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1 Introduction

The Higgs particle has just been discovered at the Large Hadron Collider (LHC) experi-

ment [1, 2]. In addition, the results from the experiment are consistent with the standard

model (SM), and an evidence of new physics such as supersymmetry (SUSY) is not ob-

tained. Currently, the experimental results strongly constrain the presence of SUSY at

low energy although the minimal supersymmetric standard model (MSSM) is an attractive

candidate for new physics beyond the SM. Thus, a question, “How large is new physics

scale?”, might become important for the SM and new physics. One can consider several

scenarios such as high scale supersymmetric models or a scenario without SUSY in which

the SM is valid up to the Planck scale Mpl, etc.

As an example of the later scenario, it was pointed out that imposing a constraint

that the SM Higgs potential has two degenerate vacua, in which one of them is at the

Planck scale, leads to the top mass 173± 5GeV and the Higgs mass 135± 9GeV [3]. More

recent work [4] showed that an asymptotic safety scenario of gravity predicts 126GeV Higgs

mass with a few GeV uncertainty. In these two scenarios, the boundary conditions (BCs)

of the vanishing Higgs self-coupling (λ(Mpl) = 0) and its β-function (βλ(Mpl) = 0) are

imposed at the Planck scale. In addition to these two BCs, the work [5] also discussed

the Veltman condition (StrM2(Mpl) = 0) and the vanishing anomalous dimension of the

Higgs mass (γmh
(Mpl) = 0) at the Planck scale. It was found that the four BCs yield a

Higgs mass range of 127–142GeV. Thus, combining these BCs can interestingly predict

values of the Higgs and top masses in the SM close to the experimental ones but a slightly

heavier Higgs mass and/or lighter top mass than experimental ones are generally predicted

from these BCs as shown in [6] (see also [7–13] for the latest analyses). BCs of λ(Mpl) =

0 and StrM2(Mpl) = 0 mean that there exists an approximately flat direction in the

Higgs potential,1 which might be adopted to the Higgs inflation [14–23]. In addition, the

1In order to confirm the existence of the flat direction, one should know the full ultraviolet (UV) com-

pletion. In the work, we assume an UV theory yielding the BCs for the flat direction at the Planck scale.

– 1 –



J
H
E
P
0
4
(
2
0
1
4
)
0
2
9

quadratic (logarithmic) divergence for the Higgs mass disappear at the Planck scale under

the Veltman condition (the vanishing anomalous dimension γmh
(Mpl) = 0). In this work,

we investigate the three BCs in a gauge singlet extension of the SM.

One important motivation for the gauge singlet extension of the SM is that the SM

does not include a dark matter (DM). In the extension, the gauge singlet scalar can be

DM when the scalar has odd parity under an additional Z2 symmetry [24] (see also [25–

27]). Once a gauge singlet scalar is added to the SM, an additional positive contribution

from new scalar coupling appears in the β-function of the Higgs self-coupling and the

Veltman condition (and the anomalous dimension of the Higgs mass).2 This means that

the discussion of the three BCs at the Planck scale is modified from the SM. Since it

actually seems difficult to reproduce 126GeV Higgs mass and 173.07± 1.24GeV top pole

mass [36] (see also [37, 38]) at the same time (i.e. a slightly heavier Higgs and/or a lighter

top masses than the experimental center values are required) under the above three BCs

at the Planck scale in the SM, it is interesting to investigate if the BCs could be realized

with the center values of the Higgs and top masses in the singlet scalar DM extension of

the SM. In this work, we take the following setup: (i) we consider a simple framework, in

which only one gauge singlet real scalar is added to the SM. (ii) The gauge singlet scalar

is DM. (iii) All scalar quartic couplings in the model can be perturbatively treated up to

the Planck scale.

The paper is organized as follows: in section 2, we investigate the three BCs at the

Planck scale in the above framework. As a result, we will find that the vanishing self-

coupling and Veltman condition at the Planck scale are realized with the 126GeV Higgs

mass and top pole mass, 171.8GeV . Mt . 173.5GeV, where a correct abundance of

scalar dark matter is obtained with mass of 300GeV . mS . 1TeV. It means that the

Higgs potential is flat at the Planck scale, and this situation cannot be realized in the SM

with the top pole mass. Section 3 is devoted to the summary.

