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ABSTRACT

We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m
telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately
20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters
were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences.
In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters,
41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14
more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new
spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.

Key words. galaxies: clusters: general – catalogs

1. Introduction

The Planck all-sky survey is the first survey in which a signif-
icant number of galaxy clusters have been detected by means
of the Sunyaev-Zeldovich (SZ) effect (Sunyaev & Zeldovich
1972) over the entire extragalactic sky (Planck Collaboration
VIII 2011; Planck Collaboration XXIX 2014). Since the SZ sig-
nal does not suffer from cosmological dimming and is approxi-
mately proportional to cluster mass, the Planck SZ galaxy cluster
survey contains the most massive clusters in the Universe, and
is therefore of unique importance for cluster and cosmological
studies.

⋆ Corresponding author: R. Burenin,
e-mail: rodion@hea.iki.rssi.ru

While blind SZ cluster detection with Planck is robust (see,
e.g. Planck Collaboration XXIX 2014), further observations of
newly detected candidate clusters at other wavelengths are still
required. The Planck collaboration has undertaken an exten-
sive follow-up programme to confirm Planck cluster candidates
taken from intermediate versions of the Planck SZ catalogue and
to measure their redshifts (e.g. Planck Collaboration IX 2011;
Planck Collaboration Int. I 2012; Planck Collaboration Int. IV
2013), using the European Northern and Southern Observatories
(ENO and ESO) and other telescopes. The strategy of this
follow-up programme is detailed in Planck Collaboration VIII
(2011) and Planck Collaboration XXIX (2014).
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In this paper, we describe observations with the
Russian-Turkish 1.5 m telescope (RTT1501). Over three
years, approximately 20 % of all clear dark and grey time avail-
able at the telescope was used to observe Planck SZ sources.
Cluster identification procedures are based on those developed
for the 400 deg2 X-ray galaxy cluster survey (400d, Burenin
et al. 2007), and for an earlier 160 deg2 survey (Vikhlinin
et al. 1998; Mullis et al. 2003). As was shown with the last
two surveys and will be demonstrated below, with 1.5 m class
telescopes clusters can be identified at redshifts up to z ≈ 1,
and redshifts can be measured spectroscopically for clusters
at approximately z < 0.4. Therefore, data taken with such
telescopes are sufficient to provide optical identifications and
redshift measurements for a large fraction of galaxy clusters
detected with Planck.

A significant part of the cluster identifications and red-
shift measurements presented in this paper were included in
the recently published Planck SZ source catalogue (Planck
Collaboration XXIX 2014). This companion article presents the
details of optical identifications, results of more recent observa-
tions at RTT150, and the optical identifications for some Planck
cluster candidates below the S/N = 4.5 limit of the Planck
catalogue.

The paper is organized as follows. Section 2 describes the
RTT150 telescope and the Planck cluster observing programme
carried out on it. Sections 3 and 4 review the procedures used for
cluster selection and optical identification, and discuss the obser-
vations themselves. Finally, Sects. 5 and 6 describe in detail the
results of the observations, give examples of cluster identifica-
tions, and discuss both individual objects and probable false SZ
sources identified in our programme.

2. The RTT150 telescope

The RTT150 optics are of high quality (Aslan et al. 2001) and
the telescope site (TÜBİTAK National Observatory, Bakyrlytepe
mountain, altitude 2550 m, location 2h01m20s E, 36◦49′30′′ N)
has good astronomical weather. We used the TFOSC instru-
ment (TÜBİTAK Faint Object Spectrograph and Camera), a
focal-reducer type spectrograph and camera built at Copenhagen
University Observatory. This instrument is similar to ALFOSC
at the Nordic Optical Telescope (NOT), also used in the Planck
follow-up programme of clusters, and to other instruments of
this series.

TFOSC is equipped with Bessel, Sloan Digital Sky Survey
(SDSS), and other filter-sets. It allows a quick switch between
direct imaging and spectroscopic modes, which increases the ef-
ficiency of the instrument. The size of the TFOSC field of view
in direct-imaging mode is 13.′3 × 13.′3, with a 0.′′39 pixel scale.
In spectroscopic mode, the instrument allows us to obtain low-
and medium-resolution (500 <∼ R <∼ 5000) long-slit spectra.

The Planck cluster follow-up programme was started at the
RTT150 telescope in the summer of 2011. We present here the
results of observations obtained through the spring of 2014.
During this period approximately 60 clear dark and grey nights
were used. The median seeing during these observations was
near 1.5′′. As previously stated, this corresponds to approxi-
mately 20% of the total amount of dark and grey clear time
available at the telescope. This observing time was provided by
the Kazan Federal University (KFU) and the Space Research
Institute (IKI), operators of the RTT150 from the Russian side.

1 http://hea.iki.rssi.ru/rtt150/en/

Additional observations of clusters at high redshift were
made with the 6 m Bolshoi Teleskop Alt-azimutalnyi (BTA) of
the Special Astrophysical Observatory of the Russian Academy
of Sciences, using the SCORPIO spectrograph (Moiseev &
Afanasyev 2005), which is similar in layout and capabilities to
the TFOSC instrument at RTT150 and is optimized for spec-
troscopic observations of faint objects. We used approximately
32 h of clear weather at the BTA for the Planck cluster follow-up
programme.

