
 Open access  Journal Article  DOI:10.1103/PHYSREVD.95.024036

Planck-scale-modified dispersion relations in homogeneous and isotropic spacetimes
— Source link 

Leonardo Barcaroli, Lukas K. Brunkhorst, Giulia Gubitosi, Niccoló Loret ...+2 more authors

Institutions: Sapienza University of Rome, University of Bremen, Imperial College London, Leibniz University of Hanover

Published on: 30 Jan 2017 - Physical Review D (American Physical Society)

Topics: Doubly special relativity, Theory of relativity, Dispersion relation, Four-force and
Friedmann–Lemaître–Robertson–Walker metric

Related papers:

 Hamilton geometry: Phase space geometry from modified dispersion relations

 Quantum-Spacetime Phenomenology

 The principle of relative locality

 Tests of quantum gravity from observations of γ-ray bursts

 Planck-scale-modified dispersion relations in FRW spacetime

Share this paper:    

View more about this paper here: https://typeset.io/papers/planck-scale-modified-dispersion-relations-in-homogeneous-
13rooglm3y

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVD.95.024036
https://typeset.io/papers/planck-scale-modified-dispersion-relations-in-homogeneous-13rooglm3y
https://typeset.io/authors/leonardo-barcaroli-1ga09kryn2
https://typeset.io/authors/lukas-k-brunkhorst-1uztnie9ia
https://typeset.io/authors/giulia-gubitosi-1y2352mag7
https://typeset.io/authors/niccolo-loret-45gkfz3g2j
https://typeset.io/institutions/sapienza-university-of-rome-1cpc8o4e
https://typeset.io/institutions/university-of-bremen-1kfo5fg2
https://typeset.io/institutions/imperial-college-london-1zhbqb9r
https://typeset.io/institutions/leibniz-university-of-hanover-7li6oa0r
https://typeset.io/journals/physical-review-d-agj9oh33
https://typeset.io/topics/doubly-special-relativity-cs4f98rs
https://typeset.io/topics/theory-of-relativity-2n00abg4
https://typeset.io/topics/dispersion-relation-16yqjgn2
https://typeset.io/topics/four-force-25ziuaze
https://typeset.io/topics/friedmann-lemaitre-robertson-walker-metric-4efmfuwc
https://typeset.io/papers/hamilton-geometry-phase-space-geometry-from-modified-1wlt8u9bgq
https://typeset.io/papers/quantum-spacetime-phenomenology-2ht585bi3i
https://typeset.io/papers/the-principle-of-relative-locality-5d3g9p51ra
https://typeset.io/papers/tests-of-quantum-gravity-from-observations-of-g-ray-bursts-36h2zmgj9a
https://typeset.io/papers/planck-scale-modified-dispersion-relations-in-frw-spacetime-3u4d99fah5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/planck-scale-modified-dispersion-relations-in-homogeneous-13rooglm3y
https://twitter.com/intent/tweet?text=Planck-scale-modified%20dispersion%20relations%20in%20homogeneous%20and%20isotropic%20spacetimes&url=https://typeset.io/papers/planck-scale-modified-dispersion-relations-in-homogeneous-13rooglm3y
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/planck-scale-modified-dispersion-relations-in-homogeneous-13rooglm3y
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/planck-scale-modified-dispersion-relations-in-homogeneous-13rooglm3y
https://typeset.io/papers/planck-scale-modified-dispersion-relations-in-homogeneous-13rooglm3y


Planck-scale-modified dispersion relations in homogeneous
and isotropic spacetimes

Leonardo Barcaroli,
1,*

Lukas K. Brunkhorst,
2,†

Giulia Gubitosi,
3,‡

Niccoló Loret,
4,§

and Christian Pfeifer
5,2,∥

1
Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN,

P.le A. Moro 2, 00185 Roma, Italy
2
Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm,

28359 Bremen, Germany
3
Theoretical Physics, Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom

4
Division of Theoretical Physics, Rud̄er Bošković Institute, Bijenička c.54, 10000 Zagreb, Croatia

5
Institute for Theoretical Physics, Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany

(Received 14 December 2016; published 30 January 2017)

The covariant understanding of dispersion relations as level sets of Hamilton functions on phase space

enables us to derive the most general dispersion relation compatible with homogeneous and isotropic

spacetimes. We use this concept to present a Planck-scale deformation of the Hamiltonian of a particle in

Friedman-Lemaître-Robertson-Walker (FLRW) geometry that is locally identical to the κ-Poincaré

dispersion relation, in the same way as the dispersion relation of point particles in general relativity is

locally identical to the one valid in special relativity. Studying the motion of particles subject to such a

Hamiltonian, we derive the redshift and lateshift as observable consequences of the Planck-scale deformed

FLRW universe.

DOI: 10.1103/PhysRevD.95.024036

I. INTRODUCTION

The most promising scenarios for testing quantum

gravitational effects arewithinastrophysical or cosmological

settings [1,2], described by spacetimes with nonvanishing

curvature like the Friedman-Lemaître-Robertson-Walker

(FLRW) spacetime. Thus, the issue of identifying a suitable

framework for the phenomenological description of Planck-

scale physics in curved spacetimes is very important in order

to make contact with observations.

In particular, the possibility that the dispersion relation of

free relativistic particles is modified at the Planck scale is

one of the main areas of research in quantum gravity

phenomenology [1–3]. Most of the model-building efforts

so far have focused on modifications of the special

relativistic dispersion relation satisfied by particles moving

on a flat spacetime. In this context, there have been several

proposals, connected to different underlying assumptions

concerning the fate of relativistic symmetries at the Planck

scale. In Lorentz-violating (LIV) models, the deformed

dispersion relation results in the introduction of a preferred

frame, the one in which the dispersion relation takes the

given form. Such LIV models can be straightforwardly

extended to the case of a curved spacetime, just by

introducing the appropriate redshift factors for energy

and momentum [4]. In other cases deformed dispersion

relations do not introduce preferred reference frames,

thanks to an appropriate modification of the laws of

transformation between inertial observers, so that the

deformed dispersion relation is invariant under deformed

Lorentz transformations. Such models are generically

known as “doubly (or deformed) special relativity”

(DSR) [5–8] models. It has been understood that these

generically entail a curved momentum space [9–13], which

has (anti)–de Sitter geometry in order to be symmetric

under the full set of modified Lorentz transformations.