2 Boundary conditions at the Planck scale

We consider the SM with a gauge singlet real scalar S, and investigate the values of scalar

quartic couplings at the Planck scale by solving renormalization group equations (RGEs)

in the model. The relevant Lagrangian of the model and the RGEs for the scalar quartic

couplings are given by

L = LSM + LS , (2.1)

LSM ⊃ −λ

(

|H|2 − v2

2

)2

, (2.2)

LS = −m̄2
S

2
S2 − k

2
|H|2S2 − λS

4!
S4 + (kinetic term) , (2.3)

2See [28–30] for discussions of the vacuum stability and triviality in the SM with a gauge singlet real

scalar. See also [31] and references therein for implications of the LHC data to models with an extra singlet

scalar, [32–34] for the classically conformal U(1)B−L extended SM, [35] for a model of electroweak and

conformal symmetry breaking.
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and

(4π)2
dX

dt
= βX (X = λ, k, λS) , (2.4)

with

βλ =















0 for µ < mH

24λ2+12λy2−6y4−3λ(g′2+3g2)+ 3
8

[

2g4+(g′2+g2)2
]

for mH ≤ µ < mS

24λ2+12λy2−6y4−3λ(g′2+3g2)+ 3
8

[

2g4+(g′2+g2)2
]

+ k2

2
for mS ≤ µ

,

(2.5)

βk =

{

0 for µ < mS

k
[

4k + 12λ+ 6y2 − 3
2
(g′2 + 3g2) + λS

]

for mS ≤ µ
, (2.6)

βλS
=

{

0 for µ < mS

3λ2
S + 12k2 for mS ≤ µ

, (2.7)

respectively, where we assume that the Higgs mass mH is smaller than DM mass mS .
3 H is

the SM Higgs doublet, v is the vacuum expectation value (VEV) of the Higgs as 246GeV, y

is the top Yukawa coupling, t is defined as t ≡ lnµ, and µ is a renormalization scale within

the range of MZ ≤ µ ≤ Mpl. We also impose an additional Z2 symmetry on the model.

Only the gauge singlet scalar has odd parity while all the SM fields have even parity under

the symmetry. We give some comments on properties of the three scalar quartic couplings

obeying eqs. (2.4)–(2.7):

• The right-hand side of eq. (2.6) is proportional to k itself. Thus, if we take a small

value of k(MZ), where MZ is the Z boson mass, a change of value in the running of

k(µ) is also small and remained in a small value. As a result, the running of λ closes

to that of the SM.

• It is known as the vacuum instability that the value of λ becomes negative before

the Planck scale in the SM with the experimental center values of the Higgs and

top masses. This is due to the negative contribution from the top Yukawa coupling

to the β-function of λ as in eq. (2.5). The minimum in the running of λ is around

O(1017)GeV. It is also shown from NNLO computations [6] that λ can remain

positive up to the Planck scale when 127GeV . mh . 130GeV for Mt = 173.1 ±
0.6GeV (or when 171.3GeV . Mt . 171.7GeV for mh = 126GeV).

• Once the gauge singlet scalar is added to the SM, the additional contribution of k2/2

with the plus sign appears in the β-function of λ. This contribution can lift the

running of λ, and thus, λ can be around zero at the Planck scale.

• The position of the minimum in the running of λ comes to lower energy scale than

O(1017)GeV by adding the gauge singlet scalar because the contribution of k2/2 in

eq. (2.5) becomes large at a high energy scale compared to the electroweak (EW)

scale.
3If mS < mH , βλ is zero for µ < mH and is given by the third line of right-hand side of eq. (2.5) for

mH ≤ µ.
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• The realization of the vanishing λ around the Planck scale by adding the gauge singlet

scalar means that λ becomes negative before the Planck scale due to the above third

and fourth properties of λ. Then, λ returns to zero.

• The running of λS is an increasing function of t (or µ). There is not a direct con-

tribution from λS to the β-function of λ but the running of λS affects on that of λ

through the running of k.

We investigate the case that the gauge singlet scalar is DM with the three BCs

(λ(Mpl) = 0, βλ(Mpl) = 0, and StrM2(Mpl) = 0) in this model. Since we impose the

odd-parity on the singlet scalar under the additional Z2 symmetry, the singlet can be a

candidate for DM. Thus, ΩSh
2 = 0.119 must be reproduced in the case, where ΩS is the

density parameter of the singlet and h is the Hubble parameter.