3. Planck cluster selection

The Planck catalogue of SZ sources (PSZ1 hereafter, Planck
Collaboration XXIX 2014) consists of 1227 sources detected
through their SZ effect above S/N = 4.5 in the Planck fre-
quency maps. The catalogue contains a large number of newly
confirmed or previously known galaxy clusters but it also con-
tains un-confirmed cluster candidates. The procedures used for
cluster selection and identification in the Planck cluster survey
are discussed in detail in Planck Collaboration XXIX (2014).
The main steps are as follows.

Cluster candidates are detected blindly using three different
algorithms. The quality of an individual detection is estimated
from the significance of the SZ signal, the agreement between
the three algorithms, and the frequency spectrum of the cluster
candidate.

Cluster candidates are cross-correlated with optical, X-ray,
and other SZ catalogues and samples. Detection of X-ray emis-
sion from the same hot intracluster gas that Planck detects
through the SZ effect provides definitive confirmation. Cluster
candidates are therefore checked for counterparts in the ROSAT
All Sky Survey (RASS, Voges et al. 1999, 2000). Since Planck
detects the most massive and the most X-ray-luminous clus-
ters, Planck candidates should be detectable in RASS up to
z ≈ 0.3−0.4. Candidates are also checked for counterparts in
the Sloan Digital Sky Survey (SDSS, DR8, Aihara et al. 2011)
and the WISE all-sky survey (Wright et al. 2010).

Candidates without confirmation from these various steps
were sent to observing facilities for follow-up observations to
confirm them as clusters and to measure their redshifts. In par-
ticular, Planck candidates with low-quality images on DSS red
plates2 or without SDSS information, or with low signal-to-noise
ratio in RASS, were imaged to the depth needed for finding an
optical counterpart and for determination of a photometric red-
shift. Candidates with galaxy concentrations in SDSS or with
high signal-to-noise ratio in RASS were sent for spectroscopic
confirmation.

4. Optical identifications and redshift

measurements

4.1. Surface number density of galaxies

The most straightforward way to identify galaxy clusters in the
optical is through detection of an enhanced surface number den-
sity of galaxies. The fields of all cluster candidates were in-
spected on DSS red plates and then in SDSS images if avail-
able. On DSS plates, clusters can be identified at redshifts up to
about 0.3, while SDSS images allow reliable identifications at
redshifts up to redshift around 0.6. To identify more distant clus-
ters, deeper direct images are necessary. For clusters at z ≈ 0.8,

2 http://stdatu.stsci.edu/dss/
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Fig. 1. Examples of Planck galaxy clusters. Left: DSS red image of PSZ1 G101.52-29.96 at z = 0.227. Centre: SDSS i′-band image of PSZ1
G054.94-33.37 at z = 0.392. Right: deeper RTT150 i′-band image of PSZ1 G108.26+48.66 at z = 0.674. The images are approximately 1.5 Mpc
on a side at the redshift of the cluster.

therefore a 1.5 m class telescope, images in r′ and i′ with ap-
proximately one hour exposures are needed. Clusters at z ≈ 1
and higher should be observed at larger telescopes. Examples are
given in Fig. 1. At lower Galactic latitudes, where the density of
stars is higher, the galaxy surface density enhancement associ-
ated with clusters is easier to detect when stars are excluded3.

4.2. Red sequence

Spectroscopic redshifts are obtained most effectively from spec-
tra of the brightest galaxies in the central part of the clus-
ter. In order to correctly identify the brightest cluster mem-
bers, foreground galaxies must be securely rejected. That can be
done through detection of a red sequence in the galaxy colour-
magnitude relation, formed by early-type cluster member galax-
ies (Gladders & Yee 2000).

Red galaxies, which form the cluster red sequence, are
clearly visible near the centre of clusters, as shown in Fig. 2,
where pseudo colour g′r′i′ images of a few Planck clusters ob-
tained at RTT150 are presented. Figure 3 gives an example of
a colour-magnitude diagram of galaxies near the centre of the
field of a cluster at z = 0.227 (PSZ1 G101.52-29.96, left panel
in Fig. 1). One can see that observations of red-sequence galax-
ies in clusters provide an efficient way to identify clusters and
their member galaxies.

Observed red-sequence colours can be used to estimate pho-
tometric redshifts. For the purposes of this work, photometric
redshifts were calibrated using the data of optical observations
obtained earlier during the construction of the 400 deg2 ROSAT
PSPC galaxy cluster survey (Burenin et al. 2007). The results
of this calibration are shown in Fig. 4. The accuracy of the red-
shift estimates is δz/(1+z) = 0.027. These preliminary estimates
were used mainly for planning observations. Since the accuracy
of photometric redshifts is insufficient for accurate cluster mass
function measurements, the redshifts for all confirmed clusters
should be measured spectroscopically.