Within the DSR framework, a much studied class of models

describes the deformed symmetries in terms of Hopf

algebras rather than Lie algebras [14,15]. In particular,

the κ-Poincaré Hopf algebra [16–18] has arguably received

the most attention from a phenomenological point of view.

For this algebra, in the so-called bicrossproduct basis [14],

the dispersion relation for a free particle takes the form

−

�

2

l

�

2

sinh2
�

l

2
E

�

þ elEj~pj2 ¼ −m2; ð1Þ

where l is the quantum deformation parameter. The

energy/momentum variables E, p live on a manifold with

de Sitter geometry [9–12], while spacetime is flat. So when

studying the phenomenology of the κ-Poincaré algebra it is

convenient to look at the momentum space as the base

manifold, and at spacetime as the fiber of its cotangent

bundle. Then it is possible to derive features such as the

difference in travel time of free particles with different

energies (lateshift) using methods that are completely

analogous to the one used to compute the redshift of

*
leonardo.barcaroli@roma1.infn.it

†
lukas.brunkhorst@zarm.uni‑bremen.de

‡
g.gubitosi@imperial.ac.uk

§
niccolo.loret@roma1.infn.it

∥
christian.pfeifer@itp.uni‑hannover.de

PHYSICAL REVIEW D 95, 024036 (2017)

2470-0010=2017=95(2)=024036(15) 024036-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.024036
http://dx.doi.org/10.1103/PhysRevD.95.024036
http://dx.doi.org/10.1103/PhysRevD.95.024036
http://dx.doi.org/10.1103/PhysRevD.95.024036


particles in general relativity [19], just exchanging the role

of spacetime and momentum space as base manifolds.

Problems arise when attempting to introduce DSR effects in

situations where spacetime is curved.
1
In this case, both of

the spacetime and momentum space manifolds would be

curved and their geometries intertwined [20–22]. A geo-

metrical treatment becomes challenging, and approaches

such as the above-mentioned Hopf algebras have a limited

applicability because they assume the existence of global

symmetries. In fact, the only case that admits a Hopf-

algebraic description is the one where spacetime has de

Sitter geometry. The quantum-deformed de Sitter Hopf

algebra is known as q–de Sitter algebra [23–25]. It is such
that in the limit of flat spacetime it reduces to the κ-Poincaré

Hopf algebra and momentum space has de Sitter geometry.

In previous work [26] we proposed to use the framework

of a Hamilton geometry of phase space to introduce

modified dispersion relations within a generic curved

spacetime in such a way that (possibly modified) relativistic

symmetries are not spoiled. We demonstrated how a

dispersion relation can be understood covariantly as level

set of a Hamilton function on point particle phase space, or,

mathematically speaking, on the cotangent bundle of

spacetime. We also showed that the Hamilton geometry

framework is suitable to describe the kinematics of free

particles as well as the (eventually modified) symmetry

properties of the dispersion relation. As an example, we

discussed the application of the Hamilton geometry frame-

work to dispersion relations inspired from the κ-Poincaré

Hopf algebra and from the q–de Sitter Hopf algebra.

Of course, the ultimate scope of introducing the

Hamilton geometry framework is to deal with more realistic

scenarios involving less symmetric spacetimes. In particu-

lar, the Friedman-Lemaître-Robertson-Walker geometry,

which models the Universe we live in on cosmological

scales, is homogeneous and isotropic, but lacks time-

translation symmetry. In the approach of Ref. [27] an

FLRW model was constructed starting from an algebraic

setting by combining slices of maximally symmetric de

Sitter spacetimes. The suggested procedure is however

hardly generalizable to other kinds of spacetimes. In this

respect the Hamilton geometry approach seems to be better

suited to describe Planck-scale deformations of general

spacetimes in a way that is compatible with their symmetry

properties. In this article, we leave maximally symmetric

spacetimes as building blocks behind and deal with less

symmetric spacetimes, focussing on the homogeneous and

isotropic case. The precise notion of symmetry which we

introduced in our previous work allows us to derive the

most general form of a dispersion relation which is

compatible with this reduced set of symmetries. As a

special case, we exhibit a Planck-scale-modified dispersion

relation which is compatible with homogeneity and isot-

ropy of spacetime and which locally reduces to the

κ-Poincaré dispersion relation.
2
In the Hamilton geometry

framework, this dispersion relation yields a spacetime

manifold M equipped with a Hamilton function H on its

cotangent bundle T�M which together we call Planck-

scale-deformed FLRW phase space.
3

Thanks to this description of a Planck-scale-deformed

homogeneous and isotropic phase space within the

Hamilton geometry setting, it is possible to look for

observable consequences of the deformation by studying

the phase space worldlines of free particles. This allows in

particular to make predictions for the expected redshift and

for the travel times of particles with different energies.

We present our results throughout this article as follows.

We begin by recalling our interpretation of dispersion

relations as level sets of Hamilton functions on the

cotangent bundle of spacetime and their symmetries in

Sec. II. In Sec. III, we present our main mathematical result,

namely the most general homogeneous and isotropic

dispersion relation, which is displayed in Eq. (17). To

gain intuition about what can be said in general about the

motion of free particles satisfying homogeneous and

isotropic dispersion relations we investigate the Hamilton

equations of motion induced by (17) in Sec. IV. Finally, we

specialize to a Planck-scale deformation of FLRW space-

time geometry in Sec. V. We compute the observable

energy redshift and energy-dependent time of travel in

subsections V B 1 and V B 3. These effects provide direct

access to a comparison between the model and astrophysi-

cal observations.

In the following, x stand for spacetime coordinates and p

for the four-momentum coordinates. ∂a and ∂̄a stand,

respectively, for derivation with respect to xa and pa.

The speed of light, c, is set to one and we use metric

signature ð−;þ;þ;þÞ.

