Mexican-hat wavelet 2 (MHW2)
algorithm used to perform the detection. This wavelet, when
used as a filter, is known to maximize the S/N of the objects,
but it is also known to produce artefacts at a fixed distance from
the centre of the source, Such artefacts related to the shape of
the filter can be identified and removed particularly well in the
cleaner regions of the sky. This additional cleaning step was per-
formed for the lower-frequency channels of PCCS2, where the
beamwidths are larger and these ringing effects are more promi-
nent, but it was not performed for the higher-frequency channels
because it was not considered necessary. Moreover, the MHW2
algorithm is well suited for the detection of point-like objects;
however, when dealing with slightly extended structures such as
those found at 857 GHz, the artefacts introduced by this filter
are more evident, and a two-step cleaning procedure is definitely
needed.

In our analysis we allow a new location to be determined
from all the frequencies considered. As a result, in a number
of cases several PCCS2+2E sources will be associated with the
same physical source location8. However, there are also many
genuinely independent sources that are relatively close to each

8 There are 8269 (17.2%) PCCS2+2E locations that are associated
with a different source. Of those 162 (3.3% of the PCCS2) are in the
PCCS2 region.
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Fig. 2. Small patch (1◦.3 × 1◦.3) taken from the Planck 857 GHz map.
The red triangles are PCCS2+2E catalogue positions. One can see that
around the two bright “blobs” there are many associated PCCS2+2E
sources, but their locations do not reflect the actual brightness peaks.

other, and there is a risk that the algorithm would “merge” them.
We have therefore compromised by allowing our algorithm to
move the location by at most 3 pixels (4′.5) away from its start-
ing point. If this extreme is reached without an optimal solution
being found, a flag indicating this is set in the final parameters.

3.2. Background model

We now need to account for the astronomical background b(x)
and the instrumental noise n(x). A strong assumption of our
framework is that the joint background in which the sources
are immersed (b(x) + n(x)) is a two-dimensional, statistically
isotropic Gaussian random field. Such a field is fully defined by
its covariance matrix, which we use in our method as the math-
ematical representation of the background. The full-sky maps
observed by Planck however, are neither statistically isotropic
nor Gaussian. At high Galactic latitudes, the diffuse emission
from Galactic dust is faint, and the (mostly extra-galactic)
brighter compact sources stand out easily against it. However,
the situation changes rapidly at low Galactic latitudes, as the
diffuse emission competes in brightness with even the brightest
compact sources. In this situation, confusion between “genuine”
sources and the diffuse emission leads to difficulties in estimat-
ing the statistical properties of the background alone.

To improve our estimation of the properties of the back-
ground, we first reduce the size of the sky patch analysed around
the source such that we can assume that statistical isotropy
applies locally9. Second, we use the covariance matrix of the
cross-power spectra across frequency channels. This improves
the situation, since the instrumental noise n(x) is mostly uncor-
related across channels, and the astronomical background b(x)
is better-determined by the larger data volume. The determina-
tion of an accurate cross-spectrum covariance matrix turns out

9 The “field” size we select is 3◦.69 × 3◦.69. The motivation for this
choice can be found in Appendix B.1.

to be a key element in our method. To improve the estimation
of the off-diagonal components of this matrix, we filter out the
noise component using the theory of random covariance matri-
ces (Bouchaud & Potters 2004, Chap. 9). We have found that we
also need to weight the off-diagonal elements (which represent
the correlated part of the background) with respect to the diag-
onal elements (which represent the “noise”) in order to accom-
modate the very large dynamic range of sources. The weighting
factor that we use is tuned on simulations to reduce bias in the
recovery of source parameters. More details on these analysis
choices are described in Appendix A.

In practice, PCCS2+2E provides a list of potentially gen-
uine sources that are embedded in the background whose prop-
erties we are estimating. For each of these sources, we create
“background” maps (see Appendix A.2) by masking all sur-
rounding PCCS2+2E sources10 and inpainting the masked areas
(see Sect. 5.3 of Casaponsa et al. 2013). We use a 7′ masking
and inpainting radius to provide a good balance between effec-
tive source-brightness removal and preservation of the statistical
properties of the background (see Figs. A.1 and A.2, and the
discussion in Appendix A.1.4), especially at low Galactic lat-
itudes where the density of sources is very high. Close to the
Galactic plane, a large fraction of the background patch (up to
74% near the Galactic centre) is masked and inpainted, which
might be expected to have a significant effect on the estimation
of the detection significance11. More generally, we expect that
inpainting may bias the estimation of the background proper-
ties, but it cannot be avoided because the effect of unremoved
bright sources or of corresponding holes would certainly be
much higher. The impact of inpainting cannot be modelled ana-
lytically, and the only way to assess it is through simulations.
Simulations with different degrees of inpainting are discussed in
Sect. 4, and show that the effect on source parameters is indeed
small (as discussed further in Appendix B.2).

3.3. Combined model and its analysis

In this section we present the principles of our Bayesian anal-
ysis methodology. Appendix A gives technical details of the
approach and its practicalities.

We first combine our models for sources and background
into a model of the observed maps. A realistic model would have
to include the entirety of sources and the full sky together. How-
ever, as described in Appendix A.1, under the assumption that
the sources do not blend together, it is possible to simplify the
problem and model each source independently:

d j(x) = s j(x;Θ j) + b j(x) + nj(x), (6)

where d j is the data vector (pixel values), and b j and nj represent
astrophysical and noise backgrounds in the neighbourhood of the
source ( j).

We can now build the likelihood of a single compact object
as

L(Θ) =
exp

{
− 1

2

[
d − b̂ − s(Θ)

]T
N−1

[
d − b̂ − s(Θ)

]}

(2π)Npix/2 |N|1/2
, (7)

where b̂ is the generalized background (b + n), N is the gener-
alized background covariance matrix, and all individual source

10 For this purpose we merge all three source lists between 353 and
857 GHz.
11 The fraction of inpainted pixels in the patch is reported in one of the
columns of the catalogue and can be used to filter the selection.
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parameters have been concatenated into Θ for convenience. For
clarity we have dropped the source index here.

The above expression allows us to consider the likelihood
of a “no-source” model L0, when A, the source amplitude is 0.
L0 is a constant, since it does not contain any parameters. The
expression that we seek to maximize is the log of the L(Θ)/L0
ratio, which represents the likelihood that there is a source in
addition to the background.

If Θ̂ is the parameter set that maximizes the likelihood
ratio (Eq. (7)), then we define the quantity R, corresponding to
NPSNR in the catalogue12 (the Neyman–Pearson signal-to-noise
ratio), by

ln


L(Θ̂)
L0

 = 1
2R

2. (8)

R is the detection significance level that expresses the number of
sigmas of the detection, and is given in the NPSNR column of
the BeeP catalogues. In the case that all of our assumptions hold,
and all source parameters are known except amplitude, A, then R
would in fact be the inverse of the fractional error on the ampli-
tude, A/∆A. However, in practice, as we shall see, typical val-
ues of R are considerably higher than A/∆A. This is the result of
either broken assumptions or uncertainties on the other estimated
parameters that propagate into the source amplitude. In particu-
lar, the presence of cirrus produces strong positive-tail events
in the likelihood, and this might be interpreted (erroneously) as
generated by the source of interest (see Fig. 3 for examples).

To account for this effect, we build an estimate of the non-
Gaussianity of the background that is independent of the likeli-
hood, which we refer to as RELTH. Essentially we look in the
background patch for outliers to a white-noise, unitary (σ = 1)
Gaussian random field in pixel space (X), which is what we
would expect if all our assumptions hold, in other words, under
the null hypothesis of our model. We assume that the positive
outlier pixels created by the source itself are no more than a small
fraction of the total number of pixels in a small patch around the
source. Using the definition of quantiles, one would expect that

∫ RELTH

−∞

exp
[
− 1

2

(
x
σ

)2
]

√
2πσ

dx = 1 − α, (9)

where RELTH is the 1 − α distribution quantile, and σ is the
width of the Gaussian. Using simulations, we have verified that
the fraction of outlier pixels created by the source is less than
5% of the total, so we use α = 5%.

RELTH can be read directly from the histogram of the actual
field, and then Eq. (9) solved for σ. If the background pixels
([1 − α]% of the patch pixels) comply with the assumptions of
the background model, then they will follow a unitary Gaus-
sian distribution and the solution of Eq. (9) is σ = 1. However,
as a result of the intrinsic non-Gaussianity of the background,
the tails of the background histogram are expected to be larger
than those of the unitary Gaussian distribution. This distribution
of background pixel brightness with extended tails can then be
approximated by a Gaussian, but with σ > 1 to account for the
larger tails. Solving Eq. (9),

σ = k RELTH, (10)

where k is a pure numerical constant given by

k =
1

√
2 erfc−1(2α)

, (11)

12 Identifiers in sans-serif capital letters correspond to column labels in
BeeP output catalogues.

Fig. 3. Examples of potential analysis fields. Upper panel: high signif-
icance source (PCCS2 857 G172.20+32.04). The histogram (shown in
the inset; Y-scale is log) is a mixture of a Gaussian component from the
background pixels, plus a strong upper tail generated by the source in
the centre. Lower panel: field with no detected sources in it (PCCS2 857
G172.20+32.04; Y-scale is linear). This time only the Gaussian compo-
nent is present. The tails of the distribution are compatible with “just
background”. Each field is 25 × 25 pixels (1 pixel 1′.717). The pixel
intensities (Eq. (A.13)) are unitless.

and erfc−1 is the inverse complementary error function.
We can now correct our “naive” significance NPSNR and

define a new source significance variable as

SRCSIG =
1
k

NPSNR

RELTH
, (12)

where k is a constant given by Eq. (11), which is the same for all
sources. SRCSIG expresses the likelihood that there is a source
in the patch being analysed. If the histogram of the background
patch is Gaussian, then

√
2 erfc−1(2α) = RELTH by definition

and SRCSIG = NPSNR. If our initial assumptions hold, as
predicted, then NPSNR is the detection significance. However
when there is non-Gaussianity in the background, either from
diffuse components or localized features, then RELTH increases
and a penalty is applied to the Gaussian criterion. The penalty is
reduced towards high Galactic latitudes away from cirrus, where
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the isotropy and Gaussian assumptions hold well. In the neigh-
bourhood of the Galactic plane, or inside cirrus structures, the
criterion becomes more stringent in order to avoid false positives
induced by the non-Gaussianity of the background13.

Finally, we note that RELTH depends on the detailed statis-
tics of the field brightness. Therefore its ability to provide an esti-
mate of the relative level of non-Gaussianity in the background
is not uniform across the sky. However, tests using simulations
show that it is effective both at low and high Galactic latitudes,
and it can safely be used to correct NPSNR. On the other hand,
it should probably not be used to directly compare levels of non-
Gaussianity in regions that differ significantly in complexity.

4. Simulations

We have tested our method extensively using simulations. These
tests have allowed us to tune parameters intrinsic to the method,
and to assess the quality of the extracted source descriptors.
There are four types of simulations, as follows.
1. Synthetic simulations (Appendix B.1) comprise data that

mimic a basic assumption of the method as closely as pos-
sible, namely that the background is a homogeneous Gaus-
sian random process. To make these simulations, we com-
bine CMB map realizations based on the Planck 2015 best-
fit cosmological model, with noise consistent with that of the
Planck detectors as described in Planck Collaboration XII
(2016). To these we add Gaussian sources whose thermal
emission characteristics are taken from a preliminary BeeP
extraction. We use these simulations to test the algorithm,
and fix some of its basic parameters, such as the optimal size
of the patch analysed around each source, and to check the
impact of some systematics such as projection distortions.

2. Injection simulations (Appendix B.2) attempt to reproduce
the properties of the diffuse backgrounds that are seen by
Planck. The basic principle is to use the 2015 Planck maps
and add to them a known set of sources. We have produced
three distinct types of these simulations: (a) we remove from
the observed maps the sources present in PCCS2+2E, inpaint
the holes, and inject at the same locations point-like sources
whose thermal emission parameters are those of the original
source (as extracted by BeeP in a preliminary run); (b) as in
(a), but the fake sources are injected in the vicinity of the
original ones rather than at the PCCS2+2E location; and (c)
the locations of the fake sources are randomly drawn from
a uniform distribution over the high-latitude sky, and their
thermal properties are drawn from the distribution present in
PCCS2. In this case the original PCCS2+2E sources are not
removed from the maps. In addition, we have also produced
realizations of the above three types that include known
source extensions. As detailed further in Appendix B.2, these
simulations allow us to:

– assess the effect of inpainting on the results;
– determine an optimal level for the covariance matrix

cross-correlation factor;
– assess biases in the recovered source parameters, e.g.,

temperature and spectral index;
– assess the accuracy of the estimated source locations, and

on this basis establish a correction to the estimated loca-
tion uncertainties; and

– assess biases and establish corrections to both the
estimated flux densities and their uncertainties (see
Sect. 6.2.4).

13 See Appendix A.1.

3. FFP8 simulations (Appendix B.4) are the most realistic real-
izations of the all-sky maps as observed by Planck and
processed through the PR2 pipelines14, and are fully inde-
pendent of the observed maps. In particular they repro-
duce the variation across the sky and in frequency of the
Planck beams, which is something that we do not include
in our injection simulations. However, an important draw-
back is that a corresponding simulation of the IRIS sky
is not available and therefore we cannot extract thermal-
emission parameters in order to compare them directly to
BeeP’s results on Planck maps. Nonetheless, we are able to
use these simulations to assess the impact of the beam vari-
ation on the recovery of flux densities and on the positional
error, and on this basis we establish a correction to the flux-
density estimates.

4. No-source simulations (see Sect. 5.1) use a list of locations
that are not present in PCCS2+2E, and on which we run
BeeP. Under the assumption that such locations contain only
background emission15, these simulations allow us to esti-
mate the number of spurious sources generated by BeeP, i.e.,
the background-related contamination fraction of the result-
ing catalogue. The empty locations are selected in the neigh-
bourhood of the catalogue positions in order to preserve the
distribution of sources on the sky. We have placed the sources
at a random location within an annulus of radii 12′ and 14′,
enforcing that each injection location is at least 12′ from any
other. We then mask and inpaint the original source.

All of the above tests and their results are described in detail in
the Sects. 5.1 and 5.2, as well as Appendix B.

5. Catalogue production

The basic principles of the production methodology for the cat-
alogue are described in Sect. 3 and implementation details in
Appendix A. The BeeP software takes as input a catalogue of
sources and associated maps, and processes all sources. The out-
put is an extension of the input catalogue, in effect adding to each
source a number of new parameter fields.

As described in Sect. 2, the input catalogue is the union of the
857 GHz PCCS2 and PCCS2E (PCCS2+2E) source lists, which
contains 48 181 entries. The input data are the 2015 Planck full-
mission frequency maps between 353 and 857 GHz, and the IRIS
map. The IRIS map does not cover the full sky, and therefore a
small subset of sources (650) has been processed with Planck
channels only. This restriction seriously impairs the constrain-
ing capabilities of the likelihood, and hence a downgraded qual-
ity status has been assigned to these sources. As a consequence,
the output catalogue contains 47 531 complete entries. Of those,
42 869 (about 90%) are in the PCCS2E, and only 4662 (10%)
in the PCCS2.

5.1. Reliability assessment

Once we have processed the entire input catalogue through
BeeP, we can apply filters to select subsets of sources. The
first and most critical filter is reliability. For this purpose, we

14 The PCCS2+2E source catalogues were produced from the PR2
maps. The newer PR3 maps released by Planck in 2018 are based on
significantly different pipelines, and have not been used to generate
source catalogues; for this reason we cannot use the newest FFP10 sim-
ulations associated with PR3.
15 This assumes that for the level of sensitivity we are aiming at,
the PCCS2+2E catalogues are almost complete (Planck Collaboration
XXVI 2016).
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interpret our detection significance statistic SRCSIG in terms of
reliability.

In a classical frequentist framework, we would draw the
test receiver operational characteristic curve (ROC, Trees 2001,
Chap. 2). The ROC curve shows the balance between “complete-
ness”, or true positive rate, and the false positive or “spurious”
rate, when varying the threshold of the detection significance
statistic. However, since we are not adding any new entries to
the PCCS2+2E catalogue, we will always be limited by the ini-
tial catalogue’s completeness. Our focus will therefore be on the
spurious error rate or “contamination”. The spurious error rate is
the probability of classifying a source as real when only back-
ground is present for a given SRCSIG16,

Contamination ≡ Pr
(
real | only background; SRCSIG

)
. (13)

Owing to the complexity of the data, the most practical way of
estimating contamination is through simulations. For this pur-
pose, we use the no-source simulations described in Sect. 4. We
run the BeeP algorithm on the no-source catalogues, and com-
pute the SRCSIG statistic. We then compute the percentage of
locations where there is not a source for which the SRCSIG
statistic is larger than a certain threshold. This gives an esti-
mate of the contamination (Eq. (13))17, under the assumption
that there are no sources.

Figure 4 shows how this estimate of the contamination varies
with the SRCSIG threshold, for two different thresholds of
NPSNR. Solid blue lines are full-sky results, and dashed lines
correspond to a catalogue restricted to PCCS2 sources. The solid
(full-sky) green line is obtained similarly, but the original source
is not removed. This test is carried out to show that the presence
of the original source in the background significantly and sys-
tematically modifies the non-Gaussianity of the background in
the area being analysed, reducing in a systematic way the SRC-
SIG distribution. As can be seen in Fig. 4, this effect would arti-
ficially (and incorrectly) reduce the contamination for a given
SRCSIG threshold.

Figure 4 shows that if the catalogue is restricted to the more
reliable sources, there is very little difference in the contamina-
tion levels of the PCCS2+2E full catalogue (solid line) and the
PCCS2 subset (dashed line); this indicates that BeeP accounts
adequately for the non-Gaussianity of the background. We select
SRCSIG > 3.7 as an interesting threshold, which leads to a con-
tamination level between 5% and 10% (Fig. 4).

Our simulation-based estimate of contamination relies on
the prior assumption that there are no sources at the loca-
tions analysed, which is probably not correct for PCCS2+2E
where crowding becomes significant. This makes the estimate of
Eq. (13) a conservative one. The curves in Fig. 4 should then be
read as the maximum contamination for a given SRCSIG thresh-
old. To make it more realistic, the estimate should be reduced
taking into account the catalogue completeness, as described in
Appendix C. However, for high values of NPSNR, the correction
is very small18; in this case one can safely use Fig. 4 as a reason-

16 In Appendix C we present the procedure using the “dialect” of the
orthodox hypothesis testing framework.
17 The uncertainty in the contamination estimate is

√
p(1 − p)/(n + 3),

where p is the contamination and n is the number of “false sources”
(n ≈ 20 000). Even for large n, as in our case, some care must be used
when selecting very low contaminations. An estimated contamination
of 0.005 already carries an uncertainty of about 10%.
18 Indeed, by comparing the curves with the two NPSNR thresholds
shown in the left and right panels of Fig. 4, it can be deduced that the
correction must already be very small at NPSNR> 3, a very low value
for NPSNR.

able estimate of the catalogue contamination. Comparison of the
solid and dashed lines in Fig. 4 also shows the effect of crowding
on contamination, which is at most 10% for low SRCSIG.

With the above considerations, a catalogue can be selected to
have a given reliability level by adopting thresholds in SRCSIG
and NPSNR. For example, if we define the condition

SRCSIG > 3.7 ∧ NPSNR > 5.0, (14)

where the symbol “∧” means “logical and”, the resulting cata-
logue has a maximum contamination between 5 and 10%19. The
reliability condition in Eq. (14) is one of the important compo-
nents for building the “BeeP/base” catalogue (see Sect. 5.5).

5.2. Rejection of outliers

As a result of the large range of source flux densities and the
background conditions, it is reasonable to expect that under
extreme conditions the simplified data model, and the likelihood,
become a sub-optimal description of the statistical properties of
the data, and that significant outliers will arise. As one of our
goals is to have a well-defined set of statistical descriptors for the
catalogue estimates, these extreme outliers need to be identified
and removed to avoid biasing or distorting the characterization.