Cluster members identified from a red sequence typically
form a well-defined concentration of galaxies, with one brightest
cD galaxy in the centre (see, e.g. Fig. 1 and the upper left panel
in Fig. 2). In some cases, multiple cD-like galaxies are observed
in the centre of a concentration (see, e.g. the right-hand panels

3 In our work star–galaxy separation in optical images was performed
using SExtractor (Bertin & Arnouts 1996).

in Fig. 2). In some cases, the concentration of cluster galaxies is
observed to have two or more peaks, with a few cD-like galax-
ies at the centre of each peak (see, e.g. the lower left panel in
Fig. 2). In our work, the optical centres of galaxy clusters were
determined from the positions of cD galaxies found in the cen-
tres of these concentrations.

Some galaxy clusters are not associated with prominent en-
hancements in galaxy surface density. Instead, clusters may be
dominated in the optical by one giant central galaxy. These rare
objects, called fossil groups (Ponman et al. 1994; Vikhlinin et al.
1999; Jones et al. 2003; Voevodkin et al. 2010), are much less
massive than the typical cluster detected by Planck. For example,
all 12 fossil systems identified in the 400d survey (Voevodkin
et al. 2010) have X-ray luminosities below 1044 erg s−1, with
corresponding masses below 3 × 1014 M⊙ (see, e.g. Vikhlinin
et al. 2009). Nevertheless, objects similar to fossil groups are
detected in the Planck survey at low redshifts. These objects and
their member galaxies can still be reliably identified by their red
sequences. An example is discussed in Sect. 6.1.

There are also Planck SZ sources where two or more clus-
ters at different redshifts are projected on the sky within a few
arcminutes. In those cases, it is not easy to determine the con-
tribution of each cluster to the SZ signal detected by Planck.
These, and some other special cases, are discussed in detail be-
low (Sects. 6.2, 6.3).

4.3. Spectroscopic redshift measurements

Once cluster members are identified through a red sequence,
the redshift of the cluster as a whole can be determined from
the brightest galaxies near the centre of the cluster. For regular
clusters, we measured the redshift of the dominant cD galaxy.
For less regular clusters, we measured redshifts of 3–5 brightest
galaxies, selected using the cluster red sequence observations.

High signal-to-noise ratio is not necessary for accurate spec-
troscopic redshift determination. Even if individual spectral lines
are not well-identified, the redshift can be determined accurately
by cross-correlation with an elliptical galaxy template spectrum.
Figure 5, for example, shows the spectrum of the brightest cen-
tral galaxy in a cluster at z = 0.278 obtained with the TFOSC
spectrometer, along with χ2 as a function of z from the cross-
correlation with an elliptical galaxy template spectrum.
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Fig. 2. Pseudo colour (g′r′i′) RTT150 images of Planck clusters, with the colour map adjusted to emphasize the red sequence of galaxies in the
centres of clusters. The angular size of the images is about 8′. Upper left: PSZ1 G098.24-41.15, z = 0.436. Upper right: PSZ1 G100.18-29.68,
z = 0.485. Lower left: PSZ1 G138.11+42.03, z = 0.496. Lower right: PSZ1 G209.80+10.23, z = 0.677.

5. Observations

Deep multi-colour observations were obtained for all clus-
ter candidates except those unambiguously detected in SDSS.
Images were obtained with the RTT150 telescope and the
TFOSC instrument through Sloan g′r′i′ filters, typically with
1800 s exposures per filter. Longer exposures were used for clus-
ter candidates with brightest galaxies fainter than mr′ ≈ 21,
i.e. which may be located at redshifts z > 0.7 (e.g. Vikhlinin
et al. 1998). Images were obtained in a series of 300 or 600 s
exposures with ≈10′′–30′′ pointing offsets between exposures.
Standard CCD calibrations were applied using Iraf4 software.
Individual images in each filter were then aligned and combined.
With these data, galaxy clusters can be efficiently identified at
redshifts up to z ≈ 1.

We identified cluster members from a red sequence. Clusters
whose photometry indicated z < 0.4 were observed spectroscop-
ically with the RTT150. In some cases, clusters whose photom-

4 http://iraf.noao.edu/

etry indicated redshifts above 0.4 were observed spectroscopi-
cally with the BTA 6 m telescope and the SCORPIO spectrome-
ter (Sect. 2).

6. Results

The list of Planck clusters from the PSZ1 catalogue observed
with the RTT150 is given in Table 1. Clusters identified with
the RTT150 that were below the PSZ1 signal-to-noise detection
limit of 4.5σ, and thus not included in the PSZ1 catalogue, are
given in Table 2. Coordinates are given of the cluster optical cen-
tres, calculated from the position of cD galaxies. The distribution
of cluster optical centre offsets from the SZ positions measured
with Planck is shown in Fig. 6, and is consistent with a two-
dimensional Gaussian distribution of width 2′, in agreement with
the Planck positional accuracy given in (Planck Collaboration
XXIX 2014).

In total, deep direct images of more than one hundred fields
in multiple filters were obtained. Forty-seven clusters newly
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Fig. 3. Colour-magnitude diagram of galaxies near the centre of cluster
PSZ1 G101.52-29.96 at z = 0.227 (see the left panel in Fig. 1). The best
fit red sequence is shown with a dotted line.