II. DISPERSION RELATIONS AS HAMILTON

FUNCTIONS AND THEIR SYMMETRIES

Dispersion relations can be identified with level sets of

Hamilton functions Hðx; pÞ on phase space, where we

identify phase space with the cotangent bundle T�M of the

spacetime manifoldM. In [26] we discussed this procedure

in detail and showed how to derive the geometry of phase

space solely from Hamilton functions. To understand

general relativity in this way, observe that the general

relativistic dispersion relation for a particle in free fall,

−E2 þ ~p2 ¼ −m2; ð2Þ

1
When spacetime is curved (eventually deformed) Poincaré

symmetries hold locally.

2
Of course, when the Planck-scale deformation is removed,

this dispersion relation reduces to the one characterizing free
particles in FLRW spacetime.

3
We can not talk separately of spacetime and momentum space

because their modified geometrical properties are intertwined.
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is nothing but the representation of a level set of the

cotangent bundle function

HGRðx; pÞ ¼ gabðxÞpapa ¼ −m2 ð3Þ

in a local inertial frame. The phase space geometry derived

from HGR then is nothing but a flat momentum space

geometry and the usual Lorentzian metric geometry on

spacetime.

An element of the cotangent bundle is a 1-form P on

spacetime and gets labeled with so-called manifold

induced coordinates T�M ∋P ¼ padx
a ¼ ðx; pÞ. A coor-

dinate change on spacetime x → ~xðxÞ induces a change of
coordinates on T�M

ðx; pÞ→ ð~xðxÞ; ~paðx; pÞÞ ¼
�

~xðxÞ; pq
∂xq

∂ ~xa

�

; ð4Þ

while a local basis change from dxa to ωb ¼ A−1b
aðxÞdxa

in a cotangent space T�
xM of M is a linear, possibly

x-dependent, transformation in the p part of the manifold-

induced coordinates on T�M only,

ðx; pÞdx ¼ ðx; ~paÞω ¼ ðx; pqA
q
aðxÞÞω; ð5Þ

where the subscripts denote the basis in which we coor-

dinatized the cotangent bundle. The coordinate basis dx is

usually suppressed. We mention these transformations here

in some detail since we will use them later in Sec. V to

justify our conjecture for the specific form of a quantum

deformed cosmological Hamilton function.

Since we seek to derive the most general dispersion

relation whose symmetries are compatible with a homo-

geneous and isotropic spacetime we recall the notion of

symmetry in the framework of Hamilton geometry [26].

Symmetries of a metric manifold ðM; gÞ are diffeomor-

phisms of the manifold which leave the metric invariant. In

the same spirit we say that a diffeomorphism Φ of T�M, i.e.

of phase space, is a symmetry if it leaves the Hamiltonian

(i.e. the dispersion relation) invariant:

HðΦðx; pÞÞ ¼ Hðx; pÞ: ð6Þ

From the infinitesimal action of the diffeomorphism,

Φðx; pÞ ¼ ð~xðx; pÞ; ~pðx; pÞÞ
¼ ðxa þ ϵξaðx; pÞ; pa þ ϵξ̄aðx; pÞÞ þOðϵ2Þ; ð7Þ

one finds the vector field generating the symmetry trans-

formation by asking that the above definition of symmetry,

Eq. (6), holds:

HðΦðx;pÞÞ¼Hðxaþξaðx;pÞ;paþ ξ̄aðx;pÞÞ
¼Hðx;pÞþϵðξaðx;pÞ∂aHðx;pÞ
þ ξ̄aðx;pÞ∂̄aHðx;pÞÞþOðϵ2Þ
¼Hðx;pÞþϵZðHÞðx;pÞþOðϵ2Þ
¼Hðx;pÞ: ð8Þ

The vector field Z ¼ ξaðx; pÞ∂a þ ξ̄aðx; pÞ∂̄a on T�M is

then the generator of the diffeomorphism Φ, which has to

satisfy the following condition for Φ to be a symmetry:

ZðHÞ ¼ 0: ð9Þ

In our previous work, we identified several distinguished

classes of symmetries. Here we are interested in manifold-

induced symmetries, which are symmetries of phase space

induced by a diffeomorphism of the spacetime manifold.

A diffeomorphism of the base manifold M can be

represented infinitesimally by vector fields X ¼ ξaðxÞ∂a

on M. It acts as a change of local coordinates

ðxaÞ → ðxa þ ξaÞ. Such a local change of coordinates on

M induces a change of coordinates on T�M via

ðxa; paÞ→ ðxa þ ξa; pa − pq∂aξ
qÞ. Thus, a diffeomor-

phism on M generated by the vector field X induces a

diffeomorphism on T�M generated by the vector field

XC ¼ ξa∂a − pq∂aξ
q∂̄a, the complete lift of X from M to

T�M. A symmetry of the Hamiltonian

XCðHÞ ¼ 0; ð10Þ

which is determined by such a vector field X onM is called

manifold-induced symmetry.

As a remark, recall that manifold-induced symmetries

always lead to a conserved phase space functions [26]

XCðHÞ ¼ 0⇔ fξaðxÞpa; Hg ¼ 0; ð11Þ

where f·; ·g are the standard Poisson brackets: fA;Bg≡
∂A
∂xa

∂B
∂pa

−
∂B
∂xa

∂A
∂pa

.

We will now consider symmetry generating vector fields

which generate homogeneous and isotropic spacetime

manifolds and derive the most general dispersion relation

compatible with such symmetries.

III. HOMOGENEOUS AND ISOTROPIC

HAMILTONIANS

For a homogeneous and isotropic spacetime we demand

invariance under the diffeomorphisms induced by the

following six vector fields encoding spatial rotations and

spatial translations. In spherical spacetime coordinates

ðt; r; θ;ϕÞ and defining χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kr2
p

, where k is the

spatial curvature, they take the form [28]:
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X1 ¼ χ sin θ cosϕ∂r þ
χ

r
cos θ cosϕ∂θ −

χ

r

sinϕ

sin θ
∂ϕ

X2 ¼ χ sin θ sinϕ∂r þ
χ

r
cos θ sinϕ∂θ þ

χ

r

cosϕ

sin θ
∂ϕ

X3 ¼ χ cos θ∂r −
χ

r
sin θ∂θ ð12Þ

for translations, and:

X4 ¼ sinϕ∂θ þ cot θ cosϕ∂ϕ

X5 ¼ − cosϕ∂θ þ cot θ sinϕ∂ϕ

X6 ¼ ∂ϕ ð13Þ

for rotations.