The extensive set of simulations described in Sect. 4 was
used to identify such cases (see Appendix B.2 for more details).
We find that any sources whose estimates do not meet the follow-
ing “outlier-rejection criterion” must be considered unreliable:

EXT > 1.46 ∧ TEMP < 60 ∧ BETA < 5

∧ (TH2SB − TL2SB) > 0.8

∧ (BETAH2SB − BETAL2SB) > 0.25, (15)

where EXT, TEMP, and BETA are the estimated source exten-
sion, temperature, and spectral index, respectively. The dif-
ferences (TH2SB − TL2SB) and (BETAH2SB − BETAL2SB)
are the estimated uncertainties of the temperature and spectral
index20. The value of EXT that we use to create the filter is the
“uncorrected” source size parameter (see Sect. 6.2.2 and Appen-
dices A.2.3, A.2.4).

The criterion of Eq. (15) selects a very small fraction of the
catalogue sources (2462, or about 5%). Of those, 1463 would
also have been rejected by the reliability criterion (Eq. (14)).
Thus only 999 or 2% of the sources that pass the reliability cri-
terion are rejected by the outlier-rejection criterion (Eq. (15)).

5.3. Convergence filter

Our logical framework assumes a binary classification scheme,
such that each region of interest is either diffuse background
or a compact source. However, a binary classification model,
regardless of the significant advantage of its simplicity, is not
complete enough to explain the full complexity of the data set.
In fact, as described in Sect. 5.1 (see also Appendix C), we

19 If we did not impose NPSNR> 5, then SRCSIG > 3.7 alone would
set contamination to approximately 10%.
20 We reject sources where the recovered parameter uncertainties are
extremely low, indicating that the likelihood sampler has not been able
to explore the parameter space adequately. There may be some excep-
tional cases where the uncertainties are very low because the model fits
the data extremely well, and these will also be rejected. One such exam-
ple can be seen in Fig. D.2. It is possible, by examining the results of
BeeP, especially the χ2 of the free model fit, to decide that the case
should not be rejected.
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Fig. 4. Contamination (Eq. (13) and Appendix C) when SRCSIG≥ x, in the cases of NPSNR> 3 (left) and NPSNR> 5 (right). The blue curves,
solid for full sky (PCCS2+2E) and dashed for high Galactic latitudes (PCCS2), display the contamination for simulations when the “no sources”
are located in the neighbourhood of actual catalogue positions. The original sources are masked and inpainted. The solid green line shows the
estimated contamination of a simulation exactly like that of the solid blue curve (full sky), but this time the original sources are not removed and
inpainted. In this figure and several others in this paper, we label the axis with the name of the corresponding field in the output of BeeP analysis
(in capital roman letters), e.g., here “SRCSIG”.

compute the probability of a set of pixels not being part of
the diffuse background (rejection of the null hypothesis), and
the SRCSIG statistic acts as the discriminating variable. This
mathematical machinery requires us to find a likelihood maxi-
mum in the proximity of the source position. However, in some
cases, e.g., at low Galactic latitudes or along very extended
sources, that condition may not be met. For example, in Fig. 5
there are some PCCS2E positions (blue triangles) that are well
separated from the actual centre of the compact object, which
coincides with the likelihood maximum. Since we have limited
the likelihood “travel” distance to three pixels from the origi-
nal PCCS2E+2E location (see Sect. 3.1 and Appendix A.2), in
some of these cases BeeP fails to find a maximum. The code
then assumes that the original PCCS2+2E position is correct,
and samples the likelihood field around it. For extended sources
where BeeP could not find a likelihood maximum, such as those
shown in Fig. 5, SRCSIG can still attain a high value because
the location does not have background-like properties. For this
reason we have introduced a new catalogue field MAXFOUND,
that flags when a likelihood maximum was found. Consider-
ing that being above a given SRCSIG threshold means, it is
likely that this is not part of the background. MAXFOUND then
allows one to discriminate between a compact object (value 1,
Fig. 5, green squares) or something else (value 0, Fig. 5, red
squares).

In Fig. 6 we show the total fraction of PCCS2+2E sources
with NPSNR> 5 and above a given SRCSIG. The dashed curves
in Fig. 6 show the impact of adding the condition of MAX-
FOUND= 1. The intersection of the curves with the SRCSIG= 0
axis shows the fraction of sources with NPSNR> 5.

5.4. Quality filter

We summarize the quality of the source parameter estimates
in a new field, EST_QUALITY, which assigns five points to
each source and subtracts penalties from this maximum value
if certain quality criteria are not met. EST_QUALITY = 5
means that the estimates of source parameters are highly reli-
able. Penalties subtracted if specific quality criteria are not met

Fig. 5. Patch of 1◦.0 × 1◦.0 area centred on l = 173◦.91, b = +00◦.25, from
the IRIS 3000 GHz map.

are listed in Table 1. When MAXFOUND , 1 (no likelihood
maximum), it is not possible to guarantee an optimal extrac-
tion of source parameter estimates. However, sources that fail
only the MAXFOUND condition may still be used in many cases
where a rigorous statistical characterization is not required. For
this reason the associated penalty was set to half of the other
criteria. Source estimates not meeting the “outliers criterion”,
or that were examined in only the Planck channels (because
they are located in the IRAS gaps), should be used with great
caution.
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Fig. 6. Fraction of PCCS2+2E sources with NPSNR > 5 and above
a given SRCSIG threshold. Green curves show PCCS2 sources, blue
curves show PCCS2E sources, and red curves show the full PCCS2+2E.
Dashed lines are the result of imposing MAXFOUND = 1. The dashed
black vertical line (SRCSIG = 3.7) is the reliability criterion threshold
that we have selected for the BeeP/base catalogue.

Table 1. Penalties applied to sources whose parameter estimates do not
meet the quality criteria (note that the maximum quality level is 5).

Sources not meeting: Penalty

EXT > 1.46∧ TEMP < 60∧ BETA < 5∧ −2
(TH2SB – TL2SB) > 0.8∧
(BETAH2SB – BETAL2SB) > 0.25 (outliers, Eq. (15))

MAXFOUND = 1 (no likelihood maximum) −1
All four channels used (IRIS data missing) −2

5.5. BeeP/base catalogue

Let us now examine the sub-catalogue defined by the conditions
given in Eq. (14). If we require EST_QUALITY≥ 4, this sub-
catalogue contains 24 511 of the 43 290 objects in the PCCS2E
(56.6%). If we require EST_QUALITY= 5, however, we still
find 21 997 sources (50.8% of the PCCS2E objects). We there-
fore add this condition and define a “reliable and accurate” sub-
catalogue based on the three following conditions:

NPSNR > 5 ∧ SRCSIG > 3.7 ∧ EST_QUALITY = 5. (16)

This sub-catalogue, which we shall refer to as BeeP/base, con-
tains 26 083 (54.1% of the full PCCS2+2E) objects. Unless oth-
erwise stated, all figures in the rest of this paper are based on
it. If we require a more stringent contamination level, say below
1%, (SRCSIG> 7.0 and EST_QUALITY= 5), there remain 5077
(11.7%) compact objects in the PCCS2E.

Although in the PCCS2+2E there is no indication of the
source-detection significance, for comparison we computed one
by dividing the MHW2 estimates of the source flux density and
its uncertainty, DETFLUX/DETFLUX_ERR. The median value
of the PCCS2+2E-estimated S/N (8.96) is considerably lower
than the equivalent value of NPSNR in the BeeP catalogue
(12.82). However, one must remember that BeeP is a multi-

channel method, and jointly analysing more than one frequency
strengthens the background-rejection criterion.

5.6. Beyond BeeP/base

In Sect. 5.5 we have described how we have extracted a subset of
the sources in PCCS2+2E (BeeP/base) that we consider to be
“reliable and accurate”. Based on our analysis, this means that:

– the uncertainties on the extracted model parameters are real-
istic;

– the number of false detections is low.
We caution the user of BeeP/base that the parameter uncertain-
ties for many sources in this catalogue are relatively large. For
example, Fig. 11 (supported by simulations in Appendix B, see
e.g., Fig. B.7) shows that sources with the lowest NPSNRs have
flux-density extraction uncertainties larger than about 40%. At
first glance this does not seem consistent with a naive interpre-
tation of NPSNR as an “SNR-like” quantity, but we remind the
reader that NPSNR reflects the uncertainties of all model param-
eters, not only flux-density determination. Figure 8 shows in
particular that the flux-density determination is correlated with
other parameters (in particular the size, temperature, and spectral
index), and this certainly contributes significantly to increasing
the uncertainties.

We have selected BeeP/base as a good approach for study-
ing the broad characteristics of the results of our analysis. How-
ever, we expect that each user of these results will select a spe-
cific subset of sources based on their own needs. For example, if
low flux-extraction uncertainties are required, then the threshold
on NPSNR should be correspondingly increased, and we sug-
gest using Fig. 11 as a guideline. Similarly, Fig. 4 can be used to
set a threshold related to contamination by false detections. Each
user of our results should determine the specific criteria that need
to be applied to meet their objectives.

6. Base catalogue characteristics

We now describe and characterize the BeeP/base catalogue. As
mentioned previously, all the results of this analysis (i.e., for all
PCCS2+2E sources, not only those in BeeP/base) are available
online via the Planck Legacy Archive. The Explanatory Supple-
ment (Planck Collaboration ES 2018), which accompanies the
results, includes an annotated list of all the parameters provided
for each source. In this paper, we provide a summary of the key
parameters in Table 2. Some of these are described in more detail
in this section.

6.1. Reliability and quality parameters

The set of reliability and quality parameters includes:
– NPSNR, which measures the S/N of the combined detection

(Eq. (8));
– SRCSIG, which measures the likelihood that the source is a

real compact object distinct from the background (Eq. (12));
– EST_QUALITY, which measures the trustworthiness of the

source descriptor estimates extracted by BeeP (see Sect. 5.4).
It is important not to confuse the roles of SRCSIG and
EST_QUALITY. SRCSIG indicates the likelihood of a source
being real, whereas EST_QUALITY provides an assessment of
the quality of the estimated source parameters, given that the
source is real. For instance, a bright nearby object may have
a very large SRCSIG because we are sure it is a real object.
Nonetheless it might still fail the EST_QUALITY criteria if,
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Table 2. Summary of the key parameters generated by BeeP for each
source in PCCS2+2E and available online via the Planck Legacy
Archive.

Component Extracted parameters

Source New location
(thermal model) Extension

Thermal SED properties
[Temperature, Spectral index, Ref. Flux Density]

Flux density in Planck and IRAS channels
Extraction quality parameters

[NPSNR, RELTH, SRCSIG, EST_QUALITY]
Source New location
(free model) Flux density in Planck and IRAS channels

Thermal SED properties (a)

[Temperature, Spectral index, Ref. Flux Density]

Background Surface brightness in Planck and IRAS channels
(32 × 32 pixel patch) Signal to noise ratios (source/background)

Thermal SED properties
[Temperature, Spectral index, Ref. Flux Density]

Notes. All physical parameters include corresponding uncertainties.
(a)Fitted to the flux densities after extraction.

for example, BeeP cannot find the likelihood peak. In that case
there is no guarantee that the recovered parameter estimates are
optimal.

6.2. Source properties

This set of parameters gives the position and properties of the
sources and their uncertainties.

6.2.1. Thermal properties

We fit the multifrequency data for a given source with two SED
models (see Fig. 7), each of which requires an independent run
of the likelihood.

– Modified Blackbody (MBB) model. The source brightness
levels are colour-corrected to account for the detector band-
passes. The following parameters are optimized by the like-
lihood:

– X and Y position coordinates, with origin at the
PCCS2+2E position;

– EXT, source extension;
– SREF, source reference flux density;
– TEMP, source temperature;
– BETA, source spectral index.

All source parameters, geometrical and physical, are sam-
pled jointly. The reference flux density is given at 857 GHz.
The reference flux density at 857 GHz is not the flux density
measured in the 857 GHz channel; it is rather a scaling fac-
tor for the model that could be specified at any frequency.
We have chosen 857 GHz for convenience (see Eq. (4)). For
this model we also provide the flux densities in the individual
channels, computed from the fitted model.

– Free model. The FREE columns are developed in two steps.
First, samples are drawn from the geometrical parameters
and flux densities at each channel. The flux densities at indi-
vidual channels are optimized by the likelihood. All source
parameters, geometrical and physical, are sampled jointly.
From the flux-density samples at each frequency we compute
a best-fit value and an uncertainty. The following parameters
are optimized by the likelihood:

– X and Y position coordinates, with the origin at the
PCCS2+2E position;

– EXT, source extension;
– FREES3000, flux density at 3000 GHz;
– FREES857, flux density at 857 GHz;
– FREES545, flux density at 545 GHz;
– FREES353, flux density at 353 GHz.

We then fit an MBB model to the four data pairs (S ν, σS ν ),
using a Gaussian likelihood with colour-correction, resulting
in a source reference flux density given at 857 GHz.

BeeP also provides, as an output, plots of the source-parameter
posterior distributions for the MBB model (see e.g., Fig. 8).

6.2.2. Size

The spatial extent of source-related emission peaks in the maps
results from the convolution of the source size and the beam.
These are degenerate variables over the relatively narrow range
of variation of beam size in the Planck maps. BeeP uses a source-
extension parameter EXT which represents the intrinsic radius of
the source in Eq. (3). However, in Appendix A.2.3, we explain
that BeeP artificially narrows the beams to allow for emission
bumps in the maps that are narrower than the beam size. There-
fore EXT does not correspond to the actual intrinsic source size;
however, EXT is easily corrected to a new parameter R, which is
the intrinsic source radius corresponding to the real beam sizes.
Both parameters are provided in the BeeP results. Furthermore,
we remind the reader that we have simplified the source model
by assuming that it is a symmetrical 2D Gaussian. The param-
eter R thus gives a useful indication of whether the source is
extended, but it does not reflect any potential source elongation
and should therefore be used with appropriate caution.

The distribution of source radii (R) found by BeeP is shown
in Fig. 9. The PCCS2 subset (shown in blue), is compatible with
a population overwhelmingly dominated by unresolved sources
(the size distribution peaks at 1′.2). Instead, the full PCCS2+2E
(purple) set peaks at 1′.7. This is expected, since a large fraction
of the PCCS2E objects are nearby and Galactic, and many of
them show more extended shapes.

6.2.3. Position

One of the important characteristics of BeeP is its ability to
determine an effective sub-pixel source position. Since the posi-
tion is determined from a multifrequency analysis, it does not in
general correspond to any of the positions found in PCCS2+2E.
POSERR is the uncertainty radius around the position. Its prob-
ability density function is a Rayleigh distribution with a scaling
parameter equal to POSERR. If Z =

√
X2 + Y2 and {X,Y} are

independent and both normally distributed with a standard devi-
ation σ, then Z follows a Rayleigh distribution with a scaling
parameter equal to σ. BeeP’s sub-pixel accuracy significantly
reduces the large negative kurtosis usually imposed by the pix-
elization on the error distributions, as can be seen in Fig. 8.
POSERR is computed as the 95th percentile of the samples’
radial offset distribution divided by 2.45, to give σ, the Rayleigh
scale factor. The probability that the true source position is inside
a radius of (1×, 2×, 3×) POSERR is (39.3%, 86.5%, 98.9%).
Figure 10 shows the dependence of POSERR on NPSNR.

Simulations show that POSERR is significantly underesti-
mated in a subset of cases, predominantly those with high val-
ues of NPSNR. A detailed description of this issue is given in
Appendix B.2 and shown in Fig. B.6. To address this problem,
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Fig. 7. Example of fitting the MBB (upper panel) and Free (middle panel) SED models to the data for one source (NGC 895). The background is
given in the bottom panel. The yellow and red dashed curves are the median and maximum-likelihood fits, respectively. The purple and black bands
are the ±1σ and ±2σ regions, respectively, of the posterior density. Blue diamonds are the PCCS2+2E flux-density estimates (APERFLUX). The
green diamonds are: in the upper panel BeeP’s estimate of the flux density at 857 GHz, and in the middle panel BeeP’s Free estimates of the flux
density at each frequency. In the lower panel, dark green diamonds are the background brightness estimates at each frequency, and the green curves
are the maximum likelihood (dashed) and the median (solid) models. Red diamonds are the average source brightness divided by the background
rms brightness in that patch, i.e., raw S/N. The data points are slightly displaced from their nominal frequencies to avoid overlaps. A similar plot
is provided in the Planck Legacy Archive for each source in the BeeP catalogue; see the Planck Explanatory Supplement for further information
(http://www.cosmos.esa.int/web/planck/pla/). We note that this figure is reproduced exactly as it will be delivered to the user from the
online archive. In Appendix D we provide some representative examples of spectra for different kinds of sources, to show some of the results
obtained by BeeP.

we correct the position errors using the procedure developed
in Appendices B.2 and B.4, which follows closely that used
for PCCS2 (see Eq. (7) and Table 8 of Planck Collaboration
XXVI 2016). The correction consists of adding a term in quadra-

ture to POSERR, which causes small values to saturate at a
minimum level of σ0 = 4′′.4 (see Fig. 10). This level was
determined through simulations, as described in Appendices B.2
and B.4.
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Fig. 8. Corner plot (Foreman-Mackey 2016) of parameter posterior distributions for one source (NGC 895). Off-diagonal positions show marginal-
ized bi-dimensional posterior distributions of the parameter samples defining the row and the column. Diagonal positions contain posterior
marginalized distributions. The magenta lines mark the PCCS2+2E catalogue flux density in the 857 GHz channel. There is one such plot for
each source in BeeP’s catalogue. The source extension (EXT) samples shown have not been corrected for the narrower beams employed in the
likelihood. See the Planck Explanatory Supplement for further information (http://www.cosmos.esa.int/web/planck/pla/). This figure is
reproduced exactly as it will be delivered to the user from the online archive.

To verify that the correction determined through simulations
applies to the BeeP/base catalogue, we examined the PCCS2
subset. The correlation seen in Fig. 10 (yellow dots) is very high
(−0.98), and its slope a = −1.09 is very close to what is seen
in the simulations. This high degree of consistency between the
simulated data and the real data justifies application of the cor-
rection to the data.

The median positional error of the full corrected catalogue is
11′′.5 (1/9 of a Planck pixel). For the PCCS2 subset it is 7′′.9, or
less than 1/12 of a pixel.

6.2.4. Flux density

To obtain an unbiased estimate of a flux density, one must know
the shape of the instrumental beam and the morphology of the
source. By using a constant Gaussian shape to model the beam,
equal to the average Planck Gaussian effective beam (Mitra et al.
2011), we introduce a systematic bias in estimates of the flux
density (see, e.g., Planck Collaboration XXVI 2016, Sect. 2 and
Table 2). Furthermore, in any multi-channel analysis such as
BeeP, the beam shape is not as clearly defined as in the case
of a single-channel catalogue. The effective beam is in fact a

combination of the individual channel beams, and it changes
with the beam spatial Fourier mode (via the covariance) and
source SED parameters. A simple correction such as the one
suggested in Planck Collaboration XXVI (2016) is insufficient
in this case. Instead, our approach is to “calibrate” the bias in the
output of BeeP using simulations. This is explained in detail in
Appendix B.4 (see also Appendix A.2.3). The simulations that
we use are the Planck FFP8 simulations, which are the most
complete and realistic for Planck 2015 data, and which contain
accurate sky and instrument models. Using the FFP8 simulations
(Appendix B.4), and comparing recovered values to input val-
ues, we estimate that BeeP’s reference flux-density estimator is
biased high by about 11.0%, which reflects the lack of realism of
our model regarding source extension. An 11% reduction in the
reference flux densities produced by BeeP is therefore applied to
both SED models (MBB and Free). Specifically, flux densities
in all four channels are reduced by this same factor for the Free
model.