Fig. 4. Comparison of photometric redshifts based on red-sequence
colours with spectroscopic redshifts. The points show the data for clus-
ters from the 400d cluster survey (Burenin et al. 2007), which were used
for photometric redshift calibration.

identified using the RTT150 imaging data are marked in Tables 1
(41) and 2 (6). Redshifts of 65 Planck clusters were measures
spectroscopically, including 12 at high redshift measured with
the 6 m BTA telescope. Two of these redshifts were published in
Planck & AMI Collaborations (2013), and 26 were included in
the PSZ1 catalogue (Planck Collaboration XXIX 2014).

Table 1 also gives new spectroscopic redshifts measured at
the RTT150 for clusters in the PSZ1 catalogue with previously

published photometric redshifts (e.g. Wen et al. 2012), and
new photometric redshifts estimated from the RTT150 data of
14 clusters still lacking spectroscopic redshifts.

Below, we give examples of the Planck SZ cluster identifi-
cations with RTT150 data, showing cases where a 1.5 m class
telescope can be used to identify clusters, while DSS and SDSS
data are insufficient for these purposes. We then give notes
on some individual objects from Table 1, discuss complicated
cases where more data in SZ or X-rays are needed, and identify
some probable false clusters among the objects observed in our
programme.

6.1. Cluster identification examples

PSZ1 G060.12+11.42: example of a cluster at low Galactic lat-
itude (b ≈ −11.4◦). From Fig. 7, one can see that it is difficult
to identify the surface density enhancement of cluster member
galaxies here because of the large number of Galactic stars in
the field (left panel, i′-band RTT150 image). This cluster can
be identified using the red sequence in the colour-magnitude di-
agram (right panel). It cannot be identified in DSS, and there
are no SDSS imaging data in this field. Additional imaging data
were needed, easily obtained with a 1.5 m class telescope.

PSZ1 G076.44+23.53: example of a cluster with a brightest
cluster galaxy much more luminous than other cluster galaxies.
Clusters of this type are usually classified as fossil groups (e.g.
Voevodkin et al. 2010), see Fig. 8. This cluster appears as almost
a single elliptical galaxy in DSS and most of cluster member
galaxies are not detected, since they are much fainter than the
brightest galaxy. Such clusters are therefore difficult to identify
with DSS even at low redshifts, e.g. at z = 0.169 in this case.
There are no SDSS data in this field. Additional imaging data
were thus needed to identify this cluster.

PSZ1 G048.22-65.03: this cluster is too distant to be identified
with DSS (z ≈ 0.42, see Fig. 9). It could have been identified at
the depth of SDSS, but there are no SDSS data for this field.

PSZ1 G084.04+58.75: this cluster is too distant to be identified
with SDSS (z = 0.731, see Fig. 10).

6.2. Notes on individual objects

PSZ1 G066.01-23.30: there is a clear concentration of galaxies
that form a well-defined red sequence, shown within the circle
in Fig. 11. However, the offset from the SZ source centroid is
large, about 4′, so that there may be astrophysical contamination
or some other sources of SZ signal present as well. The spec-
trum of the central elliptical galaxy in this concentration con-
tains prominent emission lines. From the measured intensity ra-
tio lg([N]λ6583/Hα) ≈ 0, we conclude that this galaxy con-
tains a narrow-line AGN (Veilleux & Osterbrock 1987).

PSZ1 G070.91+49.26: in addition to a double cluster at z =
0.607, there is also a smaller foreground cluster at z = 0.458 (the
redshift was also measured at RTT), which should produce an
SZ signal. The positions of these clusters in the field centred on
the Planck SZ source coordinates are shown in Fig. 12. In the
published PSZ1 catalogue this SZ source was incorrectly identi-
fied with smaller cluster at z = 0.458, which should provide only
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Table 1. Clusters from the PSZ1 catalogue observed with the RTT150.

Position (J2000)

Name RA Dec z New ID Notes

PSZ1 G034.78+31.71. . . . . . 16 58 38.6 +15 19 13 0.480
PSZ1 G037.69−46.90. . . . . . 21 50 36.8 −16 22 29 0.263 +

PSZ1 G038.71+24.47. . . . . . 17 31 59.1 +15 40 42 0.0836
PSZ1 G042.33+17.46. . . . . . 18 04 16.1 +16 02 16 0.50a +

PSZ1 G045.54+16.26. . . . . . 18 14 13.3 +18 17 04 0.24a +

PSZ1 G046.13+30.75. . . . . . 17 17 05.7 +24 04 18 0.569c,d +

PSZ1 G048.22−65.03. . . . . . 23 09 51.0 −18 19 57 0.42a +

PSZ1 G049.04+25.26. . . . . . 17 43 30.4 +24 44 19 0.141c ACO 2279
PSZ1 G050.07−27.29. . . . . . 20 58 53.0 +01 24 11 0.334c