In order to find the most general homogeneous and

isotropic Hamiltonian on phase space we need to derive the

complete lifts of these vector fields to the cotangent bundle

and demand that the Hamiltonian does not change along the

flow of these vector fields, see (10). The lifts XC
I ; I ¼

1;…; 6 of the above vector fields are quite long expressions
and can be found in the appendix A.

There are two ways for evaluating the symmetry con-

ditions XC
I ðHÞ ¼ 0 for I ¼ 1;…; 6. One can solve the

partial differential equations by introducing the following

set of new coordinates:

ðt̂; r̂; θ̂; ϕ̂; p̂t; p̂r; p̂θ; wÞ; ð14Þ

defined through

t̂ ¼ t; r̂ ¼ r; θ̂ ¼ θ; ϕ̂ ¼ ϕ; p̂t ¼ pt;

p̂r ¼ pr; p̂θ ¼ pθ; ð15Þ

w2 ¼ ð1 − kr2Þp2
r þ

1

r2
p2

θ þ
1

r2 sin θ2
p2

ϕ; ð16Þ

which is done in detail in appendix B. Alternatively, the

problem of solving the differential equations can be turned

into an algebraic problem by taking an extrinsic point of

view and seeing the 3-dimensional homogeneous and

isotropic spatial part of the geometry embedded into a

4-dimensional ambient manifold. This is discussed in

appendix C.

Both the procedures yield that the most general Hamilton

function on phase space which is spatially homogeneous

and isotropic has the form

Hðx; pÞ ¼ Hðt; pt; wðr; θ; pr; pθ; pϕÞÞ: ð17Þ

Thus, we find that the dispersion relation is not allowed to

depend arbitrarily on the momenta, but only on the energy

component pt of the four-momentum and on the specific

combination of spatial momenta encoded by w.

Some examples of homogeneous and isotropic Hamilton

functions whose levels sets are then homogeneous and

isotropic dispersion relations are

(i) The FLRW Hamiltonian:

HFLRW ¼ −p2
t þ aðtÞ−2w2; ð18Þ

where aðtÞ is the scale factor appearing in the FLRW
metric

ds2 ¼ −dt2 þ aðtÞ2

×

�

dr2

1 − kr2
þ r2ðdθ2 þ sin2ðθÞdϕ2Þ

�

:

(ii) A general first-order polynomial deformation of

FLRW geometry:

HdFLRW ¼ −p2
t þ aðtÞ−2w2 þ lðbðtÞptw

2

þ cðtÞp3
t Þ þOðl2Þ; ð19Þ

where aðtÞ is again the FLRW scale factor and bðtÞ,
cðtÞ are generic functions of time. The parameter l

is the deformation parameter, with dimensions of

length.

(iii) Our conjecture for a κ-Poincaré-inspired qFLRW

dispersion relation, which will be motivated and

studied in detail in Sec. V:

HqFLRW¼−
4

l
2
sinh2

�

l

2
pt

�

þaðtÞ−2elptw2; ð20Þ

whose first-order expansion in l reads

HqFLRW ¼−p2
t þaðtÞ−2w2þlaðtÞ−2ptw

2þOðl2Þ:
ð21Þ

So, at the first order, this corresponds to setting

bðtÞ ¼ aðtÞ−2 and cðtÞ ¼ 0 in the general expres-

sion (19).

In Sec. V, we will study the qFLRW dispersion relation

in more detail and derive its physical predictions. Before

doing so we discuss the motion of particles subject to a

general homogeneous and isotropic dispersion relation.

IV. THE HAMILTON EQUATIONS OF MOTION

Homogeneous and isotropic Hamilton functions still

possess a high degree of symmetry. Each generator of

symmetry yields a constant of motion which enables us to

simplify the Hamilton equations of motion significantly.

Expanding the equations of motion _pa þ ∂aH ¼ 0 and

_xa − ∂̄aH ¼ 0 yields

_pt ¼ −∂tH; ð22Þ

LEONARDO BARCAROLI et al. PHYSICAL REVIEW D 95, 024036 (2017)
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_pr ¼ ∂wH
1

w

�

krp2
r þ

1

r3
p2

θ þ
1

r3 sin θ2
p2

ϕ

�

; ð23Þ

_pθ ¼ ∂wH
1

w

cos θ

sin θ3
p2

ϕ; ð24Þ

_pϕ ¼ 0; ð25Þ

_t ¼ _xt ¼ ∂̄tH; ð26Þ

_r ¼ _xr ¼ ∂wH
1

w
ð1 − kr2Þpr; ð27Þ

_θ ¼ _xθ ¼ ∂wH
1

w

1

r2
pθ; ð28Þ

_ϕ ¼ _xϕ ¼ ∂wH
1

w

1

r2 sin θ2
pϕ: ð29Þ

The constants of motion (11) can be obtained in terms of

the symmetry vector fields XI (12)–(13) via application of

XI to a canonical 1-form P ¼ padx
a. The conserved

quantities associated to the generators of spatial rotations

X4 to X6 are:

L1 ≡ X4ðPÞ ¼ sinϕpθ þ cot θ cosϕpϕ;

L2 ≡ X5ðPÞ ¼ − cosϕpθ þ cot θ sinϕpϕ;

L3 ≡ X6ðPÞ ¼ pϕ; ð30Þ

while the conserved quantities associated to the generators

of spatial translations X1 to X3 are:

K1 ≡ X1ðPÞ ¼ χ sin θ cosϕpr þ
χ

r
cos θ cosϕpθ

−
χ

r

sinϕ

sin θ
pϕ;

K2 ≡ X2ðPÞ ¼ χ sin θ sinϕpr þ
χ

r
cos θ sinϕpθ

þ χ

r

cosϕ

sin θ
pϕ;