2.1 Vanishing Higgs self-coupling: λ(Mpl) = 0

First, we consider the BC that λ is zero at the Planck scale Mpl = 1018GeV, λ(Mpl) = 0.

The BCs of the Higgs self-coupling and top Yukawa coupling at low energy are taken as

λ(MZ) =
m2

h

2v2
= 0.131 , y(Mt) =

√
2mt(Mt)

v
, (2.8)

for the RGEs, where mh = 126GeV is taken, Mt is the top pole mass as 173.07±1.24GeV,

and mt is the MS mass as 160+5
−4GeV [36].4

Let us solve the RGEs, eqs. (2.4)–(2.7). Gray dots in figure 1(a) show the region

satisfying |λ(Mpl)| < 10−2 and ΩSh
2 = 0.119. In the figure, the horizontal axis is the gauge

singlet DM mass defined by mS ≡
√

m̄2
S + kv2/2 and the vertical axis is the top pole mass.

The bounds of top mass 173.07±1.24GeV are also depicted by the horizontal dashed lines.

Figure 1(b) is a typical example of the runnings of the scalar quartic couplings satisfying the

above conditions (and the Veltman condition discussed later). The horizontal and vertical

axes are the renormalization scale and the values of scalar quartic couplings, respectively.

Black, blue, and red curves indicate the runnings of λ, k, and λS , respectively. Initial

conditions for the corresponding RGEs are k(MZ) = 0.24, λS(MZ) = 0.34, Mt = 173GeV,

and mS = 800GeV with eq. (2.8).

It can be seen from figure 1(a) that |λ(Mpl)| < 10−2 can be satisfied in a region of

85GeV . mS . 1.1 × 103GeV with the corresponding top pole mass, 171.8GeV . Mt .

173.8GeV. Such a DM mass region will be checked by the future XENON100 experiment

with 20 times sensitivity of the current data [39]. One can also see that a larger top mass

requires a larger DM mass in the region of mS & 102GeV. This is due to the following

reason: a larger top mass needs a larger value of k in order to realize the tiny value of λ at

the Planck scale. And a larger k requires a larger DM mass to give the correct abundance

in the range of mS & 102GeV (e.g., see [29, 30, 39]).

4We also take the following values as [36], sin2 θW (MZ) = 0.231, α−1
em = 128, αs(MZ) = 0.118 for the

parameters in the EW theory, where θW is the Weinberg angle, αem is the fine structure constant, and αs

is the strong coupling, respectively.
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Figure 1. (a) Regions satisfying the BCs at the Planck scale, in which conditions |λ(Mpl)| < 10−2,

| StrM2(Mpl)/v
2| < 10−2, and |γmh

/m2
h
(Mpl)| < 10−2 are depicted as gray, (deep and light)

red, and (deep and light) blue, respectively. The deep and light red (blue) dots indicate 10−5 <

λS(MZ) < 0.1 and 0.1 < λS(MZ) < 1 for | StrM2(Mpl)/v
2| < 10−2 (|γmh

/m2
h
(Mpl)| < 10−2),

respectively. (b) A typical example of runnings of λ, k, and λS , whose initial conditions are

specified by k(MZ) = 0.24, λS(MZ) = 0.34. The parameter set of the figure (b) corresponds to a

point of (mS ,Mt) = (800GeV, 173GeV) in the figure (a).

In order to realize the correct abundance of DM in mS . 103GeV, k(MZ) . 0.3 is

needed. Thus, k(Mpl) is not also large (k(Mpl) < 1) for the realization of DM. Since we

have also imposed the condition of 0 < λS(Mpl) < 1 in the analyses, the model can be

described by a perturbative theory up to the Planck scale. On the other hand, the value

of λS does not actually affect on the abundance of DM. Thus, the region described by the

gray dots in figure 1(a) is not changed even with the condition of λS(Mpl) > 1.

One might suggest the Higgs inflation by the use of the region satisfying λ(Mpl) = 0,

which is included in gray dots of figure 1(a), but it is not possible.5 Since λ(µ) < 0

(108GeV . µ < Mpl) and λ(Mpl) = 0, there is a global minimum of the potential between

the EW and Planck scales. If one identifies the Higgs with the inflaton, the inflaton rolls

downslope to the global minimum not to the EW one. Thus, one must consider the other

inflation models.