PSZ1 G054.94−33.37. . . . . . 21 28 23.4 +01 35 37 0.392
PSZ1 G055.72+17.58. . . . . . 18 25 30.0 +27 44 27 0.194
PSZ1 G056.76−11.60. . . . . . 20 18 48.2 +15 07 25 0.122b ZwCl 2016.6+1457
PSZ1 G059.20+32.92. . . . . . 17 20 49.9 +35 20 50 0.383c +

PSZ1 G059.98−18.66. . . . . . 20 50 27.1 +13 45 18 0.221
PSZ1 G060.12+11.42. . . . . . 18 58 46.0 +29 15 34 0.30a +

PSZ1 G063.92−16.75. . . . . . 20 52 51.7 +17 54 23 0.393b +

PSZ1 G065.13+57.53. . . . . . 15 16 02.0 +39 44 26 0.685b,d +

PSZ1 G066.01−23.30. . . . . . 21 19 26.2 +15 21 06 0.248b +

PSZ1 G066.24+20.82. . . . . . 18 27 26.5 +38 14 50 0.278
PSZ1 G066.41+27.03. . . . . . 17 56 52.6 +40 08 07 0.576c

PSZ1 G067.02−20.80. . . . . . 21 14 01.4 +17 43 14 0.334 +

PSZ1 G069.92−18.89. . . . . . 21 15 09.6 +21 01 10 0.308 +

PSZ1 G070.91+49.26. . . . . . 15 56 25.6 +44 40 42 0.607b,d

PSZ1 G071.57−37.96. . . . . . 22 17 15.8 +09 03 10 0.25a ACO 2429
PSZ1 G073.22+67.57. . . . . . 14 20 40.3 +39 55 11 0.609c,d +

PSZ1 G076.44+23.53. . . . . . 18 28 21.8 +48 04 29 0.169 +

PSZ1 G079.33+28.33. . . . . . 18 02 09.6 +51 37 11 0.204 ZwCl 1801.2+5136
PSZ1 G079.88+14.97. . . . . . 19 23 12.1 +48 16 14 0.0998b +

PSZ1 G080.11−77.29. . . . . . 00 15 24.4 −17 30 34 0.43a +

PSZ1 G084.04+58.75. . . . . . 14 49 00.2 +48 33 28 0.731b,d +

PSZ1 G084.41−12.43. . . . . . 21 37 46.6 +35 35 51 0.273b +

PSZ1 G085.71+10.67. . . . . . 20 03 13.4 +51 20 51 0.0805b +

PSZ1 G087.47+37.65. . . . . . 16 57 20.7 +58 28 54 0.113
PSZ1 G090.82+44.13. . . . . . 16 03 35.1 +59 11 41 0.269c

PSZ1 G092.27−55.73. . . . . . 23 44 23.1 +03 04 42 0.349c

PSZ1 G095.37+14.42. . . . . . 20 14 29.2 +61 23 30 0.119 +

PSZ1 G098.24−41.15. . . . . . 23 34 24.1 +17 59 23 0.436
PSZ1 G100.18−29.68. . . . . . 23 21 02.9 +29 12 52 0.485
PSZ1 G101.52−29.96. . . . . . 23 26 26.6 +29 21 44 0.227
PSZ1 G102.00+30.69. . . . . . 17 47 13.0 +71 23 17 0.214b ZwCl 1748.0+7125
PSZ1 G106.15+25.76. . . . . . 18 56 51.7 +74 55 53 0.588b,d +

PSZ1 G107.66−58.31. . . . . . 00 19 37.6 +03 37 49 0.267c

PSZ1 G108.18−11.53. . . . . . 23 22 29.7 +48 46 30 0.336b,d

PSZ1 G108.26+48.66. . . . . . 14 27 04.6 +65 39 47 0.674b,d +

PSZ1 G109.14−28.02. . . . . . 23 53 12.7 +33 16 11 0.457c,d +

PSZ1 G114.81−11.80. . . . . . 00 01 14.7 +50 16 33 0.228b +

PSZ1 G115.70+17.51. . . . . . 22 26 28.3 +78 16 58 0.50a

PSZ1 G118.40+42.23. . . . . . 13 42 02.2 +74 25 21 0.478 +

PSZ1 G121.09+57.02. . . . . . 12 59 33.0 +60 04 12 0.344
PSZ1 G123.55−10.34. . . . . . 00 55 24.4 +52 29 20 0.107b +

PSZ1 G127.02+26.21. . . . . . 05 58 02.3 +86 13 50 0.574b,d +

PSZ1 G129.07−24.12. . . . . . 01 20 00.0 +38 25 18 0.425b +

PSZ1 G130.26−26.53. . . . . . 01 23 39.6 +35 53 58 0.216 ZwCl 0120.8+3538
PSZ1 G134.31−06.57. . . . . . 02 10 25.1 +54 34 09 0.44a +

PSZ1 G134.64−11.77. . . . . . 02 02 37.8 +49 26 28 0.207b

PSZ1 G138.11+42.03. . . . . . 10 28 09.7 +70 34 26 0.496 +

PSZ1 G139.61+24.20. . . . . . 06 21 48.9 +74 42 06 0.267
PSZ1 G141.73+14.22. . . . . . 04 41 05.8 +68 13 16 0.833b,d +

PSZ1 G149.38−36.86. . . . . . 02 21 33.8 +21 21 58 0.170 ACO 344

Notes. (a) Estimated from RTT photometric data. (b) Not published in the PSZ1 (Planck Collaboration XXIX 2014). (c) Spectroscopic redshift. The
redshift given in the PSZ1 catalogue (Planck Collaboration XXIX 2014) is photometric. (d) Measured at the BTA 6 m telescope of SAO RAS.
(e) Redshift from the PSZ1 catalogue, given here for completeness.
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Table 1. continued.