The estimated flux-density accuracy is also subject to sys-
tematic effects caused by beam and source shapes. Figure 11
displays the variation of the relative flux-density error bar σrel

S
,

defined as
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Fig. 9. Normalized histograms of the recovered source size R PCCS2
sources are shown in blue and the full catalogue in purple. R has been
corrected for the excess resulting from using narrower beams in the
likelihood. Beam-sized objects appear in the figure at R ∼ 0. One pixel
here corresponds to 1′.72.

5 10 20 50 100 200 500 1000

NPSNR

1

2

3

4

5

10

20

30

40

50

P
O

S
E
R
R
=a

rc
s
e
c

Fig. 10. Radial position error POSERR versus NPSNR. Grey and yel-
low points mark sources in the PCCS2+2E and PCCS2, respectively,
before correction. Red and green points mark sources in the PCCS2+2E
and PCCS2, respectively, after correction. The horizontal dashed line is
the saturation constant added to correct the position uncertainty, 4′′.11.

σrel
S ≡

∆S

S
, (17)

where S is the estimated flux density, ∆S is the estimated flux-
density uncertainty, and σrel

S
is the inverse of the measured S/N.

For reference, the black dashed line on the left lower corner is
the NPSNR−1 line. This is the theoretical lower boundary forσrel

S
that would be expected if the only unknown parameter were the
flux density. Figure 11 shows that the catalogue’s flux-density
uncertainties are much higher (σrel

S
≫ NPSNR−1) than the lower

boundary, which should be expected from the fact that there are
five more unknown parameters, whose individual uncertainties

propagate into the flux-density estimate. However, not all of the
additional parameters contribute equally. Inspecting the posteri-
ors in Fig. 8, it becomes clear that EXT and the MBB parameters
{T, β} have a much larger contribution than the position parame-
ters. The correlation between the flux errors and the other param-
eter uncertainties explains the gap between the black dashed line
and the green points in the figure. However, with the help of
simulations (see Appendices B.3 and B.4), we find that the esti-
mated flux-density errors are overly optimistic for a fraction of
the high NPSNR population. The situation is similar to that for
the positional accuracy estimates (see Sect. 6.2.3). For most pur-
poses the (uncorrected) flux-density estimates and uncertainties
found in the catalogue can be used without concern. But if a
more rigorous statistical characterization is required, we suggest
correcting the flux-density uncertainty estimates using the pro-
cedure developed in Appendix B.3. There is a modest penalty in
flux-density accuracy for applying this correction (Fig. 11, red
contours).
BeeP produces two sets of flux-density estimates: the MBB

SREF and the Free FREESREF. In Fig. 12 we compare their
values to test the consistency between the two models. Instead
of simply calculating percentage differences, we plot the loga-
rithm of the output to input ratio. If out/in ≈ 1, then ln(out/in) ∼
(out − in)/in, which corresponds closely to percentages. But
when out/in is far from 1, then ln(out/in) keeps the symmetry
between in and out, which would not be the case with the more
common (out − in)/in formula. We find this feature very conve-
nient for visually identifying biases in the differences.

As expected, there is higher dispersion for sources drawn
from the PCCS2E catalogue (shown in red), as a result of gen-
erally more complex backgrounds at low Galactic latitudes.
Sources from the PCCS2 (shown in green) are less affected by
this issue. We note the small (3.5%) bias towards negative values
of ln(S Free/S MBB). This bias becomes more pronounced at lower
values of SRCSIG. A possible source of this bias is that inclu-
sion of inter-frequency cross-correlations in the likelihood for
the background model allows for better removal of background
emission, on average raising S MBB.

6.2.5. Spatial distribution of the source properties

Figure 13 shows the spatial distribution on the sphere of MBB
prameters T and β for the compact sources. High Galactic lati-
tudes show a larger percentage of warmer objects (see Fig. 14)
and very few cold sources (dark blue). Cold sources are mostly
Galactic in nature, and aligned with filaments of gas and dust.
They also match regions of intense star formation. As a result
of the strong correlation between T and β (see Sect. 6.2.6 and
Fig. 8), a higher density of sources with low β is expected at
higher Galactic latitudes.

One problem with the extraction of this catalogue is
the severe non-homogeneity of the background. The brighter
sources, represented with larger circles, are concentrated in the
Galactic plane (see Fig. 13). However, as one can see in Fig. 15,
the regions with higher SRCSIG are preferentially located at
high Galactic latitudes, roughly matching the PCCS2 domains.
This is the result of smoother backgrounds and less severe non-
Gaussianity.

6.2.6. Source populations

Figure 16 (left panel) shows the catalogue MBB estimates on
the T–β plane, coloured by Galactic latitude. The T–β set forms
a banana-shaped distribution with an excess of colder sources
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Fig. 11. Flux density uncertainties (σrel
S

, see Eq. (17), as a percentage) versus NPSNR. Blue contours ([68,95,99]%) show the distribution of uncor-
rected values (as presented in the catalogue), while red contours show the distribution of values after the corrections suggested in Appendix B.2.
Left panel: sources in the PCCS2, middle panel: PCCS2E with Galactic latitude greater than 10◦, and right panel: sources close to the Galactic
plane, with b ≤ 10◦. For reference, we show NPSNR−1 (black dashed line), the theoretical lower boundary for σrel

S
, which can only be achieved if

flux density is the sole parameter in the model.
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Fig. 12. Ratio of free flux density to MBB model flux density at
857 GHz, as a function of SRCSIG. PCCS2 sources are shown in green,
while PCCS2+2E are in red. Only sources whose Free and MBB posi-
tions are within 0′.8 (half a pixel) of each other, and whose MBB fit to
the independent flux measurements has reduced χ2 < 5 are included.
The total number of sources included (25 236) are ≈ 97% of the
BeeP/base catalogue.

(T < 18 K) at low Galactic latitudes. This cold population was
the main target of the Planck Catalogue of Galactic Cold Clumps
(GCC, Planck Collaboration XXVIII 2016, see Sect. 7). BeeP’s
likelihood has a more inclusive selection criterion, since it is
not limited to sources embedded in warmer backgrounds. How-
ever, as may be seen in Sect. 7, the temperature contrast between
source and background boosts the detection strength (NPSNR).
The T–β uncertainty (in grey) can be important, particularly
for warmer (T ≥ 18 K) and steeper sources (β ≥ 1.5). Most
of the warmer sources are faint at 353 and 545 GHz, such that
they are just above or even below the background levels. This
severely reduces BeeP’s constraining power, since then only the
two higher frequency channels contribute significantly.

Figure 16 (right panel) illustrates more clearly the influ-
ence of individual channels on the overall significance, which is
affected by all the channels processed by BeeP. Colder sources
are brighter, for the same reference flux density, at the three
Planck channels, which have much lower noise than IRIS.
Naively, one would thus expect these sources to have high reli-
ability; however, they are also much more likely to be found
embedded in bright and complex background regions at low
Galactic latitude. This imposes upon them a penalty on source
significance, not only because the background is stronger, but
because the levels of non-Gaussianity are also much higher. For
this reason, colder sources have generally lower estimated SRC-
SIG than warmer ones.

There is a small group of synchrotron flat-spectrum sources
characterized by their non-physical MBB parameter values (see
Fig. 16, bottom left corner of both panels). To identify this sub-
set, we found all sources that satisfied BETA < 0.5, TEMP < 15,
and EST_QUALITY ≥ 4. We cross-matched the high-Galactic-
latitude (|b| > 20◦), flat-spectrum population (24 sources)
with Planck’s PCCS2+2E 30 GHz catalogue. The cross-match
returned 23 common objects. Note that we are not removing
any of these sources, but providing a simple way to identify
them in the extended catalogue. The remaining BeeP object
(PCCS2 857 G207.16-60.71) just misses the reliability criterion
of BeeP/base, with NPSNR = 4.84 < 5.

6.3. Background properties

As a by-product of the BeeP analysis, we obtain the MBB
parameters of the background thermal emission around each
source. We compute the average brightness and standard devia-
tion {Iν,σIν} from the four background maps over a square patch
33 × 33 pixels (56′.7 × 56′.7) across, centred on the PCCS2+2E
source position. Reduced resolution was also employed in
(Planck Collaboration XI 2014) to stabilize the evaluation of the
T–β pairs. The CIB monopole, added to the Planck 2015 maps
as reported in Planck Collaboration VIII (2016), was then sub-
tracted. Offsets do not affect estimates of properties of compact
objects, as they are subtracted before the likelihood evaluation.
However, they are important when estimating the background
thermal properties. Uncertainties resulting from map calibration
and CIB monopole errors are also added directly to σIν . Then,
following exactly the same procedure as in the case of the Free
source model, an MBB background model curve, with colour
correction, was fitted to these data pairs using a Gaussian likeli-
hood. These curves are also shown in the SED plots, e.g., Fig. 7.

At these frequencies the dominant background component
is dust, particularly for low Galactic latitudes (Fig. 17 left and
centre). However the picture becomes slightly more complicated
for high Galactic latitudes where CIB anisotropies, instrumental
noise, and CMB anisotropies (especially at 353 GHz) also make
significant contributions. CIB anisotropies are important only
at scales of 1◦ and smaller (Planck Collaboration Int. XLVIII
2016; Planck Collaboration XI 2014), while instrumental noise
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Fig. 13. Top: temperatures of sources in the catalogue (colour scale in thermodynamic kelvins). Bottom: spectral indices β of the MBB SED
model. The catalogue was filtered using the condition of Eq. (16). The size of each circle representing an object is proportional to the logarithm
of the source flux density in janskys. This figure also makes clear the extent that sources in PCCS2+2E trace cirrus; see also the smaller region
in Fig. 1.

is important only at even smaller scales. In contrast, the CMB
appears predominantly at 1◦ and larger scales. The CMB sig-
nal is faint compared to dust at 545 GHz and above, but not at
353 GHz at high Galactic latitude.

Figure 18 shows the histogram of the MBB parameters T and
β for dust-rich regions defined by the masks used in PCCS2E
(blue), and for high Galactic latitudes (green). The distribu-
tions are different as a result of their dissimilar composition
(see also Fig. 17 left). In regions where dust is dominant, the
agreement with Generalized Needlet Internal Linear Combina-
tion (GNILC) (Planck Collaboration Int. XLVIII 2016) estimates
of temperature and β is excellent. In regions of low column den-
sity, the agreement deteriorates significantly (see also Sect. 7.4
and Fig. 29 for further explanation of these features).

Figure 19 shows the spatial distribution of the estimated
background parameters. High-Galactic-latitude zones show con-

sistently higher temperature and lower β than the dusty
regions close to the Galactic plane. This result is consistent
with previous analyses (Planck Collaboration XI 2014; Planck
Collaboration XIX 2011). Regions close to the Galactic centre
have higher β than those at larger longitudes (upper right panel).
The effect is less pronounced for T (upper left panel).

One of the interesting background parameters estimated by
BeeP is RELTH, which measures the non-Gaussianity of the
background. The spatial distribution of RELTH is shown in the
bottom right panel of Fig. 19. As a consequence of the non-
Gaussian nature of dust emission, it is expected that RELTH
correlates with background emission, and this is indeed evi-
dent from the bottom panels. Nonetheless, RELTH depends on
the detailed statistics of the field being analysed (Sect. 3.3,
Eq. (9)), therefore direct comparison of RELTH levels in regions
of widely varying complexity is likely biased. Figure 17 (right
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Fig. 14. Boxcar average (window 500 samples) temperature of sources
ordered by absolute Galactic latitude. There is a clear trend.

panel) shows that although regions with high non-Gaussianity
exist over the full range of thermal emission properties, the cold-
est background regions are all highly non-Gaussian. This is at
least partly due to the fact that they are located near to the Galac-
tic plane, where there is the most confusion.

7. Comparison with other catalogues

7.1. Planck PCCS2 catalogue

The PCCS2 contains the most reliable sources in the full
PCCS2+2E, because of their location in low-background
regions. The PCCS2+2E was built using a single channel MHW
algorithm, which is of a very different nature than that of BeeP.
Therefore, comparison of PCCS2 and BeeP source parameters
provides an interesting cross-validation of the two methods. For
reference, we also include PCCS2E in the comparisons.

7.1.1. Flux density estimates

To compare source flux-density estimates, we use the BeeP Free
values at all but 857 GHz, since these were obtained with a data
model more in line with the single-channel measurements of the
PCCS2+2E. At 857 GHz, however, we compare the fitted MBB
flux density, not the individual flux density (FREES857). This
allows for a broader validation because we are testing the full
range of flux densities and the SED model all at once. It is also
a less noisy estimate. At the same time, since so much more
information goes into the BeeP estimate than into the PCCS2
estimate, we should not a priori expect a very good match. For
PCCS2+2E, we use APERFLUX estimates, which were obtained
using an aperture photometry algorithm.

Figure 20 shows the results of this comparison. On the aver-
age, there is good consistency between BeeP’s estimates and
those in the PCCS2. There is, however, an overall bias with
a median of about +4.0% (mean +5.8%) for PCCS2, which
increases to +5.0% (mean +7.3%) for the full PCCS2+2E.

Although we use the PCCS2+2E source locations as a start-
ing point, we allow BeeP to search for a better effective loca-
tion in the close neighbourhood if that increases the likelihood

ratio. Maximizing the likelihood ratio is equivalent to maximiz-
ing the flux density, because we assume that the background
is homogeneous around the source. One might expect that the
population of sources that moves from its original position by a
significant amount should, on average, show higher flux densi-
ties. Figure 20 shows in red sources that moved by more than
one pixel from their PCCS2+2E position. As expected, the den-
sities of this population are clearly biased high compared with
those of PCCS2+2E. Considering these effects, we remove from
the comparison sources whose position changed by more than
one pixel with regard to the PCCS2+2E estimate, and extended
sources with R ≥ 1.64 pixels. Values of R in Fig. 9 were obtained
from EXT, correcting for the excess that results from using nar-
rower beams in the likelihood. Now the flux-density bias for the
full PCCS2+2E becomes negligible: median = −0.6% (mean =
−0.8%). Therefore from now on we only use this subset of
sources to compare BeeP’s flux-density estimates with those in
the PCCS2+2E catalogue.

The second factor affecting the flux bias between BeeP and
PCCS2 is background removal. For low APERFLUX, BeeP’s
flux densities seem to become increasingly biased high as we
go down in flux. At 0.45 Jy we are already at the sensitivity limit
for single-channel aperture photometry. At these very low flux
densities, the effects of Eddington-type bias become important.
However, the multi-channel nature of BeePmakes it more sensi-
tive, with an efficient background removal even at these low sig-
nal regimes. This effect is much more pronounced in the PCCS2
than in the PCCS2E, because the fraction of sources with flux
densities below the 0.45 Jy threshold is larger. A simple example
to understand how this bias occurs is the following. Imagine a
completely homogeneous but positively correlated background,
containing valleys and crests. Now imagine a very faint source
population, all of the same flux, embedded in it. Applying an
aperture photometry method to recover the flux, the sources sit-
ting in the valleys, would appear in the faint end group. A method
that could reduce the background to zero would recover the true
flux, which when compared with the faint end of the aperture
photometry flux estimate would appear biased high. To account
for that, in addition to the previous filters, we further removed
sources with APERFLUX < 0.45 Jy. The comparison restricted
to this PCCS2 subset now shows a rather small bias: median =
1.1% (mean = −1.1%).

On average, the uncertainties in BeeP flux densities are a fac-
tor of about 2 smaller than those of the aperture flux estimates
in PCCS2+2E (see Fig. 21). The combination of uncertainties
obtained by BeeP and those of PCCS2+2E explains the disper-
sion of Fig. 20 adequately.

We further compared BeeP’s Free flux-density estimates
at 353 and 545 GHz, FREES353 and FREES545, with
the PCCS2+2E equivalents, APERFLUX_353 and APER-
FLUX_545 (see Fig. 22). The subset depicted was obtained by
removing sources whose BeeP position estimate changed by
more than one pixel from the original PCCS2+2E and those
that appear to be extended, with R ≥ 1.64 pixels (see Fig. 9).
For the PCCS2+2E (in purple) the flux-density biases we find
are 0.6% (median) at 545 GHz and −2.6% (median) at 353 GHz.
The dispersion of the estimates is high, similar to that of the
857 GHz channel, but consistent with the combined uncertain-
ties from BeeP and PCCS2+2E.

7.1.2. Source positions

Assuming that positional errors {X,Y} are independent and
Gaussian-distributed in both the PCCS2+2E and BeeP, then the
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Fig. 15. Spatial distribution of the significance statistic SRCSIG. The colour bar represents SRCSIG on a logarithmic scale.
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Fig. 16. MBB parameters β and T for sources in the catalogue. The sources are coloured by Galactic latitude in the left panel, with 1σ error bars
in grey, and by the SRCSIG statistic in the right panel. The small cluster of sources close to the lower left corner is the non-thermal population of
flat-spectrum sources.

distance between both positions should follow a Rayleigh distri-
bution (see Sect. 6.2.3) with a scale factor σ dependent on the
positional accuracies of both catalogues. Figure 23 shows the
histogram of the distances between the BeeP and PCCS2+2E
positions. The PCCS2 subset histogram (in blue) is a good
match with the shape of a Rayleigh distribution. As expected,
the PCCS2E exhibits a wider tail. The PCCS2E histogram also
has bumps at 1′.72 (1 pixel) and 3′.43 (2 pixels). These small
excesses are the natural result of the map pixel grid. As may be
seen in Fig. 8, BeeP’s positional uncertainty seems little affected
by the map pixelization. However, the presence of these small
bumps at exact multiples of the pixel size, indicates a possi-
ble greater impact on the PCCS2+2E, which might add a small
negative kurtosis in the PCCS2+2E {X,Y} error distributions.

Given that BeeP’s positional uncertainty is so small, if we take
the BeeP positions as the true values, then the histograms in
Fig. 23 are consistent with the positional uncertainty characteri-
zation of the 857 GHz channel in the PCCS2+2E. The distribu-
tions (PCCS2 and PCCS2E) peak at around 0′.65. This value is
a good match to the average 0′.65 position error estimate for the
857 GHz channel of the PCCS2 subset in Eq. (7) and Table 8 of
Planck Collaboration XXVI (2016).