The smallness of λ(Mpl) predicting close values of the Higgs and top masses to exper-

imental ones at low energy motivates one to investigate the BC of λ(Mpl) = 0 and/or the

possibility of the Higgs inflation. On the other hand, the value of λS does not strongly

affect the SM (Higgs and top masses), DM sectors, and other cosmology compared to that

of λ (and k which determines the abundance of DM). Thus, we focus only on the BC of

λ(Mpl) = 0 in this work. If there could be phenomenological and/or cosmological motiva-

tions to impose λS(Mpl) = 0, the discussions of the realization of the BC might also be

interesting.

5If one considers λ(µ) > 0 and very small λ(Mpl), one would have a successful Higgs inflation with a

non-minimal coupling of the Higgs field to the Ricci curvature scalar.
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2.2 Veltman condition: StrM2(Mpl) = 0

The Veltman condition, which indicates a disappearance of the quadratic divergence on

the 1-loop radiative correction to the bare Higgs mass, is modified to

StrM2

v2
≡ 6λ+

k

2
+

3

4
g′2 +

9

4
g2 − 6y2 = 0 , (2.9)

where the term k/2 in eq. (2.9) is new contribution from k|H|2S2/2 interaction in the SM

with gauge singlet scalar. In the SM, the value of the left-hand side of eq. (2.9) without k/2

term at the Planck scale is −0.291 when one takes mh = 126GeV and Mt = 173.07GeV.

We also show the region satisfying | StrM2(Mpl)/v
2| < 10−2 and ΩSh

2 = 0.119 for

the SM with the singlet DM in figure 1(a) by deep and light red dots. The deep and light

red dots indicate 10−5 < λS(MZ) < 0.1 and 0.1 < λS(MZ) < 1, respectively. One can see

that | StrM2(Mpl)/v
2| < 10−2 can be satisfied in a region of 180GeV . mS . 1TeV and

171.8GeV . Mt . 173.6GeV with the 126GeV Higgs mass and the correct abundance

of DM. It must be noted that both the vanishing λ and the Veltman condition can be

satisfied in the region of

300GeV . mS . 1TeV, 172GeV . Mt . 173.6GeV. (2.10)

We will return to this point later. This DM mass region will also be checked by the future

XENON100 experiment with 20 times sensitivity of the current data [39]. One can also

see that a larger top mass requires a larger DM mass. The reason is similar to the case of

the vanishing λ condition, i.e. a larger top mass needs a larger value of k in order to cancel

the negative contribution from −6y2 term at the Planck scale, and thus a larger k requires

a larger DM mass to give the correct abundance in the range of mS & 102GeV.

We also comment on the anomalous dimension for the Higgs mass defined by

(4π)2
dm2

h

dt
= γmh

, (2.11)

which indicates the logarithmic divergence. It is also modified to

γmh
= m2

h

(

12λ+ 6y2 − 9

2
g2 − 3

2
g′2

)

+ 2km2
S , (2.12)

where the last term of the right-hand side of eq. (2.12) is new contribution from the gauge

singlet scalar. The value of the anomalous dimension for the Higgs mass in the SM at the

Planck scale is (γSMmh
/m2

h)|µ=Mpl
≃ −0.695. It turns naively out that a singlet mass around

the EW scale can cancel the negative value of the anomalous dimension from the SM.

In fact, the deep and light blue dots in figure 1(a) show a region satisfying

|γmh
/m2

h(Mpl)| < 10−2 and ΩSh
2 = 0.119 at the same time. The deep and light blue

dots indicate 10−5 < λS(MZ) < 0.1 and 0.1 < λS(MZ) < 1, respectively. One can see that

|γmh
/m2

h(Mpl)| < 10−2 can be satisfied in a region of 200GeV . mS . 300GeV with the

corresponding top pole mass, 171.8GeV . Mt . 174.3GeV. A larger top mass leads a

smaller value of anomalous dimension due to 12λ term in eq. (2.12). Therefore, a larger

– 6 –
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top mass requires a larger value of k (equivalently to mS). However, the magnitude of

the decrease of the anomalous dimension by a larger top mass is smaller than those of λ

and StrM2/v2 because the sign of contribution from the top Yukawa coupling only in the

anomalous dimension is positive unlike the λ and StrM2/v2 cases (see eqs. (2.5), (2.9),

and (2.12)). As a result, a top mass dependence of the anomalous dimension is weaker

compared to those of the vanishing λ and the Veltman condition. It should be mentioned

that there is also a region in which two conditions of the vanishing λ and γmh
can be

realized at the same time.