K3 ≡ X3ðPÞ ¼ χ cos θpr −
χ

r
sin θpθ: ð31Þ

Thanks to the symmetry properties of the system, in order

to study geodesic motion it suffices to focus on radial

geodesics along a given direction. One can then obtain the

geodesics in all the other directions by applying a sym-

metry diffeomorphism, i.e. a rotation or a translation. Thus,

without loss of generality we choose θ and ϕ to be constant

and equal to θ ¼ π
2
and ϕ ¼ 0, which further simplifies the

equations of motion to

_pt ¼ −∂tH; ð32Þ

_pr ¼ ∂wH
1

w
krp2

r ; ð33Þ

_pθ ¼ 0; ð34Þ

_pϕ ¼ 0; ð35Þ

_t ¼ ∂̄tH; ð36Þ

_r ¼ ∂wH
1

w
χ2pr; ð37Þ

_θ ¼ 0; ð38Þ

_ϕ ¼ 0: ð39Þ

The two last equations imply the further constraints pθ ¼
pϕ ¼ 0 [compare with Eqs. (28) and (29)]. Using this

choice for θ and ϕ, all the constants of motion vanish,

except for K1:

K1 ¼ χpr: ð40Þ

K1 turns out to be related to the coordinate w defined in

(15), since when θ ¼ π
2
and ϕ ¼ 0 this becomes constant

itself and satisfies w2ðθ ¼ π
2
;ϕ ¼ 0Þ ¼ χ2p2

r ¼ K2

1
.

We reduced the dynamical system to have just four

nontrivial equations, the ones for pt; t and pr; r. The last

two of them can be further simplified by observing that

from (40) it follows that:

pr ¼
K1

χ
¼ K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kr2
p : ð41Þ

Substituting this into the equation for _r one gets:

_r ¼ ∂wH
1

w
χK1: ð42Þ

One can, of course, verify that (41) and (42) are compatible

with (33).

Summarising, the dynamics of a point particle with a

homogeneous and isotropic Hamiltonian is described

by the following set of equations for the phase space

coordinates:

_pt ¼ −∂tH; ð43Þ

pr ¼
K1

χ
; ð44Þ

pθ ¼ 0; ð45Þ

pϕ ¼ 0; ð46Þ

_t ¼ ∂̄tH; ð47Þ

_r ¼ ∂wH
1

w
χK1; ð48Þ
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θ ¼ π

2
; ð49Þ

ϕ ¼ 0; ð50Þ

where K2

1
¼ w2 is a constant. For further analysis, we need

to specify the Hamiltonian we are interested in.

V. THE QFLRW DISPERSION RELATION

In this last section, we are going to study in detail one

specific form of isotropic and homogeneous Hamiltonian.

Our main reason for being interested in the Hamilton

geometry framework is that it allows us to describe

Planck-scale-modified dispersion relations as due to a

deformed geometry of the phase space of relativistic

particles, in a way that is compatible with the (deformed)

symmetries of the dispersion relation. For this reason it

makes sense to seek a generalization of the κ- Poincaré

Hamiltonian, Eq. (1), to a nonflat spacetime case.

As already briefly mentioned at the end of Sec. III, a

homogeneous and isotropic Hamiltonian that locally

reduces to the κ-Poincaré one takes the form:

HqFLRWðx; pÞ ¼ −
4

l
2
sinh2

�

l

2
pt

�

þ aðtÞ−2elptw2; ð51Þ

with Hamilton metric

gHab ≡
1

2
∂̄a∂̄bH ¼

0

B

B

B

B

B

B

@

− coshðlptÞ þ l
2elpt w

2

a2
l

a2
ð1 − kr2Þelptpr

l

a2
elpt

r2
pθ

l

a2
elpt

r2 sin θ2
pϕ

l

a2
ð1 − kr2Þelptpr

ð1−kr2Þ
a2

elpt 0 0

l

a2
elpt

r2
pθ 0

elpt

a2r2
0

l

a2
elpt

r2 sin θ2
pϕ 0 0

elpt

a2r2 sin θ2

1

C

C

C

C

C

C

A

: ð52Þ

In order to clarify in which sense this Hamiltonian is related

to the κ-Poincaré one, we observe that at every point x of

spacetime there exists a local and linear transformation of

the spatial momenta pα → p̂αðpÞ ¼ Rβ
αðr; θÞpβ, such that

the coordinate w takes the following form
4
:

w2
→ w2 ¼ δαβp̂αp̂β: ð53Þ

This is true simply by the existence of local orthonormal

frames for the spatial part of the FLRW metric and local

frame transformations on M are linear transformations on

T�M as discussed around Eq. (5). Thus, locally, at every

x ∈ M we find frame labels ðx; ~pÞω of phase space which

are connected to the manifold-induced coordinates ðx; pÞ
via a linear transformation of the momenta:

pα → ~pα ¼ aðtÞp̂α ¼ aðtÞRβ
αðr; θÞpβ: ð54Þ

In terms of these new momenta the Hamiltonian (51)

becomes

HqFLRWðx; ~pÞ ¼ −
4

l
2
sinh2

�

l

2
~pt

�

þ el ~ptδαβ ~pα ~pβ; ð55Þ

which is the form of the Hamiltonian associated to the κ-

Poincaré model, see Eq. (1).

The important observation is that this can be achieved by

a linear transformation in the momenta, which is analogous

to the existence of local orthogonal inertial frames in

general relativity, where at each point x on spacetime there

exists a local and linear transformation of the momenta

such that the Hamiltonian of a Lorentzian spacetime

Hgðx; pÞ ¼ gabðxÞpapb becomes Hgðx; ~pÞ ¼ ηab ~pa ~pb
5
.

After having motivated our choice of a qFLRW

Hamilton function, we can now proceed to discuss its

observable physical consequences.

A. Particle motion

We already discussed the Hamilton equations of motion

_pa þ ∂aH ¼ 0 and _xa − ∂̄aH ¼ 0 for a general homo-

geneous and isotropic Hamiltonian in Sec. IV. There we

reduced the equations so that only the ones for four phase

space variables are nontrivial. Of these, pr is given as a

function of r [Eq. (44)], while t, pt and r satisfy,

respectively, the differential equations (47), (43) and

(48). When applied to the qFLRW Hamiltonian (51) and

introducing AðtÞ ¼ a−2ðtÞ, these equations read

_r ¼ 2wAelptχ ð56Þ

_pt ¼ −A0elptw2; ð57Þ

_t ¼ −
2

l
sinhðlptÞ þ lAelptw2; ð58Þ

4
(Greek indices run over spatial coordinates.)