7.1.3. Background complexity and reliability

The PCCS2+2E catalogue contains a field CIRRUS_N that flags
entries with a complex background, and therefore a higher prob-
ability of being spurious. CIRRUS_N is the number of sources
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Fig. 17. Three views of the relationship between T and β for the background, from the MBB model. Left: PCCS2 background regions, which are at
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Fig. 19. Top: MBB parameters fitted to the background,
with T (K) on the left and β on the right. The high-
temperature region at (l = 155◦; b = 77◦) is artifi-
cially created by strong artefacts in the IRIS data. Middle:
inverse relative uncertainty T/∆T (left) and β/∆β (right)
of the MBB parameters. Bottom left: reference back-
ground brightness, log(Jy pixel−1, evaluated at 857 GHz.
This is the value at 857 GHz of a multifrequency fit, not
the value directly measured at 857 GHz. Bottom right:
log(RELTH), computed with α = 5% (see Eq. (9)). On all
panels there is a region at (l = 208◦; b = −18◦) of extreme
values and uncertainties caused by artefacts present in
the IRIS data. The colour bars have been histogram-
equalized. regions are either inside the IRIS mask, or had
insufficient data.
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Fig. 20. Comparison of BeeP’s Free flux densities at 857 GHz with aperture flux-density values (APERFLUX) from PCCS2+2E. We plot
ln(S BeeP/S APERFLUX) against APERFLUX (left) and SRCSIG (right). Upper row: distribution of the PCCS2 values in blue (contours are
[68, 95, 99]%). The red dots are sources that moved by more than one pixel from the original PCCS2+2E position. Lower row: full PCCS2+2E.
The red contours represent the distribution of sources that moved by more than one pixel, and the blue ones the remaining population. Top row:
we show individual dots because there are too few of them to make a density plot.
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Fig. 21. Comparison of the uncertainty determined in PCCS2+2E (red
markers), and the PCCS2 (blue markers), on the aperture flux density
at 857 GHz (APERFLUX_857) to the uncertainty on the reference flux
density as obtained by BeeP (SREF). The black dashed line represents
equality, and the green solid line is the best fit, which has a slope very
close to 2 (actually 2.2).

detected at 857 GHz within a circle centred on the source with a
radius of 1◦ (Planck Collaboration XXVI 2016). BeeP’s RELTH
is a measurement of the local background non-Gaussianity,
either intrinsic or as a result of localized structures (cirrus and
filaments). Its role is pivotal in defining BeeP’s reliability crite-
rion SRCSIG (see Eq. (12)): a higher value of RELTH implies a
larger correction to NPSNR, or, similarly to CIRRUS_N, a lower
reliability of a putative source. These two quantities, although
different, should exhibit some degree of correlation if the back-
ground non-Gaussianity is indeed the main source of false posi-
tives. Figure 24 shows such a correlation between the variables.
The relationship is particularly tight for low values of both vari-
ables, as seen in the inset part of the figure, which was obtained
by applying the same procedure as in the main picture to the
PCCS2 subset. The moving-average window was also reduced
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Fig. 22. Comparison of BeeP’s Free flux densities at 353 GHz (upper
row) and 545 GHz (lower row) with aperture flux-density values
(APERFLUX) from PCCS2+2E. The blue contours ([68, 95, 99]%)
show the distribution of the PCCS2 subset of sources and the red ones
the remaining PCCS2E. Unlike in Fig. 20, BeeP sources whose position
shifted by more than one pixel from the original PCCS2+2E and those
with EXT ≥ 1.64 pixels (extended) are not included.

to 50 samples for greater resolution. It is clear from this figure
that below CIRRUS_N = 8, there is a well defined correla-
tion between the two quantities. The opposite happens above
the threshold. According to Planck Collaboration XXVI (2016),
CIRRUS_N = 8 is the suggested source reliability threshold.

7.1.4. Reliability

PCCS2+2E contains no reliability information at 857 GHz. The
PCCS2 list at 353 GHz is the closest in frequency to BeeP’s
reference channel (857 GHz), which includes source reliability
information. PCCS2 sources at 353 GHz are classified as hav-
ing medium (80%) to high (99%) reliability. We cross-matched
(within a 5′ radius) PCCS2 353 GHz sources with the full BeeP
catalogue, and found 786 (58.5% of the PCCS2 353 GHz list)21.

21 Most of the unmatched 353 GHz sources do not have a counterpart
in the PCCS2 at 857 GHz, due to the important increase in the level and
complexity of the background, which reduces the S/N and results in no
detection.
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Fig. 23. Normalized histograms of the differences between the PCCS2
(in blue) and the PCCS2E (in pink) position estimates and those from
BeeP. The PCCS2E distribution shows a significantly more extended
tail. The two small bumps in the distribution are at 1′.72 (1 pixel) and
3′.43 (2 pixels). The PCCS2 histogram has a less extended tail compat-
ible with smoother homogeneous backgrounds. The peak of both dis-
tributions is at about 0′.65, the average position-error estimate for the
857 GHz channel in Eq. (7) and Table 8 of Planck Collaboration XXVI
(2016).

Fig. 24. Correlation between the BeeP RELTH parameter and the
PCCS2+2E CIRRUS_N parameter. Sources in the BeeP catalogue were
sorted in ascending order of RELTH. Then a boxcar average with win-
dow = 500 was calculated for both RELTH and the corresponding
PCCS2+2E CIRRUS_N values. The relationship is particularly tight
for low values of the parameters, as seen in the expanded detail win-
dow, obtained following the exact same procedure as the main picture
but using PCCS2 data only. We also reduced the boxcar window to just
50 samples here. The dashed vertical line is the PCCS2 CIRRUS_N
reliability threshold.

All but one of these 786 sources appear in the BeeP cata-
logue with a contamination lower than 10% (SRCSIG> 2 and
NPSNR> 5). Demanding an even lower contamination of 5% in
the BeeP selection (SRCSIG> 4.0, NPSNR> 5), there remain
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Fig. 25. Correlation between the PCCS2 quantities HIGH-
EST_RELIABILITY_CAT and BeeP SRSIG, for common sources, as
described in the text. We sorted the sources in SRCSIG ascending
order, and computed a boxcar average over SRCSIG and HIGH-
EST_RELIABILITY_CAT with a 100-sample window. There is a clear
positive correlation between these two variables.

744 common sources (94.7% of the common 786 sources). The
highest reliability (99%) subset of PCCS2 at 353 GHz contains
427 sources, 416 (97.4% of the PCCS2 353 GHz sources)
of which are in the BeeP 5% contamination subset. Given
that the majority of the PCCS2 353 GHz catalogue sources
have positive spectral indexes (Planck Collaboration XXVI
2016), if they are already reliable at 353 GHz they should be
even more so at higher frequencies, where they are brighter.
However, one must also consider the effect of the embed-
ding background. If the spectral index of the background
is steeper than that of the source, the contrast between the
source brightness and that of the background might actually
decrease. As a check, we cross-correlated PCCS2 353 GHz
HIGHEST_RELIABILITY_CAT with BeeP/base’s SRCSIG
(Fig. 25). The well defined trend confirms the expected positive
correlation.

7.2. Planck Catalogue of Galactic Cold Clumps (GCC).

The Planck Catalogue of Galactic Cold Clumps (GCC) was con-
structed from the same input data used by BeeP, namely, the
Planck 353, 545, and 857 GHz channels, and the 3000 GHz IRIS
map (Planck Collaboration XXVIII 2016). Similarly to BeeP,
GCC is generated using a multi-channel algorithm (CoCoCoDeT)
on the entire sky. However, this detection algorithm is very dif-
ferent than that of BeeP, since it targets the temperature con-
trast between cold clumps (cold compact emission regions) and
a warm background (Montier et al. 2010). The difference in
approach makes it interesting to compare the parameters esti-
mated by BeeP and GCC.

For this purpose, we cross-matched BeeP and the GCC
catalogues using a 5′ matching radius. The common set con-
tains 8690 entries (65.6% of GCC). Of these, only 47 are in
the PCCS2 (0.54%). If we further require that the common
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Fig. 26. Comparison of source properties as found by BeeP and in the Galactic Cold Clumps catalogues, for the cross-matched subset described
in Sect. 7.2. Left: T versus β for BeeP, red contours ([68, 95, 99]%), and GCC, blue contours. Middle and right: GCC TEMP_CLUMP and
BETA_CLUMP versus BeeP T and β, with 1σ error bars. The black dashed line shows equality.
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Fig. 27. Left and middle: detection significance level NPSNR versus normalized contrast ∆T (left) and ∆β (middle), defined in Eq. (19), for the set
of sources in common between the BeeP and GCC catalogues (blue points), and for the entire BeeP/base catalogue (grey points). Correlations are
seen for the common subset (shown in blue), but not for the entire BeeP/base catalogue (in grey). Right: ∆T versus (∆β) for the GCC common
sample, with colour showing NPSNR. We see that ∆T and ∆β are highly correlated, and each is also correlated with NPSNR.

sources are of good quality according to GCC estimation
(FLUX_QUALITY = 1), then the common set reduces to 5165
sources, with only 36 in the PCCS2. Of these, 73% (3757
sources) are in BeeP/base, and this is the set that we use for
comparison.

Figure 26 shows a comparison between the BeeP MBB
parameter estimates and their equivalent in GCC. There is good
consistency between the two. Both methods show large uncer-
tainty in T and β, which is not surprising, since we only have four
frequencies and we are fitting a three-parameter model. There
is a small positive bias in the GCC temperatures with respect
to BeeP (+2.8% median, +3.2% mean). A small negative bias
is also seen in the GCC spectral indices with respect to BeeP
(−2.2% median and mean), which is also expected, considering
the negative correlation between T and β.

In order to further assess consistency, we examine the dif-
ference between the two estimates, normalized by the combined
uncertainty:

δγ ≡ γBeeP − γGCC√
σ2
γBeeP
+ σ2

γGCC

, (18)

where γ stands for either T or β. The dispersion of this quan-
tity should be of order unity. Instead, we find that σδT ≈ 0.59

and σδβ ≈ 0.43. However, our simulations already indicated that
BeeP overestimates the error bars for both temperature and spec-
tral index (see Table B.1). The extra deficit is probably the result
of a positive correlation between the estimates of both methods,
which arises from the fact that both use the same data.

We now turn to an assessment of the influence of the source-
to-background temperature contrast on the estimation of signif-
icance, which is of interest because it is this contrast that drives
the selection function of the GCC algorithm CoCoCoDeT (Planck
Collaboration XXVIII 2016). We define

∆ξ ≡ ξsource − ξback

√
σ2

source + σ
2
back

(19)

as the normalized contrast, where σsource and σbackg are the
source and background 1σ errors (assumed to be uncorrelated),
and ξ can be either T or β.

We note that a contrast in the thermal properties of source
and background translates into varying brightness ratios in each
frequency channel. As a consequence, we expect that the MBB
parameter source versus background contrast correlates with
NPSNR via the BeeP likelihood. Indeed, when we limit the com-
parison to the GCC-matched subsample of BeeP/base shown
in blue in the middle and left panels of Fig. 27, a positive
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correlation appears between the contrast significance ∆T and ∆β
(Eq. (19)) and the BeeP NPSNR. In addition, the right panel
shows that the significance of the parameter recovery is posi-
tively correlated with the magnitude of the contrast. However, as
may be seen from the grey points in the left and middle panels,
when the entire BeeP/base catalogue is included, the contrast as
estimated by BeeP shows only a mild correlation with NPSNR.

BeeP therefore recovers the source versus background con-
trast that the CoCoCoDeT algorithm uses to select GCC sources.
However, the BeeP selection function is not limited to cold com-
pact objects immersed in warm backgrounds, and provides a
larger population of cold objects, including many that are not
found in GCC. In fact, the BeeP base catalogue contains 11 145
cold objects (T < 16 K) in the region defined by the Galactic
mask, as compared to 5489 with FLUX_QUALITY = 1 in the
GCC.

7.3. Herschel H-Atlas catalogue (350µm)

We have compared BeeP flux estimates with those in one field
(GAMA15) of the Herschel-ATLAS catalogue (Valiante et al.
2016; Bourne et al. 2016). Because of the large disparity between
the sensitivity and angular resolution of Planck-HFI and Her-
schel-SPIRE, we collated the catalogues by first selecting all H-
ATLAS sources within a radius of 5′ around each Planck loca-
tion. Then, for each Planck source we selected the brightest
H-ATLAS source, which is not always the closest one. The
two sets of flux densities (compared in Fig. 28) are, statisti-
cally, remarkably consistent. It is worth noting that the Herschel
GAMA15 field follows quite closely the BeeP assumptions, in
that the background is homogeneous and slowly-varying, and the
foregrounds are well separated. All BeeP sources have SRCSIG
values above 8.0 and low values of RELTH, except for one pair
that is very close and mutually induces non-Gaussianity. BeeP
errors are plotted as found in the catalogue (see Sect. 6.2.4).

7.4. Background estimates

As described in Sect. 6.3, the goal of the BeeP background anal-
ysis is not to provide an alternative characterization of Planck’s
submillimetre diffuse background thermal properties, but rather
to understand the impact of the background-foreground ther-
mal contrast on the BeeP selection function. Nevertheless, it
is interesting to check the validity of the BeeP background
parameters. For this purpose, we have used the dust temperature
and spectral-index maps from Planck Collaboration Int. XLVIII
(2016), which have been extracted using the GNILC algorithm.
We applied to these maps the procedure described in Sect. 6.3
used to compute the pairs {IT , σIT

} and {Iβ, σIβ }, for direct com-
parison to the equivalent BeeP estimates.

Figure 29 shows a comparison of the MBB background
parameters estimated by BeeP with those based on the GNILC
dust component. The top row shows sources inside the PCCS2E
Galactic mask (where dust emission is dominant). For these
sources there is reasonably good agreement between both esti-
mates. The bottom row shows the GNILC and BeeP background
estimates in the T − β plane for the same set of sources. The
parameters (BeeP in blue and GNILC in red) are in good agree-
ment; however, as the Galactic latitude increases, we start to see
some disagreement (light blue points in the top row). Indeed, in
the low-background PCCS2 region (middle row), the BeeP and
GNILC estimates agree less well. In particular, the higher BeeP
temperatures are significantly higher than the GNILC estimates.
From Sect. 2.3 of Planck Collaboration XI (2014) we know that
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Fig. 28. Flux densities (FREESREF) of BeeP sources compared to
those (F350_BEST) sources in the Herschel H-ATLAS GAMA15 field
catalogue. The brightest H-ATLAS sources within 5′ of the correspond-
ing Planck source are shown in red. The beam-weighted sums of all
sources within the corresponding Planck 857 GHz beam are shown in
blue. Green symbols give a similar comparison between the Herschel
beam-weighted flux-density sum and the PCCS2 APERFLUX flux den-
sity. The BeeP errors are not corrected here (see Sect. 6.2.4).

in order to correctly fit the dust emission, we should first remove
any other emission (CMB or CIB) and set map zero levels cor-
rectly. However, doing this would have biased the analysis of
compact sources (e.g., the CMB is not determined at the loca-
tion of the PCCS2+2E sources), and therefore the maps used as
input to BeeP were not adjusted. This is the cause for the dis-
crepancy with GNILC that we observe at high Galactic latitudes,
where the relative weight of the CMB component, or even resid-
ual CIB anisotropies, is much higher. For this reason, the BeeP
MBB parameter estimates of the background at high Galactic
latitudes should not be taken to be good measures of the phys-
ical properties of dust emission. Their main purpose is to com-
plement the characterization of the compact objects by adding a
physical description of their embedding surroundings. Neverthe-
less, in regions of strong dust emission, the BeeP MBB param-
eter estimates are fairly good representations of T and β of dust
in those regions.

8. Summary and conclusions

BeeP is a Bayesian algorithm that uses an assumed SED profile
to combine observations of a source and its background at mul-
tiple frequencies, with the objective of evaluating the reliability
of the source detection and estimating its physical properties. To
implement BeeP, we developed a fast likelihood code, based on
a simplified version of the data model, which overcomes the dif-
ficulties posed by the high data volume.

By applying the BeeP algorithm to the Planck 2015 maps
at 353, 545, and 857 GHz, and the IRIS map at 3000 GHz, and
assuming a dusty (MBB) SED, we constructed an extension to
the Planck 857 GHz PCCS2 and PCCS2E single-channel cata-
logues, which provides new information on the reliability and
physical properties of the sources in the catalogues. Since multi-
ple frequencies are used, improved detection strength (NPSNR)
is achieved. Our data model permits the construction of a
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Fig. 29. Comparison of background T (left) and β (right) estimates from BeeP and GNILC. The colour of the points indicates the object’s Galactic
latitude, with grey lines being 1σ error bars and the dashed black lines showing equality. Top row: sources inside the PCCS2+2E Galactic mask,
i.e., regions with strong dust emission. Middle row: sources in the PCCS2 set, i.e., high-Galactic-latitude, dust-poor regions. Bottom row: same
sources as the top row (i.e., inside the PCCS2+2E Galactic mask), but this time their T–β distribution. BeeP distribution contours are shown in
blue ([68, 95, 99]%) and GNILC in red.
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statistic to measure the local non-Gaussianity of the background
(RELTH), which was used to correct NPSNR. The new signifi-
cance statistic SRCSIG resulting from this process helps to sep-
arate foreground compact objects from the background, even in
regions of strong and complex backgrounds such as cirrus and
filaments. BeeP also determines a new effective source position
that incorporates information at all frequencies used, which is
not the same as what is provided in PCCS2+2E.

In addition to its determination of source reliability, BeeP
provides a characterization of the thermal properties of each
source and its background. As part of the BeeP output, we
provide a figure for each source that displays the SED curves
associated with the posterior parameter samples. We also pro-
vide the joint posterior distributions of the source MBB model
parameters in “triangle” plots, which give, in each non-diagonal
position, the marginalized bi-dimensional posterior PDF of the
parameter samples defining the row and the column. The diag-
onal locations contain posterior marginalized distributions. The
visualization of the posterior distributions enable a more com-
plete understanding of the uncertainties associated with the
source-parameter estimates. For instance, as expected, there is
a strong correlation between the source MBB spectral index and
its temperature.

For the sake of completeness, and to allow for a better com-
parison with PCCS2+2E data, we also extracted source param-
eters using a data model where the flux density of the source in
each channel is a free independent parameter, the “Free” model.
We also provide the MBB characterization of the background
surrounding each source.

We tested the limits of our simplified data model and likeli-
hood implementation, using an extensive battery of simulations,
ranging from the fiducial, which closely follows the assumptions
of the simplified data model, to the most realistic Planck simu-
lations associated with the Planck 2015 data set, namely the full
focal plane simulations (FFP8). To enhance confidence in the
results, we also resorted to injection simulations, where a repre-
sentative set of compact objects was injected into the real maps,
extracted, and then cross-matched with the input catalogue.
Analysis of the simulations allowed us to identify some data
subsets where the optimality of the algorithm could not be guar-
anteed. We established a criterion of quality (EST_QUALITY),
which can be used to filter out these anomalous sources.

The simulations were used to evaluate the effect of beam
variations and ellipticity (which are not considered in our basic
model) on parameter estimation. In particular, we find an 11%
bias in the estimated flux densities, which we corrected in the
output catalogue. Simulations also allowed us to determine that
the uncertainties estimated by BeeP for flux densities and posi-
tions are unrealistically small for sources with very high values
of NPSNR. We suggest procedures to correct these uncertainties
for the small fraction of sources affected, but we did not apply
them to the output catalogue – they should only be used if the
rigorous statistical characterization of samples including those
sources is required.

Based on our analysis, we define a reliable and accurate
subset of PCCS2+2E (BeeP/base) containing 26 083 sources
(54.1% of PCCS2+2E), of which 21 997 are in PCCS2E
(50.8%). The estimated contamination level of this subset is
between 5% and 10%. This, on its own, significantly improves
the original PCCS2E, which contains no validated indicator
of source reliability. Further imposing a criterion of contam-
ination below 1%, BeeP still ranks 5077 compact objects in
the PCCS2E as “good”. Although the BeeP/base catalogue
should be adequate for most purposes, we provide the rele-

vant information needed by a user of our augmented version of
PCCS2+2E to select a different subsample fitting specific scien-
tific requirements (suggestions for selection criteria can be found
in Sect. 5.6).
BeeP’s selection function overlaps with that of the

CoCoCoDeT extraction method used to generate the Planck Cat-
alogue of Galactic Cold Clumps (GCC). The number of com-
mon objects between BeeP/base and the best quality detections
in GCC (FLUX_QUALITY = 1) contains 3757 sources. We find
good consistency in the thermal source parameters recovered by
the two methods, considering the uncertainties in the estimation.
The BeeP selection function is broader than that of GCC, even
for the same range of temperatures, since the BeeP likelihood is
not limited by the temperature contrast between a cold source
and a warm background. The BeeP catalogue is, therefore, com-
plementary to the GCC. For the GCC-selected sample, the BeeP
parameter NPSNR (strength of the detection) is well-correlated
with the source-to-background contrast.

The BeeP reference flux-density estimates (at 857 GHz) were
also cross-checked against the PCCS2+2E estimates at 857 GHz
and the Herschel GAMMA15-field catalogue at 350 µm. The
match with the Herschel estimates is reasonably good when
we include all sources within the Planck beam. The consis-
tency with the PCCS2+2E flux-density estimates is also good,
with only small biases, of known origin, but with some disper-
sion that is almost entirely the result of the large uncertainty in
the PCCS2+2E aperture-photometry estimates. The BeeP flux-
density uncertainty is significantly smaller (by a factor of 2) than
that of the PCCS2+2E aperture-photometry estimates.