Position (J2000)

Name RA Dec z New ID Notes

PSZ1 G151.80−48.06. . . . . . 02 08 06.5 +10 27 19 0.202b ACO 307
PSZ1 G155.95−72.13. . . . . . 01 30 42.1 −11 51 39 0.620e +

PSZ1 G156.88+13.48. . . . . . 05 45 41.3 +55 30 40 0.235b

PSZ1 G157.44+30.34. . . . . . 07 48 54.3 +59 42 06 0.45a [ATZ98] B100
PSZ1 G157.84+21.23. . . . . . 06 40 32.7 +57 45 36 0.43a +

PSZ1 G170.22+09.74. . . . . . 06 03 16.8 +42 14 42 0.228b 1RXS J060313.4+42123
PSZ1 G171.01+15.93. . . . . . 06 35 47.9 +44 10 15 0.281b +

PSZ1 G172.93+21.31. . . . . . 07 07 38.1 +44 19 55 0.331 +

PSZ1 G183.26+12.25. . . . . . 06 43 09.9 +31 50 55 0.85a +

PSZ1 G188.56−68.86. . . . . . 02 11 44.2 −17 00 46 0.174b ACO 2985
PSZ1 G205.56−55.75. . . . . . 03 15 22.0 −18 12 22 0.31a +

PSZ1 G209.80+10.23. . . . . . 07 22 23.8 +07 24 31 0.67 +

PSZ1 G216.77+09.25. . . . . . 07 31 20.3 +00 49 24 0.273c +

PSZ1 G222.75+12.81. . . . . . 07 54 58.6 −02 41 29 0.369 +

PSZ1 G223.04−20.27. . . . . . 05 54 37.3 −17 44 35 0.19a ACO 551
PSZ1 G224.01−11.14. . . . . . 06 30 55.3 −14 51 00 0.62a

PSZ1 G338.97+35.62. . . . . . 14 52 42.2 −18 35 05 0.297b +

Fig. 5. Example of the spectrum of the central elliptical galaxy of cluster at z = 0.278 (PSZ1 G066.24+20.82), obtained at RTT150 using the
TFOSC spectrometer (left), together with χ2 from the cross-correlation with an elliptical galaxy template spectrum (right).

Table 2. Clusters below the 4.5σ limit of the PSZ1 catalogue observed with the RTT150.

Position (J2000)

Name RA Dec z New ID

PLCK G201.42−56.60. . . . . . 03 08 18.1 −16 26 01 . . . +

PLCK G210.76+08.02. . . . . . 07 16 08.1 +05 34 01 0.296 +

PLCK G201.03+29.90. . . . . . 08 23 55.5 +22 43 51 0.668a +

PLCK G244.13+26.11. . . . . . 09 24 06.2 −12 19 05 . . . +

PLCK G164.28+52.61. . . . . . 10 16 19.9 +50 10 29 0.488
PLCK G041.62+57.43. . . . . . 15 18 22.3 +27 10 18 . . . +

PLCK G050.55−25.00. . . . . . 20 51 56.4 +02 56 43 . . . +

Notes. (a) Measured at the BTA 6 m telescope of SAO RAS.
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Fig. 6. The distribution of cluster optical centres offsets relative to their
SZ position measured with Planck.

a weak contribution to the measured SZ signal as compared to
the more distant and rich double cluster at z = 0.607.

PSZ1 G092.27-55.73: while this object was photometrically
identified as a double cluster, redshift measurements show that
the two cD galaxies separated by 3.′4 (Fig. 13) are located at
significantly different redshifts, z = 0.3487 and z = 0.3387.
Provided that the angular separation between cD galaxies cor-
responds to ≈1 Mpc projected distance at the redshift of these
galaxies, the observed ≈3000 km s−1 radial velocity difference
gives the lower limit of M > 2 × 1015 M⊙ for gravitationally
bound system mass, which is ≈50 times larger than the mass
of this object estimated from its SZ signal detected by Planck.
Therefore, this redshift difference is too large for a single gravi-
tationally bound object and this SZ detection most likely consists
of two projected clusters. It is impossible to separate the mem-
bers of these two clusters in a photometric red sequence because
of their close redshifts. To estimate the richness of each cluster,
additional X-ray observations are required or, even better, spec-
troscopic measurements.

PSZ1 G100.18-29.68: in addition to a rich galaxy cluster at z =
0.485, there are also a few foreground elliptical galaxies at z =
0.178, indicated with the arrows in Fig. 14. These galaxies can
also be identified in the upper right panel of Fig. 2 as ones with
bluer colours than the member galaxies of the present cluster.