5
These linear transformations of the momenta are compatible

with the Hamilton geometry of phase space which is derived from
the Hamilton function since they are linear transformations,
see [26].
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where w ¼ χpr ¼ K1 is a constant of motion, see Eq. (40),

and the 0 denotes derivative with respect to the coordinate

time t.
We can avoid solving the differential equation for pt

explicitly by using the fact that the Hamiltonian HqFLRW is

conserved along the solutions of the equations of motion.

This allows us to write ptðτÞ as a function of coordinate

time ptðtÞ. In fact, the Hamiltonian encodes the mass-shell

condition for the particle:

HqFLRW ¼ −
4

l
2
sinh2

�

l

2
pt

�

þ Aelptw2 ¼ −m2: ð59Þ

By solving this with respect to pt, one finds

ptðtÞ ¼
1

l
ln

�

2þ l
2m2 � l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 þ l
2m4 þ 4w2A

p

2ð1 − l
2w2AÞ

�

→

1

l
ln

�

2þ l
2m2

− l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 þ l
2m4 þ 4w2A

p

2ð1 − l
2w2AÞ

�

;

ð60Þ

where the plus sign was chosen in order to recover pt ¼
−m for a particle at rest in a flat spacetime in the l ¼ 0

limit, as it must be for our signature convention

ð−;þ;þ;þÞ. Note that ptðtÞ also depends on pr and r
via w.
We can also combine the differential equations for r and

t in order to get the evolution of the radial coordinate with

respect to the coordinate time t:

r0ðtÞ≡ dr

dt
¼ _r

_t
¼ 2Aelptχw

lAelptw2
−

2

l
sinhðlptÞ

¼ Aχwð−2 − l
2m2 þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 þ l
2m4 þ 4w2A

p
Þ

ðl2w2A − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 þ l
2m4 þ 4w2A

p ;

ð61Þ

where in the last equality we used Eq. (60).These equations

for pðtÞ and r0ðtÞ, together with Eq. (41) for pr, fully

characterize the motion of a particle and can be used to

derive the relevant observables, as we show in the following

subsection.

B. Observable effects

In order to characterize the physical predictions of the

HqFLRW Hamiltonian, it is useful to study the behavior of

massless particles. In this case, both of the Eqs. (60) and

(61) simplify significantly:

ptðtÞ ¼ −
1

l
ln ð1þ lwa−1Þ; ð62Þ

r0ðtÞ ¼ χa−1

lwa−1 þ 1
: ð63Þ

The evolution of pr can be straightforwardly derived from

the one of r using Eq. (41).

In the following wewill study the evolution of the energy

and radial coordinate implied by the above equations to

show the emergence of two peculiar physical effects. One is

a correction to the usual energy redshift, which turns out to

depend on the initial energy of the particle besides its time

of travel. The other effect is dubbed ’lateshift’ [19,25], and

consists in the fact that the time of travel of a particle

depends on its energy, so that two particles emitted by a

source at the same time but with different energies will

arrive at a far away detector at different times. Both of

these effects are already known in the context of studies

of the phenomenology of particles whose symmetries are

described by the κ-Poincaré Hopf algebra [19] or the q–de
Sitter Hopf algebra [25]. In this phenomenological context,

these Hopf algebras basically describe the Planck-scale-

modified symmetry properties of particles moving, respec-

tively, on a Minkowski or de Sitter spacetime. So it should

come as no surprise that the same sort of effects emerge

(appropriately modified) also in the Planck-scale-modified

FLRW model we study here.

1. Redshift

The energy redshift of a massless particle propagating in

a qFLRW spacetime can be computed by studying the

evolution of pt along the particle’s worldline,
6
Eq. (62).

Note that in the classical limit l → 0 from (62) one

recovers the usual scaling of the energy of a particle

traveling in a FLRW universe:

ptðtÞjl¼0 ¼ −
w

aðtÞ : ð64Þ

The redshift of a massless particle on a radial geodesic is

measured by comparing the energy at the time of emission,

ptðtiÞ, with the energy at detection, ptðtfÞ:

zðti; tfÞ≡
ptðtiÞ − ptðtfÞ

ptðtfÞ

¼ −
lptðtiÞ

ln ð1 − aðtiÞ
aðtfÞ ð1 − e−lptðtiÞÞÞ

− 1

¼
�

aðtfÞ
aðtiÞ

− 1

��

1þ l

2
ptðtiÞ

�

þOðl2Þ: ð65Þ

6
Both for the computation of redshift in this subsection and of

lateshift in subsection V B 3, we do not need to worry about
coordinates artifacts such as the ones discussed in [19], because
the spacetime coordinates we use are dual to the momenta from
the point of view of Poisson brackets. If one were to choose a
different spacetime coordinatization (such as, for example,
spacetime coordinates inducing translations on momentum space
coordinates), then one would need a more careful analysis, based
on the techniques developed in the relative locality framework
[19,25].
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where we have used the fact that, from Eq. (62), one can

find the constant of motion w as a function of the energy

and scale factor at any given time
7
:

w ¼ −aðtÞ 1 − e−lptðtÞ

l
; ð66Þ

and in particular one can set w ¼ −aðtiÞ 1−e
−lptðtiÞ

l
, so that

ptðtÞ ¼ −
1

l
ln

�

1 −
aðtiÞ
aðtÞ ð1 − e−lptðtiÞÞ

�

!l
~0
ptðtiÞ

aðtiÞ
aðtÞ :

ð67Þ

If the scale factor is the one of a de Sitter spacetime,

aðtÞ ¼ eht, where h is the inverse of the de Sitter radius, the

redshift is

zðti; tfÞ ¼ −
lptðtiÞ

ln ð1 − ehðti−tfÞð1 − e−lptðtiÞÞÞ
− 1

¼ ðehðtf−tiÞ − 1Þ
�

1þ l

2
ptðtiÞ

�

þOðl2Þ; ð68Þ

which reproduces the results found in [25] at the first

order in h and l for a particle with q–de Sitter symmetries.

So our result (65) can be seen as the generalization of the

formula for the redshift from a q–de Sitter model to a

qFLRW model.