We also compared the BeeP estimates of background param-
eters against those of the GNILC temperature and spectral index
dust maps. In those regions where dust is the dominant com-
ponent, for instance within the PCCS2+2E Galactic masks, the
agreement with the MBB thermal parameters is good. However,
at high Galactic latitudes, where dust is no longer dominant and
the CIB is strong, and, especially for the 353 GHz channel, the
correlation is not as good, and the BeeP parameter estimates are
less reliable.

In conclusion, we provide a new data set that character-
izes the reliability and thermal properties of all sources in the
PCCS2+2E. We expect this to greatly improve the utility of these
catalogues. The results of this analysis will be made publicly
available via the Planck Legacy Archive.
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Appendix A: BeeP

In this appendix we provide a more detailed description of
our algorithm, which we have named Bayesian Estimation and
Extraction Package, and which we refer to as BeeP.

A.1. Characterization method

The Bayesian system of inference is an extension of deductive
logic ({0 = false, 1= true} to a broader class of “degrees-of-
belief” that consistently maps them into the real interval [0, 1]
(Jaynes 2004, Chaps. 1 and 2). It associates those degrees-of-
belief with conditional probabilities. So, if we represent the
quantities we are interest in, like source position, flux, SED etc.,
by parameter vectorΘ, the relevant question we can ask is: what
is the joint probability distribution of our parameter vector Θ,
given our data d and model assumptions H:

Pr(Θ|d,H). (A.1)

It is possible to relate the quantity we are interested in with oth-
ers that can be computed with the help of Bayes theorem:

Pr(Θ|d,H) =
Pr(d|Θ,H) Pr(Θ|H)

Pr(d|H)
, (A.2)

where Pr(Θ|d,H) is the “posterior probability” distribution of
Θ, Pr(d|Θ,H) ≡ L(Θ) is the likelihood, Pr(Θ|H) ≡ π(Θ) is the
probability distribution of the variables of interest before consid-
ering the data, or the “prior” and Pr(d|H) is the Bayesian “evi-
dence”, which, in this case, does not depend on any variable.
Therefore, the evidence will only act as a normalizing constant
and will be ignored. So, our main inference equation will read,

Pr(Θ|d,H) ∝ L(Θ) π(Θ). (A.3)

Once we have defined the likelihood and the prior func-
tions, the parameter manifold Θ is sampled using a Markov-
chain Monte Carlo (MCMC) algorithm (Robert & Casella 2010).
Choosing the right MCMC algorithm is still very much a matter
of trial and error, since an optimal choice depends very much
on the parameters manifold topology. In our case we expect a
very heterogeneous manifold. Variables like temperature (T ) and
spectral index (β) are highly correlated and generate deep curved
likelihood valleys, particularly for high signal-to-noise (S/N)
ratio sources. The source flux density (S ) and extension/radius
(r) variables are expected to be correlated as well; however, the
correlation is mostly linear and not very narrow. Additionally,
the position vector variables (X,Y) are completely uncorrelated
with all others. After reviewing several candidate algorithms,
we chose MCMC Hammer22. which is currently popular in astro-
physics and well adapted to sample from a likelihood manifold
like ours. However, we did not use the available python code
version because it did not show the required performance. A
completely new sampler code was written in C++, based on the
same algorithm (Goodman & Weare 2010). When running this
code we chose to set all prior distributions to be uniform within
a defined range23.

22 Foreman-Mackey et al. (2013)
23 Given that we are only estimating the parameter posterior distribu-
tions, there is no need to define a precise and well-motivated range
for the uniform distributions. We just need to make sure they are wide
enough to not truncate a significant fraction of the likelihood volume
for the physically possible parameter ranges (see Appendix A.1.3).

A.1.1. Likelihood

In Sect. 3.3, we have described how we build a model for each
of the sources independently, s j(Θ j), which we combine with
a model for the background, b j(x), and the noise, nj(x), in the
neighbourhood of the source. Following the same principles, but
extending to the full data set, the data model would now read:

d(x) =
Ns∑

j=1

s j(x;Θ j) + b(x) + n(x). (A.4)

where for convenience we concatenated the individual back-
ground and noise quantities into the full sky b(x) and n(x) quan-
tities. Given the assumptions described in Sect. 3.1 the likelihood
representing all compact objects in the map is

L(Θ) =
exp

{
− 1

2

[
d − b̂ − s(Θ)

]t
N−1

[
d − b̂ − s(Θ)

]}

(2π)Npix/2 |N|1/2
, (A.5)

where d is the data (pixels), b̂ is the generalized background
(b + n) and N is the generalized background covariance matrix.
For compactness, we merged all individual source parameters
(Θ j) into Θ. N is a huge matrix Npix × Npix, where Npix ∼
50 000 000. Any brute force attempt to evaluate the likelihood
will undoubtedly be frustrated by the sheer magnitude of the
problem. This is where we take advantage of the homogeneity
condition. Since N is the covariance matrix of a homogeneous
Gaussian random field, by definition it is “circulant”. Therefore,
when represented in Fourier space it becomes diagonal. Perform-
ing this transformation, the full-sky source signal (Eq. (A.4)) in
Fourier space reads,

s̃(η;Θ) = B̃(η)
Ns∑

j=1

A j f (φ j) τ̃ (−η; a j)e
i2πη·X j , (A.6)

where the vector B̃(η) contains the Fourier transform of the beam
at each frequency24, f (φ j) contains the Fourier transform of the
emission coefficients at each frequency, and τ̃(η; a) is the Fourier
transform of the template for an unconvolved object at the origin,
characterized by the shape parameters a.

We now consider the likelihood of the “no-source” model
L0, i.e., when A, the source amplitude is equal to 0. L0 is a con-
stant, since it does not contain any parameter. By taking the log-
arithm of the L(Θ)/L0 ratio, we reach a likelihood expression
that reads

ln [L(Θ)L0]

=

Ns∑

j


A jF −1

[
P j(η)̃τ(−η; a j)

]
X j

− 1
2 A2

j

∑

η

Q j j(η)|̃τ(η; a j)|2


−
Ns∑

i> j

{
AiA jF −1

[
Qi j(η)̃τ(η; ai )̃τ(−η; a j)

]
Xi−X j

}
, (A.7)

where F −1[. . .]x denotes the inverse Fourier transform of the
quantity in brackets, evaluated at the point x. We have also
defined the following quantities:

– Point source response (or beam shape, i.e., how the data
responds to the presence of a point source),
(ψi)ν = B̃ν(η)( f i)ν, with ν labelling frequency channels;

24 The beam transfer function is also convolved with the pixel win-
dow function at each frequency. In this particular case the pixel window
function does not change across maps.
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– Information source (on the point sources),

P j(η) ≡ d̃
T
(η)N−1(η)ψ(η);

– Point-source flux precision matrix

Qi j(η) ≡ ψ̃T

i (η)N−1(η)ψ j(η),
where N is the covariance matrix represented in Fourier space.

Let us take a closer look at the second term of Eq. (A.7), the
“cross-term”, where multiple sources interact. To help clarify the
physical meaning of this expression let us write it for the “pure”
point source, τ(x, a) = δ(x):
∑

i> j

AiA jF −1[Qi j(η)]Xi−X j
. (A.8)

For simple, uncorrelated backgrounds,Qi j(η) contains just linear
combinations of the instrument beams at each frequency chan-
nel. The condition for this expression to become small, when
compared with the rest of the likelihood, is the common assump-
tion in astronomy that beam blending effects are negligible. If the
sources are well separated such that |Xi − X j| is large enough for
the multi-channel equivalent beam to have died out, then the con-
tribution of Eq. (A.8) to the likelihood may be safely dropped25.
So, assuming

Ns∑

i> j

{
AiA jF −1

[
Qi j(η) τ̃(η; ai) τ̃(−η; a j)

]
Xi−X j

}
≈ 0, (A.9)

is nothing more than a generalization of the common assump-
tion that objects are well separated so that we can ignore object
blending effects caused by the beam26. We are left with the like-
lihood expression, which we sample from

ln [L(Θ)/L0] =

Ns∑

j


A jF −1

[
P j(η)̃τ(−η; a j)

]
X j

− 1
2 A2

j

∑

η

Q j j(η)|̃τ(η; a j)|2

.

(A.10)

Equation (A.10) is extremely convenient from a computational
point of view. The likelihood ratio, when neglecting the blend-
ing effects, becomes the sum of the individual contributions from
each source. This allows one to use a very convenient “one
source at a time” approach.

If Θ̂ j is the set of parameter values that maximizes the like-
lihood ratio (Eq. (A.10)) for source j then

ln


L(Θ̂ j)

L0

 = 1
2

∑

η

Q̂ j j(η)|̃τ(η; â j)|2Â2
j =

1
2
̂NPSNR

2
j , (A.11)

where we have defined the quantity R as the Neyman–Pearson
S/N ratio, (corresponding to NPSNR in the catalogue). This
variable is a function of the likelihood ratio, hence “Neyman–
Pearson”, but since
∑

η

Q̂ j j(η)|̃τ(η; â j)|2 =
1
σ2
, (A.12)

whereσ2 is the variance of the likelihood-ratio background field,
it is also a signal-to-noise ratio, or the detection significance

25 When the background is uncorrelated, this condition is immediately
fulfilled if each pixel contains signal coming from one and only one
source. However, this might not be sufficient when there are strong cor-
relations in the background as in the case for Planck data.
26 Given Planck’s sensitivity, the surface density of sources is such that
this condition holds well, except for in the Galactic plane.

level (i.e., “how many sigma” this detection is). As we noted
in Sect. 6.2.4, if all our assumptions hold and all source param-
eters were known except the amplitude (A), then NPSNR would
indeed be the inverse of the fractional error on amplitude A/∆A.

A.1.2. Source-detection significance evaluation: dealing with
the deviations from the data model

Although much of this has already been described in Sect. 3.3,
we repeat a brief discussion of the evaluation of source signifi-
cance here, in order to preserve the continuity of Appendix A.

There are two main data features that break the assumptions
in our data model:

– background non-Gaussianity;
– localized structures.

It is well known that diffuse emission from dust, the main back-
ground component, is highly non-Gaussian. One may argue
that because we are combining data from several channels, that
increases the data volume and because of the central limit the-
orem the statistics should converge to Gaussian. Unfortunately,
this is only true close to the mode of the distribution. But detec-
tion is all about the positive tail of the background distribu-
tion (see e.g., Fig. 3), and in this case the non-Gaussianity only
decreases very slowly when more data are added (Bouchaud &
Potters 2004, Chap. 2). However, an even larger problem comes
from localized structures such as cirrus27. The likelihood (L(Θ̂))
of a cirrus cloud being confused for a source is small, given that
cirrus is rather poorly described as a compact source. On the
other hand, the likelihood of cirrus being a homogeneous Gaus-
sian random field L0 is also very small, since by definition these
structures do not behave as a homogeneous random field. So, by
looking at Eq. (A.11), one can see that the source significance
indicator

NPSNR ∝
√

ln
(
L(Θ̂)/L0

)
,

might indeed create a strong positive tail event when a cirrus
structure is present, even in the absence of a genuine source, and
this might be taken (erroneously) to be an object of interest. It
can be shown that, if all our assumptions hold, under the “null”
hypothesis of our model (i.e., “only background is present”) the
following field is a white-noise unitary (σ = 1) Gaussian random
field in pixel space (X):

F −1
[
P̂(η)̃τ(−η; â)

]
X√∑

η Q̂(η)|̃τ(η; â)|2
· (A.13)

Then if we added a point source to the centre of this perfect back-
ground we would introduce significant outliers in the positive tail
of the distribution. Let us now assume that the positive outlier
pixels created by the source are no more than a small fraction of
the total number of pixels (α). Then using the quantile definition
one would expect that

∫ RELTH

−∞

exp
[
− 1

2

(
x
σ

)2
]

√
2πσ

dx = 1 − α, (A.14)

where RELTH (reliability threshold) is the 1 − α distribution
quantile. RELTH can be read from the actual field histogram and

27 Cirrus is not the only type of localized feature. Extended sources that
were identified as compact objects in the PCCS2, but where the actual
positions were off the centre, also appear like localized artefacts.
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then Eq. (A.14) solved for σ. If the remaining 1−α pixels follow
a unitary Gaussian distribution then σ = 1. However because of
the enlarged distribution tails induced by the localized features
and the background non-Gaussianity, σ is expected to be larger.
Using simulations, we have verified that the number of outlier
pixels created by the source is less than 5% of the total, so we
use α = 5%.

Solving Eq. (A.14), σ is equal to

σ = k RELTH, (A.15)

where k is a pure numerical constant given by

k =
1

√
2 erfc−1(2α)

, (A.16)

where erfc−1 is the inverse complementary error function. We
finally define the “source significance” estimator as

SRCSIG =
1
k

NPSNR

RELTH
, (A.17)

where k is a pure numerical constant given by Eq. (A.16). This
value is the same for all sources. If the histogram of the field
given in Eq. (A.13) is Gaussian, then

√
2 erfc−1(2α) = RELTH

by definition and SRCSIG = NPSNR. If our assumptions hold
then, as predicted, NPSNR is the detection significance. How-
ever when there is non-Gaussianity in the background, either
from diffuse components or localized features, then RELTH
increases and a penalty is applied to the Gaussian criterion. This
criterion becomes relaxed for high galactic latitudes away from
cirrus where the homogeneity and Gaussian assumptions hold
well, while in the neighbourhood of the Galactic plane or inside
cirrus structures it becomes mores stringent to avoid false posi-
tives induced by the non-Gaussianity of the background28.

A.1.3. Priors

We have tried to choose “non-informative” priors, construct-
ing them such that the “maximum a posteriori” (MAP) esti-
mator of any quantity depends exclusively on the current data
set. One way of expressing this condition is that, when chang-
ing the data, the likelihood shape remains unchanged and only
its location in the parameter space changes (Box & Tiao 1992,
Chap. 1). Source position and amplitude are “location” parame-
ters, at least within small ranges around the likelihood maxima.
So all associated priors will be taken as uniform. The same can-
not be said about the source extension parameter EXT (see def-
inition in Sect. 6.2.2), which is a “hybrid” parameter that shifts
and scales the likelihood (Carvalho et al. 2012). To improve the
accuracy of the estimates, we use a “trick” (see Appendix A.2.3)
that makes the objects always appear as if they were slightly
extended. The prior on EXT should behave as π(EXT−2), and this
function varies slowly for values of EXT away from 0. Since we
target compact sources (i.e. close to beam-sized), we are able
to select a narrow range (between 0.46 and 2.6 pixels), which
allows us to replace the functional prior with a uniform one. This
trick simplifies the problem without biasing the estimate of the
value that maximizes the likelihood (ÊXT).

Regarding the source brightness parameters (flux and spec-
tral index), Eriksen et al. (2008) claim that using uniform priors
instead of the Jeffreys non-informative priors creates a strong

28 See Appendices A.2.3 and B.1 for the practicalities of applying
Eq. (A.17).

bias on the spectral index estimate. However, we have carried
out an extensive battery of simulations to test this claim, and
failed to find such a bias. Therefore, for simplicity we have kept
the uniform prior distribution. It is important to keep the range of
priors large enough to properly explore and characterize uncer-
tainties. The ranges we selected bracket widely physically moti-
vated values { β ∈ [0, 7]; T ∈ [3, 150] K }29. We note, however,
that the resulting range of values (see Fig. 16) is consistent with
physically reasonable values and that the error bars do extend to
much wider ranges.

A.1.4. Covariance matrix estimation: cross-correlation factor

The background cross-power spectrum matrix N is a critical part
of the likelihood and our data model assumes we know its true
value30. However, as it is not known a priori, an estimate must
be computed. There are at least two completely different ways of
tackling this problem. One way is by using theoretical models for
each of the background components (for diffuse dust emission
models see Planck Collaboration Int. XLVIII 2016 and Schäfer
et al. 2006 for their application to the estimation of background
cross-covariance). However powerful, this technique assumes
full-sky statistical isotropy. A quick look at Planck maps imme-
diately shows that these conditions are severely broken and
hence the models are a sub-optimal approximation to real data.

A different approach (and the one we take) is to split the
sky into small fields, where the isotropy conditions apply fairly
well, and estimate the cross-power spectrum directly from the
data. This method is not without its problems. For instance the
data is one single realisation of the random process and not the
ensemble average. In order to improve the estimation quality of
the background covariance, we have developed a method based
on the work of Bouchaud & Potters (2004, see Chap. 9) for time
series. Expressing the problem in Fourier space allows us to treat
each pixel of the same channel, or Fourier spatial mode, inde-
pendently. However, each Fourier mode in channel k ((ηi, ζ j)k) is
correlated with the same Fourier mode in channel l ((ηi, ζ j)l). So,
assuming that each spatial Fourier mode (ηi, ζ j) is one datum,
and that we have N channels (Nch), the covariance estimation
quality factor for one single Fourier mode is given by

Q ≡ Nrel/Nch, (A.18)

where Nrel is the number of realisations of that particular Fourier
mode. However, since for each patch we have one single realisa-
tion of the background Nrel = 1 ⇒ Q = 1/4, an extremely low
value. So, a simple estimate will be nothing but noise, as intu-
ition would have told us. Assuming the process is ergodic and
the field is homogeneous, it is possible to replace the ensemble
average by a spatial average. So, we enlarge the patch to 16 times
its initial area around the targeted source, (see the “field” defini-
tion in Appendix A.2.2 and Fig. A.3 for more details) and we
average each background Fourier mode (ηi, ζ j)k over the same
mode in different sub-regions (see “patch”). Since we now have
16 realisations of each individual Fourier mode, we have boosted
Q to approximately 431. This is already a reasonable estimation
quality factor. However, the covariance matrix only enters the
likelihood via its inverse. Even a small error in the estimation

29 We allow β to go down to 0, to accommodate for flat spectra syn-
chrotron sources.
30 N is a set of 4 × 4 matrices, one for each pixel.
31 It would have been exactly 4 if the “field” were perfectly homoge-
neous.
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might render the inversion unstable. We have therefore decom-
posed the covariance matrix into two components:


σ2
353 0 0 0
0 σ2

545 0 0
0 0 σ2

857 0
0 0 0 σ2

IRIS



+ φ



0 kl353−545 kl353−857 kl353−IRIS
. 0 kl545−857 kl545−IRIS
. . 0 kl857−IRIS
. . . 0


, (A.19)

where the matrix on the left is the “independent” component,
the matrix on the right is the “systemic” component and φ is the
“cross-correlation factor” (φ ∈ [0, 1]). The independent compo-
nent would be the covariance matrix if we neglected all cross-
correlations between the same spatial Fourier mode in different
channels. The systemic component is obtained as:

N∑

i=1

γ jV jV
T
j , (A.20)

where γ j and V j are the eigenvalues and eigenvectors of the
Karhunen–Loève decomposition of the Fourier mode (ηi, ζ j)
covariance matrix. Firstly, we start by sorting the KL eigen-
modes in decreasing order of the respective eigenvalue. Then we
include up to N (∈ [1, 4]) eigenmodes in the sum of Eq. (A.20).
N, the cut-off, is given by the theory of random covariance matri-
ces (Bouchaud & Potters 2004, Chap. 9). After forming the sys-
temic matrix using Eq. (A.20), we set the diagonal terms to 0.

Let us now inspect the two extreme cases of the cross-
correlation factor:

– φ = 0,
the covariance becomes reduced to the independent only,
which is equivalent to ignoring all cross-channel correla-
tions;

– φ = 1,
we are including the cross-correlation between channels to
its full extent only neglecting the modes that are severely
contaminated by noise.

The behaviour of the background covariance-matrix estimator
may be fine tuned using φ. A low value of φ improves the quality
factor of the estimation at the cost of ignoring a portion of the
signal, namely the inter-channel cross-correlation. A high value
indicates inclusion of complete data information at the cost of
lower estimation quality. As we shall see in Appendix B.2, the
“cross-correlation factor” (φ) has proved to be important in the
extraction of an unbiased {β,T } set.