2.3 Vanishing beta-function of the self-coupling: βλ(Mpl) = 0

In the SM, the β-function of λ becomes tiny at the Planck scale. The value is about

βSM
λ (Mpl) ≃ 8.42× 10−4 when one takes the Higgs and top pole masses as mh = 126GeV

and Mt = 173.07GeV at low energy. Thus, this condition may also be meaningful for

theories beyond the SM around the Planck scale.

For instance, when one takes mS = 800GeV, k(MZ) = 0.24, and λS(MZ) = 0.34 in

addition to mh = 126GeV and Mt = 173.07GeV as an example in the context of the SM

with the gauge singlet field, the corresponding values of the β-function at the Planck scale

become βλ(Mpl) ≃ 6.32×10−2. Therefore, the vanishing β-function of λ at the Planck scale

in the SM with the gauge singlet cannot be satisfied because the runnings of λ is increasing

from a negative value due to the effect of the singlet field as shown in figure 1(b). In this

extension of the SM, βλ(µ) becomes zero at µ ∼ O(1015–17GeV) not the Planck scale.

According the above analyses, the BC of βλ(Mpl) = 0 cannot be realized but two

BCs of λ(Mpl) = StrM2(Mpl) = 0 can be satisfied in the model. Since the result might

indicate that all the Higgs potential is induced from a quantum correction under the current

circumstances, one has no warrant for βλ(Mpl) = 0. Thus, the non-vanishing β-function

can be compatibly understood. Furthermore, there are also two additional β-functions

(βk and βλS
) in this model. Since values of βk(Mpl) and βλS

(Mpl) cannot be zero when

we impose λ(Mpl) = 0 and the correct abundance of DM, the vanishing condition for

only βλ(Mpl) might be meaningless. Thus, in this work we take a stance of giving up the

vanishing β-function at the Planck scale to predict the Higgs and top masses, although

βλ(Mpl) = λ(Mpl) = 0 condition adopted in [3] predicted the values of the Higgs and top

masses roughly close to experimental magnitudes.

2.4 Multi coincidence

It is remarkable that there is a region, given in eq. (2.10), satisfying two independent BCs

at the Planck scale (λ(Mpl) ≃ 0 and StrM2(Mpl) ≃ 0 (or γmh
(Mpl) ≃ 0)) at the same time

with the correct abundance of the gauge singlet DM, 126GeV Higgs mass, experimentally

allowed top pole mass, and the coupling perturbativity. This double coincidence in the

above BCs, λ(Mpl) ≃ 0 and StrM2(Mpl) ≃ 0, with the correct DM abundance is just a

non-trivial result. The double coincidence means that the Higgs potential becomes flat at

the Planck scale. The gauge singlet scalar plays a crucial role for the realization, and it

becomes DM with the correct abundance in the universe at present. The double coincidence

with DM might be an alternative principle to “multiple point criticality principle” discussed

– 7 –
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Figure 2. (a) Regions satisfying the BCs with (k(Mpl), λS(Mpl)) < 4π, in which conditions

(|λ(Mpl)|, | StrM2(Mpl)/v
2|, |γmh

/m2
h
(Mpl)|) < 10−2 are depicted as gray, red, and blue dots,

respectively. The deep, light, and the lightest red (blue) dots indicate 10−5 < λS(MZ) < 0.1,

0.1 < λS(MZ) < 1, 1 < λS(MZ) < 2 for | StrM2(Mpl)/v
2| < 10−2 (|γmh

/m2
h
(Mpl)| < 10−2),

respectively. (b) Regions satisfying the BCs with (k(Mpl), λS(Mpl)) < 4π, in which conditions

(|λ(Mpl)|, | StrM2(Mpl)/v
2|, |γmh

/m2
h
(Mpl)|) < (10−2, 0.05, 0.05) are depicted as gray, red and

blue dots, respectively.