2. Spacetime worldlines

The worldline of a massless particle is found by

integrating the equation for the evolution of the particle’s

radial coordinate, Eq. (63), which we rewrite here for

convenience:

r0ðtÞ ¼ χa−1

lwa−1 þ 1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kr2
p

lwþ aðtÞ : ð69Þ

The constant w depends on the particle energy and on

the scale factor as in Eq. (66). In particular, we can

again choose to evaluate it at the initial time ti,

w ¼ −aðtiÞ 1−e
−lptðtiÞ

l
. We also ask that the particle moves

forward with time (r increases with time). The worldline

can then be expressed as a formal integral:

rðtÞ ¼ 1
ffiffiffi

k
p sin

�

arcsin ð
ffiffiffi

k
p

rðtiÞÞ þ
ffiffiffi

k
p Z

t

ti

1

lwþ aðτÞ dτ
�

:

ð70Þ

This can be evaluated explicitly once a choice for the

scale factor is made. For example if, as done in the

end of the previous subsection, we choose the scale

factor of an exponentially expanding universe, aðtÞ ¼ eht,
we find

rðtÞ ¼ 1
ffiffiffi

k
p sin

�

arcsin ð
ffiffiffi

k
p

rðtiÞÞ −
ffiffiffi

k
p elptðtiÞ−hti

hðelptðtiÞ − 1Þ
½hðt − tiÞ − ln ððehðt−tiÞ − 1ÞelptðtiÞ þ 1Þ�

�

ð71Þ

¼ 1
ffiffiffi

k
p sin ðarcsin ð

ffiffiffi

k
p

rðtiÞÞ þ
ffiffiffi

k
p

ðt − tiÞÞ
�

1þ h

2
klptðtiÞðtþ tiÞðt − tiÞ2

�

−
ðt − tiÞ

2
cos ðarcsin ð

ffiffiffi

k
p

rðtiÞÞ þ
ffiffiffi

k
p

ðt − tiÞÞðhðtþ tiÞ þ 2lptðtiÞðht − 1ÞÞ þOðl2; h2Þ: ð72Þ

The spatially-flat case is given by the k ¼ 0 limit of the above, and gives the Planck-scale-corrected worldline of a massless

particle in de Sitter spacetime:

½rðtÞ − rðtiÞ�dS;flat ¼
elptðtiÞ−hti

hð1 − elptðtiÞÞ
½hðt − tiÞ − ln ððehðt−tiÞ − 1ÞelptðtiÞ þ 1Þ� ð73Þ

¼ ðt − tiÞ
�

1þ lptðtiÞ −
h

2
½ti þ tð1þ 2lptðtiÞÞ�

�

þOðl2; h2Þ: ð74Þ

Note that the first order in h and l, reported in the second

line, reproduces the results of [25], which studied particles

with symmetries described by the q–de Sitter Hopf algebra.

Already from the general expression (70) one can see

that the distance traveled by a particle depends on its initial

energy via the w factor inside the integral. This energy

dependence starts at the first order in l, so it can be

understood as a purely Planck-scale effect. The fact that in

the l; h expansion of Eq. (74) there are terms proportional

7
It is easy to check that from Eq. (66) one can indeed obtain

dw
dt ¼ 0, consistently with w being a constant of motion.
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to the product hl indicates that the time of travel depends in

a nontrivial way on the interplay between curvature and

Planck-scale properties of spacetime (see also [20]).

3. Lateshift

For phenomeological purposes, it is useful to compute

the difference in arrival time of two massless particles

which are emitted at the same time with different energies

and are detected at the same location. This is in fact the

most promising kind of observable that current astrophysi-

cal experiments are able to measure [29–34]. One (soft)

particle is assumed to have small momentum (such that

l-dependent effects are negligible), while the other (hard)

particle is assumed to have high momentum (such that

l-dependent effects are relevant).

We compute the time delay at the first order in l in two

cases. The first one is a universe that is expanding

exponentially at constant rate, aðtÞ ¼ eht with arbitrary

spatial curvature k. The second option we consider is a

universe with arbitrary scale factor aðtÞ and vanishing

spatial curvature, k ¼ 0.

In the first case the worldlines of massless particles

are given by Eq. (71). To compute the time delay we set

ti ¼ 0, rðtiÞ ¼ 0 in Eq. (71) and equate the distances

covered by the two particles, respectively, during the time

thard and tsoft:

rhardðthardÞ ¼ rsoftðtsoftÞ: ð75Þ

These distances are given by the following expressions up

to first order in l

rhardðthardÞ ¼ 1
ffiffiffi

k
p sin

�

ffiffiffi

k
p 1− e−ht

hard

h

�

þ l
ptð0Þ
2h

ð1− e−2ht
hardÞ cos

�

ffiffiffi

k
p 1− e−ht

hard

h

�

;

ð76Þ

rsoftðtsoftÞ ¼ 1
ffiffiffi

k
p sin

�

ffiffiffi

k
p 1 − e−ht

soft

h

�

; ð77Þ

which realize the idea that the soft photon does not feel any

l-dependent deformation. Then the difference in time of

arrival, Δt≡ thard − tsoft can be calculated to first order in

l
8
and can be expressed in terms of the redshift of the hard

particle, zð0; thardÞ ¼ eht
hard

− 1þOðlÞ,9 and its energy at

the detector, ptðthardÞ ¼ ptð0Þ=ð1þ zÞ, as follows:

ΔtjaðtÞ¼eht ¼ −
l

h
ptðthardÞ

�

zþ z2

2

�

þOðl2Þ: ð78Þ

Surprisingly, we find that Δt is independent of the spatial

curvature k up to first order in l.

In the second case, the relevant expression of the

worldline is given by Eq. (70), with k ¼ 0. Then the

distance traveled by the two particles, respectively, during

the time thard and tsoft, is10

rhardðthardÞ ¼
Z

thard

0

dτ

aðτÞ þ lptðthardÞaðthardÞ
Z

thard

0

dτ

aðτÞ2 ;

ð79Þ

rsoftðtsoftÞ ¼
Z

tsoft

0

dτ

aðτÞ : ð80Þ

Following the same procedure as above, we equate these

distances, obtaining

Z

tsoft

thard

dτ

aðτÞ ¼ lptðthardÞaðthardÞ
Z

thard

0

dτ

aðτÞ2 : ð81Þ

Since the variation of aðtÞ is negligible between thard and

tsoft, we can solve this equality and write the time delay as:

ΔtjaðtÞ;k¼0 ¼ −lptðthardÞ
Z

thard

0

dτ

aðτÞ2 : ð82Þ

These two results on the time delay can be compared

with the ones of Ref. [27]. There, the time delay was

computed both assuming an exponential scale factor with

vanishing spatial curvature (aðtÞ ¼ eht, k ¼ 0) and for a

generic scale factor and vanishing spatial curvature. For

both of the choiches of scale factors, the Planck-scale

corrections were derived from two different models:

one that explicitly breaks Lorentz symmetries (LIV case)

and another one where the Planck-scale corrections are

compatible with deformed relativistic symmetries

(DSR case).