A.1.5. Incomplete modelling of the data: systematics

The determination of the covariance matrix of the cross-power
spectra is an approximation, and any potential mis-estimation
is not being propagated into the source parameter errors. How-
ever, we know that the dynamic range of source flux density and
source-detection S/N is enormous, ranging from close to zero to
the thousands. For most of the catalogue sources, the effect of
the covariance-matrix estimation error is masked by the intrinsic
uncertainty on the source parameters. However, for the most sig-
nificant sources the covariance-matrix estimation error is likely
to be the dominant effect, and for these we are missing a critical
component of the uncertainty in the source parameters.

The rigorous and complete way of modelling the problem
would be to include the uncertainty of the covariance-matrix

coefficients as sampling variables in our problem and consider
the joint likelihood. The inverse covariance-matrix coefficients32

are distributed according to a Wishart distribution (Box & Tiao
1992, Chap. 8). In principle we could add this contribution to the
source parameters and sample from the joint likelihood. How-
ever, we are dealing with seven or eight source parameters, and
adding the inverse covariance likelihood would increase that
number to more than 10 000. Sampling from tens of thousands
of parameters would slow down the code to the point where it
would no longer be possible to tackle a catalogue with more
than 40 000 sources. Therefore we do not implement such a
scheme. As a consequence, as we go up in source significance,
some of the estimated parameter uncertainties will keep artifi-
cially decreasing, whereas in reality they should saturate at some
minimum level. This effect particularly concerns the estimates
of source location and flux density. In Appendix B we describe
a wide range of simulations on which we have tested the limits
of our approximation on several parameters, and suggest ways
to correct this shortcoming.

A.2. Algorithm implementation

As described earlier, the maps that we use as inputs are Planck
2015 data at 353, 545, and 857 GHz, plus IRIS data at 3000 GHz.
Here we describe some details of how we treat these data.

A.2.1. Masks and map sets

BeeP creates two types of masks, which are applied to the input
maps to generate two types of map sets:

– IRIS
The “IRIS” mask (see Fig. A.1) flags the regions on the
IRIS map where there is incomplete data either because
those regions were not observed or they contain compact
sets of “ill-conditioned” pixels. The total area of this mask
is about 3.3% of the full sky. There are 650 PCCS2+2E
sources (1.4%) that are located within the IRIS mask. It is
very difficult to constrain the emission temperatures using
Planck data only; therefore objects positioned inside the
IRIS mask are flagged in the catalogue as being of lower
quality (see Table 1). The IRIS mask is applied to the input
maps to provide a set of foreground maps (see Fig. A.2).
All likelihood elements (except the background covariance)
will be estimated using this data set. All injection, and
non-injection, simulations only employ the foreground maps
data set.

– Background
The sole purpose of the “background” mask (see Fig. A.1)
is to help in the removal of compact objects in order to cre-
ate a set of “background” only maps. To construct this mask,
firstly we merge all sources contained in the 353–857 GHz
PCCS2+2E catalogues. We assume that this set of catalogues
provides an almost complete sample at the sensitivities we
are aiming for33. Then for every source in the merged cat-
alogue we mask all the pixels inside a circle of 7′ radius.
The 7′ radius was chosen to provide a good balance between
an effective source brightness removal and, especially at low
Galactic latitudes where the density of sources is very high,

32 It is the inverse covariance that is part of our likelihood.
33 The small excess of objects that are not part of these catalogues will
then add to the background fluctuation levels and to its non-Gaussianity.
This would only make our acceptance statistic even more conservative.
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Fig. A.1. Masks used in our analysis. Upper panel: IRIS mask. The blue
regions were not observed by IRAS or contain compact sets of “bad”
pixels (3.3% of the sky). Lower panel: background mask. The masked
regions were later inpainted by diffusing the hole boundary pixels into
the interior.

to preserve the statistical properties of the background (see
Fig. A.2). The total background area masked are is 4.3%.
The background mask is applied to the input maps to pro-
vide a set of background maps (see Fig. A.2). The masked
regions are then inpainted34. The main purpose of this set of
maps is the evaluation of the background covariance matrix
(cross-power spectrum).

A.2.2. Projection into flat fields

For each source in the PCCS2+2E, a flat area of size 3◦.69×3◦.69,
(129 × 129) pixels, centred on the source position and obtained
using a gnomonic projection, is cut from each Planck (353–
857 GHz) and IRIS map. We repeat the procedure for the back-
ground map set and the IRIS mask (see Fig. A.3). We call
these projected square maps “fields”. Each individual pixel in
each field is uniformly over-sampled by a factor of 25 to min-
imize resampling artefacts that could result from the overlap
between the map and field grids35. Each sample is computed by
bi-linearly interpolating the map pixels. The combination of the
oversampling and the interpolation operations also smooths the
map brightness. That effect is accounted for by adding a pixel-
window correction to the effective beams.

The field is then divided into 49 (7×7) overlapping “patches”
of 33× 33 pixels, as shown in Fig. A.336. The cross-power spec-

34 BeeP reports the percentage of pixels that were changed by the
inpainting routine in a field labelled INPIX.
35 This is equivalent to a field/patch pixel grid with a resolution 25 times
greater than that of Planck HFI, which was later downgraded back to
Planck’s original map resolution.
36 This procedure is a simple 2-d extension of the quite common equiv-
alent method in time series. If a time series is ergodic and stationary, the
ensemble average may be replaced by a time/space average.

Fig. A.2. Masking and inpainting effects. Each of the top panels shows a
small (3◦.4×5◦.8) high Galactic latitude patch cut from Planck’s 857 GHz
map. The brightness-colour mapping is the same for both panels. The
left panel is from the foreground map and the right from the back-
ground. For this low spatial density field, the “mask+inpaint” method
recovers the background brightness map very accurately. The two lower
panels, with foreground above and background below, show a very
bright low Galactic latitude region (4◦.8×2◦.5). In this region of high spa-
tial density of sources the “mask+inpaint” process is much less accurate
and some degradation of the background can be seen.

trum is computed in each of the patches and then averaged over
all patches in a given field (see Appendix A.1.4). The IRIS mask
is used to down-weight individual cross-spectrum Fourier modes
according to the number of pixels removed by the mask. Since
there is overlap between patches, the quality ratio improvement
(Eq. (A.18)) is limited to about a fctor of 16. Finally, the likeli-
hood/posterior is computed only using the central patch (Fig. A.3
in red), which is centred on the PCCS2+2E target object’s origi-
nal position (in yellow).

A.2.3. Running the likelihood

For our likelihood runs we have set the “cross-correlation factor”
(see Appendix A.1.4) φ to 10%. This value was selected using
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Fig. A.3. Schematic (not drawn to scale) showing parts of a flat “field”
(129 × 129 pixels). The covariance matrix is computed at each of the
large squares, or “patches” (33×33 pixels), from the “background” map,
and then averaged over them. There are 49 overlapping patches (7×7) in
each field. These are laid out as shown in the figure. The full likelihood
is only evaluated at the interior of the central patch (in red with the
PCCS2+2E position at its centre, in yellow). The RELTH statistic is
then estimated using the pixels of the red region, leaving a border of
four pixels. The field/patch Y and X directions, at the centre of the field,
match the Galactic coordinate lines of constant latitude and longitude,
respectively. Each individual pixel (not drawn) is ≈ 1′.72 × 1′.72.

simulations (see Appendix B.2) to minimize the bias between
the object’s injected and recovered parameters. The distribution
of the thermal parameters (T, β) is particularly sensitive to the
value of φ. A high φ value (>50%) generates significant positive
bias in β and negative bias in T , while a low value (<10%) has
the opposite effect. The value we have selected (10%) leads to
the lowest global bias in the main recovered source parameters,
β,T , and flux density (see Appendix A.1.4).

We further assume that the Planck and IRIS background
maps are uncorrelated, because the introduction of IRIS results
in instabilities in the estimation of the covariance matrix, partic-
ularly in regions with a very bright background or with visible
artefacts in IRIS.

Having fixed the cross-correlation parameters, we can pro-
ceed to run BeeP’s likelihood. We first try to find the posterior
maximum inside a square of at most 7 × 7 pixels centred on the
original PCCS2+2E position37. It is often the case that the max-
imum of the posterior does not match the central patch pixel or
that we cannot even find a maximum (see e.g., Fig. 2). If there
is more than one likelihood maximum inside the search region,
we always prefer the one closest to the original PCCS2+2E

37 As described in Sect. 3.1, we allow the optimal source location to
vary from the original PCCS2+2E location by up to 3 pixels. How-
ever, some source positions may end up at a distance of slightly more
than 3 pixels – this happens because when the maximum reaches the 3
pixel boundary, we allow the sampler to explore the region around the
boundary.

Table A.1. Relation between the instrument beam FWHM and those
used in BeeP’s likelihood.

Channel Instrument FWHM Likelihood FWHM

3000 GHz . . . . . . 4′.3 1′.72
857 GHz . . . . . . 4′.64 2′.44
545 GHz . . . . . . 4′.83 2′.79
353 GHz . . . . . . 4′.94 2′.98

coordinates. It is useful to note that if a posterior maximum is not
found, there is no guarantee that the derived parameter estimates
follow the statistical properties predicted in Sect. 6. Whether a
maximum is found or not is reported in the catalogue field MAX-
FOUND.

The source extension parameter (EXT) poses further difficul-
ties to an unbiased recovery of the object parameters (in this case
its size). In the current implementation of BeeP, we have fixed
the beam size at each frequency to an average value for the entire
catalogue. According to this data model, the narrowest feature
in the maps must at least have the width of the beam at that
channel. However, in the real maps narrower compact objects
may be present38. These cases create regions of the likelihood
manifold with a high concentration of probability (they contain
the likelihood peak) that cannot be explored because our source
model does not consider “negative” radii. As a result, strong
deviations in the recovered parameters for these sources can be
expected. To tackle this problem we take advantage of degen-
eracy between the source and the beam size: a pixel brightness
pattern can be the result of a narrow source and a large beam
or of the reverse situation. Our solution consists of implement-
ing simulated beams that are narrower than the average of the
real beam, i.e., their FWHM is selected such that a source with
an estimated size of EXT = 0.975 pixel (≈1′.72) will result in
an object on the map that has the same extension as the average
(real) beam (see Table A.1). This trick is actually quite impor-
tant for recovering a flux-density-unbiased sample: as we can
see in Fig. 8, there is a positive correlation between the source
extension EXT and the flux density SREF, which implies that a
bias in the estimate of EXT will propagate into SREF. Narrow-
ing the beam artificially removes most of this bias. However, in
those regions where a feature in the map is narrower than the
beam size, the “source size” recovered by BeeP (EXT . 1′.72)
is poorly determined, since it is degenerate with the beam width.
In the BeeP catalogue, we report both EXT and a more realistic
source size under the field label R39.

Once BeeP has found the parameters that maximize the like-
lihood, the field described in Eq. (A.13) is generated and the
RELTH quantile is evaluated over the red area in Fig. A.3. We
leave a 4 pixel-wide border to avoid fake likelihood maxima
resulting from edge effects40, which would artificially increase
the background non-Gaussianity.

38 This might happen because in some regions of the sky the real beam
size is narrower than the average value, or because background or noise
fluctuations may cause a beam-sized object in the map to be artificially
narrowed.
39 For all cases where EXT< 1′.72, we set R= 0.0.
40 “Edge” effects are the result, in the Fourier transform, of the dis-
continuities at the borders of the patch in which we are computing
the likelihood. The Fourier transform requires that the data must be
periodic.
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Fig. A.4. Multi-parameter fits for a particu-
lar source. This fragment of a “corner” plot
(see Fig. 8) shows the multi-modal charac-
ter of some of the posterior distributions.

As described in Sect. 6.2.1, we implement two different
“SED models”, and each of these requires a separate run of
BeeP. For the secondary method (which does not impose an
SED correlating frequencies), we assume that the backgrounds
are independent and set the “cross-correlation factor” to 0. We
use BeeP to estimate the flux density and its uncertainty in each
channel independently. Then we fit an MBB curve to the indi-
vidual channel flux densities using a Gaussian likelihood with
variances estimated in the previous step.

A.2.4. Sampling the posterior: multi-modality

Unfortunately, owing to the very complex backgrounds, espe-
cially close to localized features like the cirrus, some posterior
distributions are multi-modal (see Fig. A.4) Although there are
specialized samplers that can handle multi-modal distributions
like (that described in Feroz & Hobson 2008), they are far too
slow for this problem. It is recommended by the authors of MCMC
Hammer that the efficiency of the sampler can be increased by
starting it in the neighbourhood of the posterior mode. We have
opted for running the likelihood maximizer multiple (10) times,
with initial points scattered across the prior volume, and then
split the initial samples (“walkers”) across the different max-
ima. Using this strategy we have almost completely removed
the chance of the sampler systematically missing significant
parts of the likelihood manifold41. However there are still a few
cases where this solution is not effective. Some of the outliers
(see Eq. (15)), in particular those with a tiny extension (smaller
than the beam) or vanishingly small error bars, are the result

41 In the first runs of the algorithm, we were finding, in the T–β plane,
an unexpected high Galactic latitude source population around 20 K.
This “anomalous” population simply vanished when we adapted the
code to account for multi-modal likelihoods. At the same time we also
saw an increase in the parameters uncertainty, which supports the fact
that we are now exploring a wider likelihood manifold.

of the MCMC chains being attracted to strong and very nar-
row maxima. After being caught inside these narrow local max-
ima, the chains are not able to explore the entirety of likelihood
manifold, and cannot properly account for the correct param-
eter uncertainty, or find the global maximum. Another prob-
lem is the “chain correlation length” and dependence on the
sampler “initial conditions”. The first problem can be solved
by periodically throwing away samples. However, one of the
reason why we have chosen MCMC Hammer is its small corre-
lation length. We always monitor the correlation length of the
chain and when it is higher than the required level we reset
the sampler and restart all chains again. The samples accep-
tance rate always remains very close to the optimal range of
20–50% (Goodman & Weare 2010), except for very rare occa-
sions when it could be as low as 6%, but never higher than
62%42. The sample acceptance rate is reported in the ACCEPT
field of the output catalogue. Perhaps surprisingly, after the first
runs of the sampler (with very simple examples), we realised
that the quality of the generated samples was very dependent
on the sampler initial state. To overcome this difficulty we mas-
sively increased the “burn in” phase and the problem was solved.
We are currently using 5000 “walkers”, 98 “burn in” iterations
and we only keep the two final ones, generating 10 000 posterior
samples.

A.2.5. Colour correction

One important advantage of using a multi-channel estimation
algorithm is that the effect of the detector finite band-passes (or
“colour-correction”), can be included in the estimation chain.
Although the colour correction is a relatively small adjustment43,

42 Only 151 BeeP/base catalogue sources (0.6%) have acceptance
rates below 20%.
43 Colour-correction coefficients are of the order a few percent (<∼10%).
For extreme values of T (>∼30 K) and β (>∼3.0) they can reach values in
excess of >∼20%, but only for the 353 and 545 GHz channels.
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it can introduce a bias in the MBB T–β estimates if not properly
accounted for. We created a 2-d colour-correction matrix with
one axis assigned to “β” and the other “T” based on the code
described in Planck Collaboration IX (2014) for each Planck
channel at 353–857 GHz, as well as IRIS. The actual correction
coefficient is then obtained using bilinear interpolation.

Appendix B: Simulation-based tests

In this appendix we describe the different simulations used in
this paper.

B.1. Synthetic background

This type of simulation tries to recreate a data set that follows
our data assumptions as closely as possible. It is meant to verify
the algorithm and code correctness under ideal circumstances.
The outcome serves as a yardstick to assess the robustness of the
code/algorithm as we move to more realistic cases where some
of these assumptions need to be relaxed.

The diffuse background in these simulations is intended to
be as close to a homogeneous Gaussian random process as pos-
sible, but with realistic Planck levels and characteristics. The
simulations were generated from one Planck 2015 CMB simula-
tion and four different noise realizations, taken from the Planck
Legacy Archive. The CMB+noise maps were scaled in ampli-
tude to match the median level found in each of the four real
maps (Planck 2015 345, 545, 857 GHz, and IRIS 3000 GHz).
This process ensured that the maps have signal amplitudes simi-
lar to those found in the real maps, but their statistical properties
are Gaussian. Then we cut the spherical maps into many small
patches and we injected a source directly into the centre of each
patch. All injected sources were simulated to be equally shaped,
following a bi-dimensional symmetrical Gaussian profile with
constant and very small radius, and then convolved with the PSF
at each frequency, which was assumed to be constant and equal
to Planck’s average effective beam. The sources were rendered
in very high resolution and projected directly into the patch pix-
els. The source SEDs were derived from an MBB law with three
free parameters: T , temperature; β, spectral index; and S 857, flux
density at 857 GHz. The values for the source SED parameters
were then randomly drawn from a preliminary catalogue that had
been extracted with BeeP from the real maps. That precursor
catalogue was cross-matched with the PCCS2+2E and the GCC.
The parameter estimates showed a high degree of consistency
with both catalogues and were thereafter assumed as representa-
tive of the actual sky distribution. The goal of this type of simu-
lation is to closely replicate the assumptions of our data model,
and therefore constitute our “fiducial case”.

In Fig. B.1 we make a comparison between the reference
flux density of the injected sources with those we retrieved
using BeeP. Owing to the huge dynamic range of the values
(five orders of magnitude), computing the distribution of the
fractional difference gives a better understanding of their con-
sistency than just the difference. As explained in Sect. 6.2.4,
instead of plotting the fractional difference formula directly
((out − in)/in), we replace it with ln(out/in). Figure B.1 depicts
two flux retrieval cases, with two different patch sizes, to gauge
its impact on the recovery precision (see Fig. A.1.5). The top
panel shows the comparison when the “fields” cut from the
homogeneous background sphere were 513 × 513 pixels and
the “patches” (core region where the likelihood is evaluated)
129 × 129 pixels. The middle panel of Fig. B.1 shows exactly
the same thing, but the dimensions of the fields were this time
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Fig. B.1. Comparison of input and output flux densities. Upper
and middle panels: ln(S out/S in) versus NPSNR distribution contours
([68, 95, 99]%). In the upper panel the field and patch are 513 × 513
and 129 × 129 pixels, respectively, and in the middle 129 × 129 and
33 × 33. For both cases a source was directly injected in the central
pixel of the patch, but always with a small random shift from the pixel
centre. Lower panel: “normalized error” = (S out − S in)/∆S distribution
contours for the small patches. The horizontal lines in the bottom panel,
are the ±3σ boundaries.

129 × 129 and 33 × 33 pixels. The retrieved flux distributions
are similar and both show that after a certain NPSNR thresh-
old the precision of the estimates saturates. However, the top
panel of Fig. B.1 (larger field and patch) shows much less dis-
persion, especially as we move towards higher NPSNR values,
and it reaches saturation much later. This should not have come
as a surprise. As was mentioned in Appendix A.1.5, in the high
S/N regime, the uncertainty in the parameters recovery is lim-
ited by the estimation accuracy of the covariance matrix. The
larger the data set, the more precise the estimation is, the less
dispersion the estimates show, the later the onset of the flux
accuracy saturation. However, when tackling the “real world”,
the smaller the patches the better the background homogeneity
assumption actually holds. From our simulation exercises, fields
of 129 × 129 and patches of 33 × 33 pixels seem to provide the
best balance between background homogeneity and enough data
(i.e., pixels) to guarantee that the error in the statistics we col-
lect do not dominate (for the majority of cases). However, when
assuming that the covariance matrix had no estimation error,
we failed to propagate into the likelihood that extra source of
uncertainty arising from the field/patch statistics. That will nec-
essarily lead to an underestimation of the error bars. For the low
NPSNR regime this is not a problem because the covariance-
matrix estimation error is still sub-dominant; however, at the
high end where it completely dominates, the error bars are under-
estimated (Fig. B.1 lower panel).

Since in practical terms it is impossible to propagate
the covariance-matrix uncertainty into the likelihood (see
Appendix A.1.5), we have chosen to keep the likelihood as it is,
but later correct the error bars for the unaccounted uncertainty.