in ref. [3], where a condition that the SM Higgs potential has two degenerate vacua was

imposed.6

In the above analyses, we have limited the values of k(Mpl) and λS(Mpl) to be less

than 1. But, when one allows the values up to 4π, the two regions for the Veltman con-

dition and the vanishing anomalous dimension are changed. We also weaken the con-

ditions of (| StrM2(Mpl)/v
2|, |γmh

/m2
h(Mpl)|) < 10−2 to < 0.05, the allowed regions

for the conditions grow wider. Figure 2 shows the cases, and figure 2(a) shows regions

satisfying the BCs with (k(Mpl), λS(Mpl)) < 4π at the Planck scale, in which condi-

tions |λ(Mpl)| < 10−2, | StrM2(Mpl)/v
2| < 10−2, and |γmh

/m2
h(Mpl)| < 10−2 are de-

picted as gray, red, and blue dots, respectively. The deep, light, and the lightest red

(blue) dots indicate 10−5 < λS(MZ) < 0.1, 0.1 < λS(MZ) < 1, 1 < λS(MZ) < 2 for

| StrM2(Mpl)/v
2| < 10−2 (|γmh

/m2
h(Mpl)| < 10−2), respectively. One can see that the re-

gion satisfying | StrM2(Mpl)/v
2| < 10−2 and |γmh

/m2
h(Mpl)| < 10−2 grow wider compared

to the case shown in figure 1(a) when one allows the value of λS(MZ) up to 2, which corre-

sponds to λS(Mpl) < 4π. Such a relatively large λS(MZ) can effectively increase the value

of k enough to cancel the negative contribution in the Veltman condition and anomalous

dimension at the Planck scale even when one takes a smaller k(MZ). In this case, the

double coincidence of λ(Mpl) ≃ 0 and StrM2(Mpl) ≃ 0 (or γmh
(Mpl) ≃ 0) still occurs.

Figure 2(b) shows regions satisfying the weaker BCs, |λ(Mpl)| < 10−2,

| StrM2(Mpl)/v
2| < 0.05, and |γmh

/m2
h(Mpl)| < 0.05 with (k(Mpl), λS(Mpl)) < 4π. In

the case, the allowed regions become the widest among all cases we have investigated. As

6One vacuum we live is the EW scale, and another one is the Planck scale. Under the condition, the

vanishing λ and βλ are required.

– 8 –



J
H
E
P
0
4
(
2
0
1
4
)
0
2
9

a result, the region satisfying three BCs at the same time appears around

150GeV . mS . 300GeV, 172GeV . Mt . 172.2GeV. (2.13)

This means that the triple coincidence for the three BCs occurs. The triple coincidence

requires that the logarithmic divergence of the Higgs mass also disappear at the Planck scale

instead of allowing a fine-tuning between the bare Higgs mass and a quadratic correction.

3 Summary and discussions

We have investigated Planck scale BCs on the Higgs sector in the SM with gauge singlet

scalar DM. The BCs are the vanishing Higgs self-coupling (λ(Mpl) = 0), the Veltman

condition (StrM2(Mpl) = 0) (and the vanishing anomalous dimension for the Higgs mass

parameter, γmh
(Mpl) = 0), and the vanishing β-function of the self-coupling (βλ(Mpl) = 0).

If one imposes the BCs in the SM, the Higgs and top masses are predicted to be close to

the experimental ones. BCs of λ(Mpl) = 0 and StrM2(Mpl) = 0 mean that there exists

approximately flat direction in the Higgs potential. In addition, the quadratic (logarithmic)

divergence for the Higgs mass disappears under the BC of the Veltman condition (and the

vanishing anomalous dimension at the Planck scale). However, it actually seems difficult

to reproduce 126GeV Higgs mass an 173.07 ± 1.24GeV top pole mass at the same time

under the three BCs in the SM. Thus, we have investigated these BCs in the context of

the SM with the singlet real scalar.