PSZ1 G109.14-28.02: in addition to the rich galaxy cluster at
z = 0.457, there are two galaxy groups at z = 0.234 (the red-
shift of one of these groups was also measured spectroscopically
at RTT150), a nearby elliptical galaxy at z = 0.0418 (2MASX
J23524477+3319474), and a bright star in the field (Fig. 15). The
main part of the SZ signal detected by Planck is most probably

produced by the rich cluster at z = 0.457; however, other objects
may also affect the photometry of the detected SZ source.

PSZ1 G227.89+36.58: this cluster is at z ≈ 0.47. There is also
a foreground group offset by about 4′ to the SW at z = 0.2845
(ZwCl 0924.4+0511, MaxBCG J141.76983+04.97937). From
comparison of optical richnesses, we conclude that the cluster
at z ≈ 0.47 is much more massive, and should produce most of
the SZ signal detected by Planck. The SZ photometry, however,
may be affected by the foreground group.

6.3. Complicated cases

In a few cases, optical data are not sufficient to reliably identify
observed SZ sources. In order to determine the nature of these
objects, additional SZ or X-ray data are needed.

PSZ1 G103.50+31.36: this SZ source may be identified with
an irregular group of galaxies (Fig. 16). Its redshift can be es-
timated photometrically as z ≈ 0.238; however, the very bright
star HR 6606 (mV = 5.8) is located at the edge of the field, about
5.′6 from the Planck position. HR 6606 is detected by Planck
with flux density about 1 Jy at 857 GHz (Planck Collaboration
XXVIII 2014), and probably affects the photometry of the de-
tected SZ source, artificially increasing its significance.

PSZ1 G115.70+17.51: there is a group of galaxies with red
sequence colour corresponding to a redshift of z ≈ 0.50 near the
centroid of the SZ detection (Fig. 17), and also a few galaxies at
z = 0.1112 (measured spectroscopically at RTT). However, there
is a lot of Galactic cirrus in the field, as well as a very bright star
(HR 8550, mV = 6.8) approximately 7′ from the SZ position,
which is detected by Planck at 857 GHz (where the expected
SZ increment is negligible) at about 10 Jy (Planck Collaboration
XXVIII 2014). Both the cirrus and the star likely affect the SZ
signal detected by Planck.

We obtained deep r′ and i′ images with the RTT150
for nine more objects from the PSZ1 cluster catalogue
(G037.67+15.71, G115.34-54.89, G115.59-44.47, G146.00-
49.42, G159.26+71.11, G167.43-38.04, G184.50-55.73,
G194.68-49.73, and G199.70+37.01) and for 30 sources
from intermediate versions of the Planck catalogue that were
eventually not confirmed as part of the PSZ1 catalogue.
Out of the nine sources from the PSZ1 catalogue, in four
cases (G037.67+15.71, G159.26+71.11, G184.50-55.73, and
G199.70+37.01) we detected a few elliptical galaxies in the
field, which, however, cannot be identified as a galaxy cluster on
the basis of our data. In the other cases, bright stars (G115.34-
54.89 and G146.00-49.42) and Galactic cirrus (G115.59-44.47,
G167.43-38.04, and G146.00-49.42) most probably affect the
measurements. We conservatively maintained these objects in
the PSZ1 catalogue; however, they will need to be assessed in
the future by additional observations, in particular in X-rays.

7. Conclusions

This article is a companion paper to the Planck catalogue of SZ
sources published in Planck Collaboration XXIX (2014). We
present here the results of approximately three years of opti-
cal observations of Planck SZ sources with the Russian-Turkish
1.5 m telescope. Approximately 60 clear dark and grey nights –
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Fig. 7. PSZ1 G060.12+11.42, a cluster at low Galactic latitude (b ≈ −11.◦4). Left: i′-band RTT150 image. Right: colour−magnitude diagram of
extended objects near the cluster centre in the area enclosed by the dashed circle in the left panel. The dotted line indicates the red sequence.

Fig. 8. PSZ1 G076.44+23.53, a cluster that could be classified as a fossil group (e.g. Voevodkin et al. 2010). Left: i′-band RTT150 image. Right:
colour−magnitude diagram of extended objects near the cluster centre in the area enclosed by the dashed circle in the left panel.The dotted line
indicates the red sequence.

20% of the total clear dark and grey time at the telescope during
that period – were used for these observations. We also used ap-
proximately 32 h of clear weather at the BTA 6 m telescope of
the SAO RAS.

In total, deep direct images were obtained of more than one
hundred fields in multiple filters. We identified 47 previously un-
known clusters, 41 of which were included in the PSZ1 cata-
logue, and selected galaxies to be used in determining cluster
redshifts. We measured redshifts of 65 Planck clusters, includ-
ing the redshifts of 12 distant clusters measured at the 6 m BTA
telescope. Thirty-one of these redshifts were measured after

publication of the PSZ1 catalogue (Planck Collaboration XXIX
2014) and are published here for the first time. For 14 more clus-
ters, we give photometric redshift estimates. Some clusters with
only a few elliptical galaxies or with possible contamination by
stars and galactic dust have been kept in the PSZ1 catalogue.