Another source of systematic errors could stem from the pro-
jection of the compact objects onto the flat fields. To study the
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Fig. B.2. Recovery error versus source brightness. This specifically
shows the ln(S out/S in) versus S in distribution contours ([68, 95, 99]%).
The sources were injected into the CMB+noise only HEALPix maps fol-
lowing the same process as when injecting into the real data. The same
source was injected multiple times to assess the impact of the different
background conditions.

effect of a potential projection distortion, we also injected the
sources directly into Planck’s CMB + noise simulated maps at
Planck’s HFI native resolution (HEALPix Nside = 2048). A min-
imum distance (12′) between injected sources was imposed in
order to avoid beam blending effects. Figure B.2 shows once
again the quantity ln(S out/S in) but this time versus S in. We
injected the same source multiple times to learn how the dif-
ferent background conditions would affect the extraction. The
background is homogeneous, but its dominant component (the
scaled CMB) has a typical correlation length of around 1◦, which
is much larger than the typical extension of a source, around
10′. This implies that some of the injected sources sit on top
of (scaled CMB) crests and others on valleys.

B.2. Injecting simulated sources into real maps

The sky distribution of the PCCS2+2E, our input catalogue, is
extremely inhomogeneous. The PCCS2 contains less than 10%
of the sources and covers about half of the sky. The PCCS2E
(>∼90%) sources are located almost entirely within regions of
strong, complex background emission. Planck Collaboration
XXVI (2016) indicates that a realistic rendering of the cir-
rus, including localized embedded features, is absolutely crucial
for validating any catalogue at the frequencies considered here.
Unfortunately, simulating the submillimetre sky is a formidable
task (Delabrouille et al. 2013), and realistic simulations of such a
complex background are not yet available. Since BeeP’s model
of the background is a statistical one, it is critical that the sta-
tistical properties of the simulated background match those of
the real data. To achieve this match, we used the actual Planck
2015 maps and injected fake sources directly into them. This
approach is similar to the one previously employed in the pro-
duction of Planck’s Early Release Compact Source Catalogue
(Planck Collaboration VII 2011). The physical parameters of
the mock sources correspond to those of the original sources,
as extracted from a preliminary run of BeeP on the 2015 maps.

Given the complexity of the Galactic background, the
mock sources should ideally be injected exactly on top of the
PCCS2+2E catalogue positions. However, this is only possible
if the real source is first removed in such a way that the back-
ground where it is to be embedded is left undisturbed; otherwise
residuals of the removed source could systematically bias the
extraction results. To try to accomplish this, we mask the pixels
around each real source and then inpaint them by diffusing the
background into the masked region, starting from its boundaries;
the inpainting method is described in Casaponsa et al. (2013)
and preserves the statistical properties of the field surrounding
the inpainted area. The radius of the inpainting mask is 7′, and
we impose the condition that the minimum distance between any

two injected sources should never be smaller than 12′. As a con-
sequence, some source positions in the PCCS2+2E do not have
any source injected, a situation that happens more frequently at
low Galactic latitudes.

We recognize the possible bias of injecting sources into a
modified sky. Therefore, to validate the inpainting procedure
we also generate a second set of simulations in which each
mock source is injected not at the original PCCS2+2E loca-
tion but in its near neighbourhood. For this set of injections,
we place a mock source within an annulus around the orig-
inal position, within a radius of 12′ and outside a radius of
20′44; we also ensure that the injected source does not blend
with any other source previously injected or in the PCCS2+2E.
This mechanism guarantees that no source is ever injected in
an inpainted area. Because of this restriction, in regions of a
very high source density, such as the Galactic plane, there may
be some PCCS2+2E source locations that are not associated
with any injected source. We note that for these simulations we
must also inpaint the original source location, otherwise it would
systematically increase the non-Gaussianity of the background
patch under analysis. Sources of equivalent flux densities would
always appear in pairs, making the original PCCS2+2E source
systematically increase the background non-Gaussianity of the
injected source background. The annulus, however, lies well out-
side the inpainted region and guarantees (given the equivalent
beam width) that the condition of Eq. (A.9) always applies and
that any background disturbance, such as another source or an
inpainted hole, does not perturb the parameter estimation. As
may be seen below, both types of simulations produce statisti-
cally similar sets of results (see Table B.1).

For the sake of completeness, we also add a third set of
simulations in which the injected mock sources are uniformly
distributed on the sky; as in the previous simulations we make
sure that sources do not overlap with any other source in the
PCCS2+2E. For this case, we draw the mock source parameters
at random from the PCCS2 sub-catalogue rather than from the
full PCCS2+2E (otherwise, we would create an unrealistically
bright high-Galactic-latitude population that would systemati-
cally increase the catalogue source significance.

The three types of simulations (just described), were
employed to calibrate the “cross-correlation factor” (φ) (see
Appendix A.1.4). We applied BeeP using a set of φ values, {0.0,
0.05, 0.10, 0.15, 0.20, 0.30, 0.50}. We then looked for bias by
comparing recovered to injected source properties. The simula-
tions showed that the value of φ used has a strong impact on the
recovery of the MBB parameters (T, β), and must be chosen with
care. What we learned from this exercise45 is that faint back-
ground regions prefer higher (φ ≈ 0.15) values and complex,
bright regions lower values (φ ≈ 0.05). So we selected φ = 0.10
as a balance between the two cases. In any event, the bias in T
and β that was observed when φ was not optimal for a particular
subset was always small (<∼5%).

44 For this case we implement a wider range of distances between the
original and the injected source than in the “no-sources” simulation, to
avoid the risk of systematically creating pairs of identical sources, but
retaining a similar background as that of the original source.
45 When φ ≥ 0.20 all three sets displayed negative bias in T and a
positive in β. For φ = 0 all three cases showed exactly the opposite
trend. The value of φ that minimized the bias for the “uniform” injection
policy was 0.15. For the “in place” and “neighbourhood” policies the
best φ was 0.05. However, if we selected only the PCCS2 subset for
these two cases, the optimal value of φ would return to 0.15.
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With φ set, we now examine the accuracy of the recovery by
BeeP of the physical source parameters in the simulations. For
this purpose, we define now the “normalized symmetric error”
(∆) of a parameter as

∆ =
4(θout − θin)
ǫh2σ − ǫl2σ

, (B.1)

where θin is the injected parameter value, θout is BeeP’s best
estimate and ǫh2σ, ǫl2σ are the 97.5% and 2.5% values of the
distribution, respectively. In the case of an ideal Gaussian distri-
bution of errors, the variable ∆ should follow a unitary normal
distribution. However, because of the strong inhomogeneity and
non-Gaussianity of the background, especially at low Galactic
latitudes, it is expected that sub-optimal parameters will be
found for certain objects, i.e., that in some parameter ranges sig-
nificant outliers will arise in the distribution of errors. As one of
our goals, perhaps the most important, is to have a well defined
set of statistical traits for the catalogue estimates, these extreme
outliers need to be identified and removed to avoid biasing or
distorting the characterization.

The set of simulations previously described was used to iden-
tify such cases, which appear in the results as sources with either
unphysical parameters or vanishingly small parameter uncer-
tainties. Both manifestations are signs of poor or insufficient
posterior sampling, raising the possibility that entire ranges of
feasible parameter values are not being sampled by the likeli-
hood exploration tool (for instance when the likelihood is multi-
modal). When this happens, one cannot be sure that the optimal
estimate set was obtained and the error bars are certainly under-
estimated46. We are now able to define exclusion regions in
parameter space. We have found that the vast majority of sources
whose estimated parameters do not meet the following criterion
should be flagged:

EXT > 1.46 ∧ TEMP < 60 ∧ BETA < 5

∧ (TH2SB − TL2SB) > 0.8

∧ (BETAH2SB − BETAL2SB) > 0.25. (B.2)

Such sources are severe outliers in one or more parameters47,
and therefore should be discarded. This is the “outliers crite-
rion”48. In Fig. B.3 we show the distribution of ∆ (Eq. (B.1)) for
the MBB parameters TEMP and BETA, as well as for SREF. In
this figure we show the “same-location” simulations on the left
and the “neighbourhood” simulations on the right. We did not
include in this assessment a small fraction of simulated objects
that behaved anomalously for other (understood) reasons49.

46 The catalogue also contains a field ACCEPT with the sampler
acceptance rate. Very low (<10%) or very high (>80%) values are
signs of a sub-optimal likelihood exploration. For further details see
Appendix A.2.4.
47 ∆β and ∆T at least > 7.
48 In the BeeP/base catalogue, only 999 of the sources that pass the
“reliability criterion” (Eq. (B.2); about 2% of the entire PCCS2+2E)
are rejected by the “outliers rejection” condition.
49 We omit in particular those whose recovered positions moved by
more than 0′.8 (about half a pixel), since the estimates at these new loca-
tions cannot be directly compared to those of the injected objects; in
fact this is only a tiny fraction of the simulated catalogues (50 sources
in the “same-location” simulations). In addition, we have noted that
some source locations, especially around extended objects, do not coin-
cide with the actual centre of the object; the removal and inpainting
process are not effective in these cases (374 sources). Finally, close
to the Galactic plane where the PCCS2E is hardly complete, in some
instances BeeP prefers the location of a nearby object that was not in
the PCCS2E. Very rarely, this also occurs when the injected source is
extremely faint.

Table B.1. Statistics of the MBB {T, β} and SREF recovered
parameters.

Data set Parameter 〈∆〉 Median σ∆ SMAD (a)

ln(θout/θin)

Injection in neighbourhood
TEMP −0.01 1.5% 0.74 0.64

PCCS2 BETA −0.19 −6.4% 0.83 0.68
SREF 0.30 4.0% 1.63 1.36
TEMP −0.33 −3.2% 0.77 0.68

PCSS2+2E BETA 0.13 3.7% 0.74 0.62
SREF 0.35 6.3% 1.72 1.38

Injection at same location
TEMP −0.03 0.8% 0.69 0.59

PCCS2 BETA −0.15 −5.4% 0.75 0.61
SREF −0.04 0.2% 1.35 1.00
TEMP −0.38 −3.3% 0.80 0.60

PCCS2+2E BETA 0.16 3.2% 0.70 0.55
SREF 0.40 6.5% 1.66 1.12

Notes. The data sets were filtered with the intersection of the “reli-
ability” and “outliers rejection” criteria. (a)Scaled median absolute
deviation.

Table B.1 shows a statistical summary of the offsets in
parameters shown in Fig. B.3. To reduce sensitivity to the pres-
ence of outliers, we have replaced the usual “average” and “stan-
dard deviation” with the more robust “median” and “scaled
median absolute deviation” (SMAD).

For both types of simulation, Table B.1 shows that BeeP
recovers T and β in a largely unbiased manner. In addition,
Fig. B.3 shows that the uncertainties in T and β are only
slightly overestimated. They also show a significant correlation
(see Fig. B.4). This is not unexpected: inspecting the posteri-
ors for individual sources (see e.g., Fig. 8) we see a strong
banana-shaped degeneracy between these two parameters. The
flux-density recovery statistics depict a slightly different situ-
ation. We note that in these simulations the injected sources
are circularly symmetric and beam shaped, in accord with the
data model of BeeP. Even in this benign situation, inspection of
Fig. B.3 and Table B.1 indicates that the dispersion of the flux-
density estimates is larger than expected. We must conclude that
BeeP underestimates the uncertainty of the recovered values of
SREF. On the other hand, for the “same location” simulations,
those that should best reproduce the real extraction conditions, in
the PCCS2 region, the SMAD statistic shows values equal to or
below 1, even for SREF. When extending to the full PCCS2+2E
only a small excess appears. Based on this we could conclude
that, unless a rigorous statistical characterization of the estimates
is necessary, the uncertainty values as given in the catalogue, are
fit for the purpose.

At the same time, we know that these simulations are
not realistic enough to provide a proper assessment of the
retrieval of the flux density. Therefore, we postpone the dis-
cussion of flux-density recovery bias to the next sections (see
Appendices B.3 and B.4).

These simulations also allow us to examine the quality of
recovery of the source locations. Figure B.5 shows histograms of
the separation between the injected and estimated source posi-
tion (SRCSEP). When injecting at the same position as the
PCCS2+2E (in blue) we find a small bias (around 0′.1–0′.2).
If now we normalise SRCSEP with POSERR (right panel),
we find that the “same place” simulation overerestimates the
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Fig. B.3. Errors in simulated source properties. The y-axis shows the normalized symmetric error as defined in Eq. (B.1) (∆) and the x-axis the
injected source flux density (REFFLUX). The data set used here is the intersection of the reliability and outliers criteria. The red crosses show
all sources, while the green circles are just the PCCS2. The horizontal dashed lines are at y = {−3,+3}. The panels on the left were drawn when
the simulated sources were injected in the same positions as the PCCS2+2E and those on the right for sources injected in their neighbourhood.
Those sources whose recovered position moved by more than 0′.8 (about half a pixel) from the injection location were removed from the set. The
total number filtered out was about 0.02% (50 sources) for the case of injection at the same location; for injection in the neighbourhood, the total
number filtered out rose to 1.63% (374 sources). The close similarity between the two sets of plots shows that the effect of inpainting is small.
Table B.1 contains a statistical analysis summary of these results.
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Fig. B.4. Correlation between ∆β and ∆T . This uses the same data set
and symbols as in Fig. B.3. Left panel: correlation for the “same posi-
tion” injection criterion and right panel: for the “neighbourhood” crite-
rion.

Fig. B.5. Histograms of the separation between the injected and esti-
mated source positions (SRCSEP). Left panel: absolute deviation and
right: deviation normalized by the position error bar (POSERR). The
results of the “same place” simulation are in blue and the “neighbour-
hood” ones in pink.

position error (since we expect the normalized distribution to
peak at 1). On the other hand, the histogram of the normal-
ized separation for the “neighbourhood” shows the expected

statistical behaviour50. We believe that this might be the result of
the inpainting of the original source. It shows the usefulness of
the “neighbourhood” simulation, and since its results are closer
to expectation than the “same place” simulation, we use it in
what follows.

In Fig. B.6 (upper left panel), the blue-purple set shows the
dependence of the distance between the injection and recovered
position normalized by the estimated uncertainty (POSERR),
as a function of NPSNR. In this figure it would appear that
there are a number of cases where the location is severely mis-
estimated (those above the dashed line); when we restrict the
catalogue to the PCCS2 set, we see that these cases correspond
preferentially to high NPSNR values. In the lower left panel
we can see a very strong correlation between the catalogue
POSERR (blue and purple) and NPSNR51. We note that the
estimated positional uncertainty for sources with NPSNR> 20
is very small (<1.5% of the beam size). It seems clear that the
anomalous cases in the upper-left figure are mainly due to a
serious underestimation of the positional uncertainty for sources
with high NPSNR. The most likely reason for this is outlined in
Appendix A.1.5. In fact, a similar situation was found when pro-
ducing the PCCS2, and it was handled by adding a term (see
Eq. (7) in Planck Collaboration XXVI 2016) that forced the
positional uncertainty to remain above a threshold. We follow
suit by adding a term σ0 to our estimate of the full positional
uncertainty:

σ2
c = POSERR2 + σ2

0, (B.3)

where σc is the corrected position error bar and σ0 the satura-
tion constant. For high NPSNR, POSERR → 0 and σc ≈ σ0.
In order to determine σ0, we created a likelihood based on the

50 The normalized position deviation should follow a unitary Rayleigh
distribution.
51 The PCCS2 set (blue points) POSERR dependence on NPSNR is
well modelled by POSERR ≈ αNPSNR−1.01, with r = −0.98, where α
is an arbitrary proportionality constant.

A99, page 38 of 53

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936794&pdf_id=36
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936794&pdf_id=37
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936794&pdf_id=38


Planck Collaboration: PCCS2 reliability and thermal properties

5 10 20 50 200 500 1000

NPSNR

0

2

4

6

8

10

12

14

S
R
C
S
E
P
=P

O
S
E
R
R

100 5 10 20 50 100 200 500 1000

NPSNR

0

2

4

6

8

10

12

14

S
R
C
S
E
P
=P

O
S
E
R
R

 (C
or

re
ct

ed
)

5 10 20 50 200 500 1000

NPSNR

0:2

0:5

1

2

5

10

20

50

P
O

S
E
R
R
=a

rc
s
e
c

200 0 0:5 1:0 1:5 3:5 4:0 4:5 5:0

SRCSEP=POSERR (Corrected)

0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

Fr
eq

ue
nc

y

2.0 2.5 3.0

Fig. B.6. Position-recovery accuracy for a simulation with injection in the “neighbourhood” of PCCS2+2E source locations. Upper left panel:
distance between the injection and recovered position, normalized by the estimated uncertainty (POSERR), as a function of NPSNR. The blue
points represent the PCCS2 and the magenta the full PCCS2+2E. Upper right panel: same but after applying to POSERR the correction suggested
in Eq. (B.3) with σ0 = 4′′.11 (here green is PCCS2 and red is PCCS2+2E). Lower left panel: POSERR for both sets, corrected and uncorrected, as
a function of NPSNR. The horizontal dashed line is the positional precision saturation constant σ0. Lower right panel: histogram of the separation
between the injected and estimated source position, normalized by the corrected position error bar. The distribution is consistent with a unitary
Rayleigh distributions with a minor excess in the tail.

Rayleigh distribution and we sampled from σ0, to find

σ0 = 4′′.11 ± 0′′.03. (B.4)

In Fig. B.6 (upper right and lower left panels), we show the
corrected position error σc as a function of NPSNR (PCCS2+2E
in red and PCCS2 in green). The horizontal dashed line isσ0. We
can see that above NPSNR >∼ 20 the positional uncertainty stops
reducing and instead saturates at σ0. In the lower right panel we
show the histograms of the normalized position distribution but
now using σc. The PCCS2 distribution (green) is now a good
match to a Rayleigh distribution52. The PCCS2+2E (red) is also
a good match, though it has a small excess in the tail. This is
the same excess seen in the vertical direction in the upper right
panel. For this simulation, the median position-corrected error
bar is 7′′.8 or 7.6% of the pixel size.

We stress that the vast majority of sources with NPNSR> 20
have a well-determined positional uncertainty without any cor-
rection – i.e., those well below the dashed line in Fig. B.6 (upper
left panel); applying the correction penalizes those sources

52 If σc is an accurate description of the actual position errors, then the
normalized position distribution should follow a Rayleigh distribution
with a scale parameter equal to σc.

unnecessarily. For this reason, the correction on POSERR
described here is not applied to the output of BeeP, and should
be used only for statistical characterization of samples of sources
that contain high NPNSR sources.

B.3. Flux density uncertainty correction due to source
extension

In every simulation we have described so far, the injected sources
have always been beam shaped. However, as can be seen in
Fig. 9, PCCS2+2E contains many sources that are at least
slightly extended.

In order to address the effects of source extension, we create
a new set of simulations, following exactly the same procedure
as described in Appendix B.2, i.e., including three types of sim-
ulation, each following one of our injection policies. The only
difference is that this time we inject extended rather than point
sources. The source size parameter is sampled from a prelimi-
nary run of BeeP on the real data.

Figure B.7 (top row) shows, in blue contours, the normal-
ized difference between the injected and recovered flux densities
(Eq. (B.1)) as a function of NPSNR. In the high NPSNR regime
all three types show an excess of deviations (>∼ 3σ), reflecting
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Fig. B.7. Comparison of injected and recovered flux densities. Upper row: distribution of the normalized difference (Eq. (B.1), blue contours,
[68, 95, 99]%) versus NPSNR for three different data sets (from left to right): PCCS2 “same location”; PCCS2 “neighbourhood”; and PCCS2E
∧ |b| > 10◦ “neighbourhood”. The red contours show the same as the blue ones, but this time for corrected values (Eq. (B.5)). The horizontal dashed
lines are ±3σ. Lower row: identical flux-density relative error (∆SREF/SREF) distribution contours. The black dashed lines here are NPSNR−1,
the lower limit of the flux-density relative error, which is only achievable if the only unknown parameter in the model is the flux density.

the fact that their distribution is not fully Gaussian. This is not
unexpected, since the same behaviour has been seen for the
“fiducial” case simulations (see Appendix B.1 and Fig. B.1), and
the same mechanism should be at work here53. These deviations
do not affect significantly the 1σ levels of the uncertainty distri-
bution, but only its tails. This non-Gaussianity should be taken
into account only if it is desired to make a statistical analysis of
the flux-density uncertainties of large populations of sources. To
account for this effect, it is possible to add a correction, which
we describe in the rest of this subsection. But we recommend
that users interested in the 1σ uncertainty of individual sources
do not apply this correction.