We have taken the setup that the singlet is DM and all scalar quartic coupling in

the model can be perturbatively treated up to the Planck scale. And we have utilized

the Higgs with 126GeV mass in the analyses. We could find that the vanishing self-

coupling and Veltman condition at the Planck scale can be remarkably realized with the

126GeV Higgs mass and top pole mass, 172GeV . Mt . 173.6GeV and the coupling

perturbativity, where a correct abundance of scalar dark matter is obtained with mass of

300GeV . mS . 1TeV. It means that the Higgs potential is approximately flat at the

Planck scale, and this situation cannot be realized in the SM with the top pole mass.

When one takes weaker conditions for the BCs, (k(Mpl), λS(Mpl)) < 4π and

(| StrM2(Mpl)/v
2|, |γmh

/m2
h(Mpl)|) < 0.05, the triple coincidence (λ(Mpl) ≃ 0,

StrM2(Mpl) ≃ 0, and γmh
(Mpl) ≃ 0) can be realized.

Next, we discuss some points, which are related with this work and an extension. The

BC of λ(Mpl) = 0 implies that our EW vacuum is false and the true vacuum is at a high

energy scale slightly smaller than the Planck scale like the SM with the center values of the

Higgs and top masses. We have checked that the quantum tunnelling probability p through

out the history of the universe, which is estimated by p ≃ VUH
4 exp(−8π2/(3|λ(H)|))

(e.g., see [40]), can be much smaller than 1, where VU = τ4U , τU is the age of the universe

as τU ≃ 13.7Gyrs, and we took |λ(H)| ≃ 9.59 × 10−5 with H ≃ 8 × 1017GeV for the

true vacuum of our sample point of mH = 126GeV, Mt = 173GeV, mS = 800GeV,

k(MZ) = 0.24, and λS(MZ) = 0.34.

We comment on the realization of the BCs of βλ(Mpl) = 0 with λ(Mpl) = 0, which

were firstly considered in [3], in this single extension of the SM. βλ(µ) cannot be zero at
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the Planck scale with λ(Mpl) = 0 in the extension because there is an additional positive

contribution from kS2|H|2 interaction to βλ(µ). βλ(µ) becomes zero at µ ∼ O(1015–17GeV)

(not the Planck scale) with λ(Mpl) ≃ 0 and experimental center values of the Higgs and

top masses. If one respects both BCs of λ(Mpl) = βλ(Mpl) = 0 in this singlet extension of

SM, the BCs predict about 145GeV Higgs mass and 175GeV top pole mass at MZ scale,

which are ruled out by experiments.

Finally, we also comment on other issues such as the existence of the tiny neutrino

mass and the baryon asymmetry of the universe (BAU), which cannot be explained in the

SM. One popular explanation is given by adding heavy right-handed Majorana neutrinos

into the SM. These are known as the seesaw mechanism and the leptogenesis for generat-

ing the tiny neutrino mass and BAU, respectively. In this example of the extension, there

exist additional contributions from the neutrino Yukawa couplings to βλ, StrM
2, and γmh

.

If the magnitude of the neutrino Yukawa couplings is smaller than O(10−2), which corre-

sponds to the right-handed neutrino Majorana neutrino mass smaller than O(1010)GeV,

the contributions are negligible in the BCs like the Yukawa couplings of the bottom quark

and tau. On the other hand, if the neutrino Yukawa couplings are larger than O(0.1), the

contributions should be taken account in the BCs. For the BC of λ(Mpl) = 0, a larger

k(MZ) (equivalently a heavier DM mass) is required because of a negative contribution

from the neutrino Yukawa coupling to βλ. Such a negative contribution may well cancel

other positive contributions in βλ such that βλ(Mpl) = 0 can be realized at the same time.

A larger k(MZ) is needed also for the BC of StrM2(Mpl) = 0 because the contribution

from the neutrino Yukawa to StrM2 is negative. Finally, an effect of the neutrino Yukawa

coupling for γmh
is relatively non-trivial compared to the other BCs because the positive

contributions from (top and neutrino) Yukawa couplings to γmh
compete with the negative

one from 12λ term, i.e. larger (positive) Yukawa couplings lead smaller (negative) value of

λ at the Planck scale. Thus, an accurate numerical analysis is required. Effects in the BCs

from additional particles and their mass scales strongly depend on a model for generating

the tiny neutrino mass and BAU, e.g. adding right-handed neutrinos, but such a model

dependent analysis of the BCs with explanations of the neutrino mass and BAU in addition

to DM might also be interesting.
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