We identified six cases of projections (see Sect. 6.2) among
the clusters observed in our work, i.e. about 8% of the sample.
The fraction of projected clusters seems to be higher than in
other surveys. For example, only 2 out of 242 clusters are found
at the angular separation <5′ in the 400d X-ray galaxy clus-
ter survey (Burenin et al. 2007), and no clusters at <5′ angular
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Fig. 9. PSZ1 G048.22-65.03 RTT150 r′-band image. This cluster is
too distant to be identified with DSS (z ≈ 0.42) and there are no SDSS
data in this field.

Fig. 10. PSZ1 G084.04+58.75 RTT150 i′-band image. This cluster is
too distant to be identified with SDSS (z = 0.731).

separation are found among 224 clusters detected in the South
Pole Telescope SZ survey (Reichardt et al. 2012). A simi-
lar result was obtained earlier with a sample of Planck clus-
ters validated using XMM-Newton X-ray observations (Planck
Collaboration Int. IV 2013).

We emphasize that the subsample of Planck SZ sources stud-
ied in our work is not statistically representative in any sense.
The sources observed at the RTT150 were selected from differ-
ent versions of the Planck SZ source catalogue during a two-
year period. It is therefore impossible to quantify biases in the
selection of sources from the Planck catalogue for follow-up
in this programme. If a high fraction of projections is deter-
mined in a statistically representative sample of Planck clusters,
it would imply that the detection probability of projected clusters
is significantly enhanced in the Planck data, and that projection

Fig. 11. PSZ1 G066.01-23.30 RTT150 i′-band image centred on the
Planck SZ source coordinates, dashed 2′ radius circle shows approx-
imate Planck SZ source coordinates uncertainty. The position of the
optical galaxy cluster is shown with a solid circle.

Fig. 12. PSZ1 G070.91+49.26 RTT150 i′-band image centred on the
Planck SZ source coordinates, dashed 2′ radius circle shows approxi-
mate Planck SZ source coordinates uncertainty. In addition to a double
cluster at z ≈ 0.61, there is a smaller foreground cluster at z ≈ 0.46
(shown with solid circles).

effects should be taken into account in statistical calibration of
the Planck catalogue.

In particular, it is not possible to estimate a fraction of false
sources in the Planck SZ survey from the RTT150 sample alone.
We might expect this fraction to be larger in the RTT150 sample
than in the full PSZ1 sample, since a large number of “good”
clusters immediately identified in the PSZ1 sample using DSS
and SDSS data were excluded from the RTT150 sample. On
the other hand, targets for observations were selected to con-
firm candidates suspected of being clusters on the basis of other
optical and IR data.
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Fig. 13. PSZ1 G092.27-55.73 RTT150 i′-band image, dashed circle
(2′ radius) shows the location of Planck SZ source. Two cD galaxies
and their redshifts are shown.

Fig. 14. PSZ1 G100.18-29.68 RTT150 i′-band image, dashed circle
(2′ radius) shows the location of Planck SZ source. The galaxy cluster
identified with this source is located at z = 0.485, the arrows indicate
foreground elliptical galaxies located at z = 0.177.

The RTT150 images typically reach mi′ = 23 mag. Our study
shows that imaging data from a 1.5 m class telescope can be used
successfully to identify clusters below the SDSS limit (z ≈ 0.6)
at redshifts up to z ≈ 1, and also in fields where no SDSS
imaging data exist, e.g. at low Galactic latitudes in the North.
A negative result in our optical identification programme does
not necessarily mean that an SZ detection is false. Even more
distant clusters may be identified using better optical data and
also with better data in the SZ and X-ray domains. Follow-up
programmes are now also running at other telescopes – NOT,
INT, GTC, TNG, WHT, NTT, and others – and optical identifi-
cations of Planck cluster candidates could be completed within
a few years.

Fig. 15. PSZ1 G109.14-28.02 RTT150 i′-band image, dashed circle
(2′ radius) shows the location of Planck SZ source. In addition to the
rich cluster at z = 0.457 (solid circle), there are also two galaxy groups
at z = 0.234, a nearby elliptical galaxy at z = 0.0418, and a bright star
in the field.

Fig. 16. PSZ1 G103.50+31.36 RTT150 r′-band image, dashed circle
(2′ radius) shows the location of Planck SZ source. The SZ source may
be identified with the galaxy group shown in the solid circle. However,
there is also a very bright star (mV = 5.8) at the edge of the field, 5.′6
from the Planck position and detected by Planck, which most probably
affects the SZ signal.
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Fig. 17. PSZ1 G115.70+17.51 RTT150 i′-band image, dashed circle
(2′ radius) shows the location of Planck SZ source. The source may be
identified with the galaxy group at z ≈ 0.5, shown in the solid circle.
However, there are Galactic cirrus clouds throughout the field, and a
very bright star (mV = 6.8) about 7′ away, which most probably affect
the SZ signal.
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