Figure B.7 suggests that a correction proportional to
ln(NPSNR) would be adequate. This correction is to be added
in quadrature to the error bars extracted by BeeP. For this pur-
pose we have defined a new variable

σs ≡
√
σ2

cat + (c ∗ ln(NPSNR))2, (B.5)

where σcat ≡ (S h2σ − S l2σ)/4 and c is the flux-density correction
constant. To compute the optimal value of c we follow a similar
procedure as that for the positional accuracy. Let us define a new
variable ξ as

ξ ≡ (S out − S in) − b

σs(c)
, (B.6)

where σs is the “corrected” flux-density uncertainty and b is a
“bias”, which is added to help symmetrize ξ. If the BeeP uncer-
tainty (σcat) were a truthful representation of the uncertainty, in
a Gaussian sense, then ξ would follow a normal distribution with

53 The propagation of the covariance-matrix uncertainty into the likeli-
hood results in an underestimation of the flux-density uncertainty.

Table B.2. Flux density error bar calibration constant “c” in mJy, for
the three types of simulation (see Eqs. (B.5) and (B.6)).

Before (b) After (c)

Data set (a) c [mJy] σξ
(d) SMADξ (e) σξ SMADξ (e)

Injection at same location

P2E> |10◦| ( f ) . . . . 103 ± 2 1.38 0.95 1.19 0.81
PCCS2 . . . . . . . . 48 ± 1 1.51 0.91 0.91 0.66
< |10◦| . . . . . . . . . 621 ± 15 1.54 0.99 1.28 0.77

Injection in neighbourhood

P2E> |10◦| . . . . . . 168 ± 2 1.59 1.38 1.17 0.93
PCCS2 . . . . . . . . 57 ± 1 1.70 1.31 1.00 0.88
< |10◦| . . . . . . . . . 820 ± 15 1.66 1.40 1.17 0.91

Uniform distribution

P2E> |10◦| . . . . . . 85 ± 2 1.37 1.14 1.06 0.91
PCCS2 . . . . . . . . 57 ± 1 1.38 1.21 1.07 0.93
< |10◦| (g) . . . . . . . 259 ± 15 1.60 1.17 1.02 0.86

Notes. (a)“P2E > 10◦” means the PCCS2E data set with |b| >
10◦; “PCCS2” means the PCCS2 data set; and “<|10◦” means the
PCCS2+2E set with |b| < 10◦. (b)Before applying the correction (as
in the catalogue). (c)After applying the correction. (d)Standard deviation
of ξ (Eq. (B.6)). (e)Scaled median absolute deviation of ξ. ( f )The median
NPSNR for all subsets is approximately 20, except for “< |10◦|”, which
is approximately 9 and “PCCS2E> |10◦|”, which is approximately 13.
(g)There are only 1066 sources in this subset.

b = 0, c = 0. We characterize a Gaussian likelihood for ξ with
two parameters {b, c}. We sample from {b, c} to construct a poste-
rior distribution and then we find the median of both parameters
to correct the catalogue. We expect that in regions with strong
complex backgrounds, the sub-optimality of BeeP’s likelihood
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Fig. B.8. Small field (2◦.1 × 2◦.0) centred at l = 309◦.68, b = +55◦.41.
Upper panel: Planck’s 857 GHz map and lower: BeeP injection simu-
lation where mock sources were added to the same Planck map around
the neighbourhood of real sources that were masked and inpainted. The
simulated sources were rendered using the average effective Gaussian
857 GHz Planck beam. The brightness scale is the same on both plots.
One can see in the lower panel that the injection simulations fail to
capture the ellipticity of compact objects in the Planck 857 GHz map
(upper panel).

will manifest itself more strongly and require larger corrections.
We therefore compute corrections for each of three sky regions:

– PCCS2;
– PCCS2E ∧ |b| > 10◦;
– |b| ≤ 10◦.

In Fig. B.7 (lower row) we show the flux-density relative accu-
racy as a function of NPNSR, before (in blue contours) and after
applying the correction (in red contours). The corrected error
bars show (as expected) a larger dispersion with NPSNR.

Table B.2 contains a summary of statistics of the variable
ξ (Eq. (B.6)) for the three type of simulations and the three
sky regions before and after applying the correction. If the error
bars were correctly describing the flux recovery uncertainty, in a
Gaussian sense, then σξ ≈ 1. Considering that the data statistics
are very non-Gaussian, with broad tails, and σξ is very sensi-
tive to outliers, we also included the more robust scaled median
absolute deviation (SMADξ). “Before” applying the correction,
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Fig. B.9. Comparison of FFP8’s full catalogue of bright source flux
densities with BeeP’s SREF. Shown in red are the source flux estimates
with NPSNR< 40 and in green those with NPSNR> 40. The horizontal
long-dashed blue line is the ln(S out/S in) median (0.104) of the green
subset. The strong outlier is the result of a mock source blended with a
real one.

all sets, for all simulations, show a clear excess inσξ. This is also
seen, as expected, in the SMAD for ξ, for the cases “neighbour-
hood” and “uniform”, but not for “same location”. By examin-
ing Fig. B.7 (left column, in green), one can indeed see that the
distribution of estimates for “same location” is tighter than for
the other types. We also find for “same location” a small bias
towards low values, which is often present in this type of sim-
ulations (e.g., Fig. B.3). We believe this bias could be an effect
induced by the inpainting procedure.

On the other hand, “After” correcting the flux-density error,
all three types of simulations show reasonable values for both
statistics, although in the case of “same location” simulations
(which is perhaps the most realistic), the improvement is not as
good as in the other types. However, as previously mentioned,
the SMAD statistic (the more robust measurement of disper-
sion for non-Gaussian distributions) applied without any cor-
rection ({b, c} = 0) to the “same location” simulation already
showed very good values (see Table B.2). For most purposes
it should therefore not be necessary to apply any correction to
the BeeP estimates of flux-density uncertainties. Corrections
should be applied only if a strictly Gaussian characterization of
the uncertainties is needed, particularly true for high-Galactic-
latitude objects.

B.4. Planck FFP8 simulations

Possibly the crudest part of the data model implemented by
BeeP is that it assumes that the beam shapes are perfectly circu-
larly symmetric and homogeneous across the sky. In addition, in
our injection simulations, the mock sources always have circu-
larly symmetric Gaussian shapes, and in the most sophisticated
simulations we also vary their radius. However, for the Planck
857 GHz channel, the average beam ellipticity (ε ≈ 1.39) is
sufficiently high and variable across the sky (dispersion about
10%), to induce systematic flux-density deviations as a result
of the model and actual beam-shape mismatch. Given the huge
flux-density dynamic range of the PCCS2+2E, we expect that,
especially at the bright end, these effects will have a significant
influence on the estimation of flux densities. These systematic
effects cannot be directly taken into account by BeeP.

In principle BeeP’s likelihood can easily accommodate more
realistic beam shapes, including their spatial variation54, but

54 For example, as described in the FEBeCoP effective beam approach
(Mitra et al. 2011).

A99, page 41 of 53

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936794&pdf_id=41
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936794&pdf_id=42


A&A 644, A99 (2020)

5 10 20 50 200 500 1000

NPSNR
0:2

0:3

0:4

0:5

1

2

3

4

5

10

20

30

40

50

PO
SE

RR
 /a

rc
se

c

60 0 1 2 3 4 5

SRCSEP / POSERR (Corrected)
0

0:1

0:2

0:3

0:4

0:5

Fr
eq

ue
nc

y

Fig. B.10. FFP8 positional accuracy results. Left: raw (as in the catalogue) and corrected POSERR versus NPSNR (FFP8 bright sources catalogue).
The correction procedure was the same as in Appendix B.2. The horizontal line is the saturation constant σ0. Right: histogram of the deviations
between the injected and recovered positions, normalized by the corrected positional uncertainty.

the computational cost would be prohibitive. However, Planck
has produced a set of simulations that include a very accurate
model of the beam shapes and their variation across the sky, the
“FFP8” simulations (Planck Collaboration XII 2016). We note
two important drawbacks of FFP8: the absence of a 3000 GHz
map; and the fact that all simulated compact objects in the maps
are exactly beam shaped (they are drawn from a simulated set
of zero-extension sources). These issues affect the constraining
capability of BeeP. With only Planck’s three high-frequency
channels available, BeeP can no longer effectively constrain T .
The extra uncertainty propagates to β (they are highly correlated)
and to a smaller extent to the flux density S (see Fig. 8). In
spite of these drawbacks, we can use the FFP8 simulations to
effectively calibrate the effect of beam shapes on the recovery of
source parameters.

We are particularly concerned about any systematic bias in
the flux-density recovery. As explained in Appendix A.2.3, we
already found it necessary to force BeeP’s likelihood to model
beam shaped sources with a source extension EXT ≈ 1′.72 (about
1 pixel). As a result, the flux-density estimation bias was much
reduced but not completely eliminated. Figure B.9 shows the
comparison of ln(S out/S in) based on the analysis of the FFP8
maps by BeeP. The figure shows a bias in this quantity and a
large dispersion, particularly at the low NPSNR regime. The
median of ln(S out/S in) is 0.10455, which implies an approxi-
mately +11.0% bias in the recovered reference flux density, both
for the flux-density estimates based on the MBB model and those
based on the “Free” model.

The FFP8 simulations allow us to assess the impact that a
realistic beam has on the positional accuracy, as was done for
the injection simulations using all four channels and circularly
symmetric sources (see Appendix B.2). Figure B.10 (left panel)
shows that the positional accuracy of the recovery exhibits simi-
lar traits as in the case of the injection simulations. We can there-

55 To avoid any possible distortion resulting from Eddington-type bias,
we restrict the data set to high NPSNR (>40) sources only (see green
points in Fig. B.9).

fore apply the same procedure as in Appendix B.2 to correct
POSERR, and we find a very similar threshold level:

σ0 = 4′′.43+0′′.17
−0′′.18. (B.7)

The position deviations normalized by the corrected position
error bar now follow a unitary Rayleigh distribution (Fig. B.10,
right panel). The median POSERR for the full FFP8 catalogue
is around 13′′.2 (13% of a pixel), which is larger than that found
in the injection simulations (7′′.8, Appendix B.2). This differ-
ence must be partly due to the more realistic beam simulations
included in FFP8. However, other factors are likely to play a role
as well, e.g., the FFP8 catalogue has a smaller median NPSNR
(9.65) when compared with the injection simulations (15.1); and
the absence of the 3000 GHz channel may have an impact as
well.

As in the analysis of Appendix B.2, we do not apply this
correction to the BeeP output. The correction should be applied
only when well-behaved statistical characterization of a sample
containing high-NPNSR sources is required. In this case, we rec-
ommend to use the slightly more conservative correction value
shown in Eq. (B.7).

Appendix C: The no-source simulations:

frequentist versus Bayesian approaches

In Appendix A we quite closely followed a frequentist frame-
work:

– we define the “null hypothesis” to be that no source is present
(only background);

– we define a data-based statistic SRCSIG and its cumulative
distribution assuming that the null hypothesis is true;

– we reject the null hypothesis for extreme values of SRCSIG,
using a single-tailed test.

Rejecting the null hypothesis means that the data do not sup-
port, at a certain level (“tail probability”), the background-only
hypothesis. Therefore one chooses the alternative hypothesis,
namely a source is present. Figure 4 shows the level at which
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we reject the null hypothesis as a function of SRCSIG. We
call this “contamination” because at that threshold of SRCSIG,
we still expect the null hypothesis (no real source) to be true
a certain fraction of the time. That fraction is given as a per-
centage of the total using the y-axis of Fig. 4. This is a com-
monly employed method of measuring the contamination of a
catalogue.

When alternatively using the Bayesian framework, instead
of dealing with each source individually, we prefer to address
the broader question of “catalogue contamination”. Catalogue
contamination can be defined as the percentage of false sources
in the sub-catalogue defined by a given threshold of the selection
statistic:

Pr(F|C; θ), (C.1)

where F means a “false” source, C means “it is part of the cata-
logue”, and θ is the threshold. Using conditional probability rules
and Bayes theorem, the definition of Eq. (C.1) can be expressed
as

Pr(F|C) ≡ Γ =
(
1 +

Pr(T) Pr(C|T)
Pr(F) Pr(C|F)

)
, (C.2)

where T means a true source and Pr(T) and Pr(F) are the prior
probabilities (before running BeeP) of a source being real or
spurious. Pr(C|F) is what we compute from the “no-source” sim-
ulation and Pr(C|T) is the completeness. We have dropped the
threshold from the expression to make it more readable, although
all the factors are dependent on it. The quantity Γ is a proper
probability ∈ [0, 1]. Let us define

α ≡ Pr(T) Pr(C|T)
Pr(F)

· (C.3)

Then Γ reads,

Γ =
Pr(C|F)

Pr(C|F) + α
· (C.4)

If α & 1 then Γ <∼ Pr(C|F) and the no-source simulations give
a good estimate of an upper bound on the expected catalogue
contamination. It is interesting to note that the catalogue com-
pleteness is also present when computing the catalogue contam-
ination using a Bayesian approach.

A useful catalogue must always have the following
properties:

– completeness ≡ Pr(C|T) ≈ 1;
– contamination ≡ Pr(C|F) ≈ 0.

If Pr(T)/Pr(F) ≈ 1, i.e., no prior bias, then Γ ≈ Pr(C|F), as in
a frequentist result. In the extreme case of a SRCSIG threshold
of zero, then Pr(C|T) = Pr(C|F) = 1 (i.e., we accept everything)
and Γ = 1/2, the value one would expect if Pr(T)/Pr(F) ≈ 1.

In Planck Collaboration XXVI (2016) (bottom right panel of
Fig. 7) there are no reliability values provided for the PCCS2E.
However, assuming that the PCCS2E reliability is as low as 70%
at 1 Jy and Pr(C|T) ≈ 0.4, then α ≈ 0.93 and Γ (Eq. (C.4)) is
≈ Pr(C|F), just like our prediction for BeeP’s catalogue con-
tamination. When completeness is very low (Pr(C|T) ≈ 0) or
Pr(T) ≪ Pr(F), then false objects are dominant and α ≈ 0
implies Γ ≈ 1. In this case, even with a good rejection of false
detections, the catalogue contamination can reach very high val-
ues56. We cannot completely rule out this scenario at very low
Galactic latitudes (|b| < 1◦) close to the Galactic centre. In this
region, the properties of PCCS2+2E are not well defined and
false detections could dominate.

Appendix D: Source examples

In this appendix we show a few representative examples of SEDs
resulting from the analysis of BeeP. Specifically we show:

– three archetypal nearby galaxies, Arp 220, M 100, and
NGC 895 (Clements et al. 2014);

– one source (J091828.6+514223) from the Planck list of
high-redshift candidates (Planck Collaboration Int. XXXIX
2016), also detected in the Herschel Lensing Survey
overview (Egami et al. 2010), which is a strongly lensed
galaxy at z = 5.2 (Combes et al. 2012);

– one source from the GEMS catalogue (Planck dusty
Gravitationally-enhanced submillimetre sources, Cañameras
et al. 2015), PLCK G138.6+62.0;

– two sources with non-thermal SEDs that cannot be fit to an
MBB spectrum, namely M1 (the Crab Nebula, a supernova
remnant) and 3C 273 (a blazar);

– the brightest source in our ATLAS comparison field (HAT-
LAS J144011.1-001719);

– one of the coldest Galactic clumps extracted from the
PGCC (Planck Collaboration XXVIII 2016), IRDC MSXDC
G033.69−00.01;

– Orion A IRC 2, an archetypal infrared source in the Orion A
molecular cloud.

56 For an extreme (but realistic) example, see p. 1132 of Riley et al.
(2006).
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Fig. D.1. Results of BeeP analysis for Arp 220. See the caption of Fig. 7 for a full description of the contents of this figure. This case is a very
clean example of a well-determined model for source and background.
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Planck Collaboration: PCCS2 reliability and thermal properties

Fig. D.2. Results of BeeP analysis for M 100. See the caption of Fig. 7 for a full explanation. This case is interesting because BeeP has reduced
EST_QUALITY due to the extremely low uncertainties in both temperature and spectral index (Sect. 5.2), in spite of the fact that the SEDs fit the
data very well. However the χ2 value of the Free-model fit (middle panel) is not far from the expected unity-per-degree of freedom level, and so
this is one of those exceptional cases where the very low uncertainties reflect a very good fit, rather than the fact that the sampler has not been able
to explore the parameter space.
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Fig. D.3. Results of BeeP analysis for NGC 895. See the caption of Fig. 7 for a full explanation. This case is also a very clean example of a
well-determined model for source and background.
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Planck Collaboration: PCCS2 reliability and thermal properties

Fig. D.4. Results of BeeP analysis for J091828.6+514223. See the caption of Fig. 7 for a full description. This is a strongly lensed galaxy at z = 5.2
and appears as a relatively cold dusty source.
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Fig. D.5. Results of BeeP analysis for GEMS PLCK G138.6+62.0. See the caption of Fig. 7 for a full description. This is a source with fairly low
S/N ratio with respect to the background, but BeeP is able to find a good model for it. The Free model flux densities recovered by BeeP have much
lower uncertainties than those found in the PCCS2+2E catalogue.
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Planck Collaboration: PCCS2 reliability and thermal properties

Fig. D.6. Results of BeeP analysis for M 1 (Crab Nebula). See the caption of Fig. 7 for a full description. This is a non-thermal source and BeeP
has reduced EST_QUALITY accordingly; the full likelihood is not able to find a reasonable value for the SED parameters, in particular the spectral
index. The Free model fit does find parameters, since it is less constrained, but the high χ2 value indicates a very poor fit.
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Fig. D.7. Results of BeeP analysis for 3C 273. See the caption of Fig. 7 for a full description. As in the previous figure, this is a non-thermal source,
and BeeP also obtains very poor results (though not as extreme as in the previous case). The flux density of the source in the IRIS map is highly
anomalous, but also has very low S/N ratio with respect to the well-determined background.
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Planck Collaboration: PCCS2 reliability and thermal properties

Fig. D.8. Results of BeeP analysis for the brightest source in our ATLAS comparison field (HATLAS J144011.1-001719). See the caption of Fig. 7
for a full description. Overall this is a clean case of a cold dusty source on a fairly warm background, and BeeP obtains good results.
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Fig. D.9. Results of BeeP analysis for cold clump IRDC MSXDC G033.69−00.01. See the caption of Fig. 7 for a full description. We note the
low temperature of this source (about 14 K). BeeP obtains a good fit for this cold source on a warm background, but we see that the recovered
flux densities (middle panel) are well below those obtained by PCCS2+2E. Examination of the source maps shows that it is surrounded by bright
complex structure, which has confused the aperture photometry used by PCCS2+2E; indeed other flux-density algorithms (e.g., DETFLUX in
PCCS2) obtain values closer to those of BeeP.
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Planck Collaboration: PCCS2 reliability and thermal properties

Fig. D.10. Results of BeeP analysis for Orion IRC 2. See the caption of Fig. 7 for a full description. This case is similar to that of Fig. D.2, where
BeeP has reduced EST_QUALITY due to the very low parameter uncertainties. However, in this case the χ2 of the Free model fit is very high, and
this is clearly due to the fact that very tight constraints coming from the Planck data do not allow a satisfactorily fit to the low flux density in the
IRIS map.
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