In the model with exponential scale factor the time delay

is given in Eqs. (18) and (30) of [27], respectively, for the

LIV and DSR cases. We rewrite these equations here for

convenience, adapting the notation to ours:

ΔtjLIV
aðtÞ¼eht;k¼0

¼ phard

h

�

λ0 lnð1þ zÞ þ λ00zþ λ

�

zþ z2

2

�

þ λ000
�

zþ z2 þ z3

3

��

; ð83Þ

8
Simply replace tsoft ¼ thard − lδt in (75), solve for δt to zeroth

order in l and identify Δt ¼ lδt.
9
We approximate the redshift at zeroth order in l since it will

appear in terms which are already first order in l.

10
We write the constant w as a function of energy and scale

factor measured at the detection time of the hard particle:

w ¼ aðthardÞ 1−e−lptðt
hardÞ

l
.
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ΔtjDSR
aðtÞ¼eht;k¼0

¼ lphard

h

�

ðα − γÞ lnð1þ zÞ þ ðβ þ γÞ
�

zþ z2

2

��

:

ð84Þ

These equations contain a number of parameters, which

can be chosen so as to match our result, Eq. (78). In

particular, for the LIV case this choice of parameters is

fλ0 ¼ λ00 ¼ λ000 ¼ 0; λ ¼ −lg, while for the DSR case one

has to fix fα ¼ γ; β þ γ ¼ −1g.
In the model with generic scale factor the time delay is

obtained in Ref. [27] via a procedure that describes FLRW

spacetimes as the “gluing” of many slices of de Sitter

spacetime with different values of h. The resulting time

delay is given in Eqs. (65) and the one before (81) of [27],

again, respectively, for the LIV and DSR cases. We rewrite

here also these equations, adapting the notation to ours:

ΔtjLIVaðtÞ;k¼0
¼ phard

Z

thard

0

dτ

�

λ0 þ λ00

aðτÞ þ
λ

aðτÞ2 þ
λ000

aðτÞ3
�

;

ð85Þ

ΔtjDSRaðtÞ;k¼0
¼ lphard

�

ðβ þ γÞ
Z

thard

0

dτ

aðτÞ2 þ ðα − γÞ

×

Z

thard

0

dτ

�

aðτÞ−1 − a0ðτÞ
aðτÞ

Z

thard

τ

dτ0

aðτ0Þ

��

:

ð86Þ

Of course, these equations depend on the same parameters

as the equations for the exponential scale factor case, since

they result from the gluing procedure described above. Our

expression for the time delay in a universe with generic

scale factor, Eq. (82), matches the results of [27] for the

same choice of parameters as in the de Sitter case. This is a

confirmation of the actual accuracy of the “gluing” pro-

cedure used in [27], since our computation does not rely on

any approximation of this sort.

VI. DISCUSSION

Hamilton geometry allows to consistently introduce

departures from general-relativistic geodesic motion as a

consequence of the presence of nonquadratic functions of

the four momentum of a test particle in its Hamiltonian.

While in this framework the Hamiltonian is, in principle,

allowed an arbitrary dependence on momentum, symmetry

requirements constrain its possible shape. In the work

presented here, the implementation of spatial isotropy

and homogeneity as invariances of the Hamiltonian

allowed us to derive its generic functional form in the

cosmological setting, Eq. (17).

The presence of terms which are of higher power in the

momenta requires the introduction of a dimensionful

parameter, i.e. of an energy scale, so this framework is a

promising candidate to describe Planck-scale departures

from general relativity. In particular, since Hamilton geom-

etry allows for a consistent treatment of the symmetry

properties of the modified phase space, it can be used for

the scopes of the ’Doubly Special Relativity’ program.

Presently, the most successful theoretical framework for

relativistic Planck-scale-modified dispersion relations is the

one of Hopf algebras [14], which is however rooted in the

assumption of maximal symmetry. The strength of our

approach lies in its ability to deal with situations of only

partial symmetry, as it is the case in cosmology, which is

extremely relevant for Planck-scale phenomenology.

We provided the most general Hamiltonian that modifies

the one valid in a Friedmann-Lemaître-Robertson-Walker

universe, up to the first order in the (dimensionful)

deformation parameter, meaning that our Hamiltonian

contains up to cubic powers in the four-momentum. This

is displayed in Eq. (19).

Most importantly we were able to propose a Hamiltonian

which is a curved-spacetime generalization, compatible

with spacetime isotropy and homogeneity, of the κ-

Poincaré dispersion relation—one of the most studied

deformations of the special-relativistic dispersion relation,

which is derived in the context of the κ-Poincaré Hopf

algebra. Our proposal, Eq. (51), is compatible with the loss

of time-translation invariance in the cosmological setting

and reduces to the κ-Poincaré one when going to a local

inertial frame. This was made especially easy by the fact

that the κ-Poincaré Casimir exhibits the same spatio-

temporal split as results from cosmological symmetry.

Finally, we used this last Hamiltonian to study in detail

the worldlines of relativistic particles and compute some

observable predictions. Specifically, we were able to

reproduce and generalize the familiar energy redshift effect,

Eq. (65), computed to all orders in the Planck length and for

arbitrary scale factor and spatial curvature. In general

relativity such effect only depends on the time of travel

of the particle, while in our framework it also depends on

the particle’s energy itself. Choosing the scale factor of an

exponentially expanding universe and considering only the

first-order perturbation in the Planck length, our result

confirms the results found in [25]. We were also able to

compute, up to the first order in the Planck length, the

amount of delay in the time of arrival of two particles

emitted by the same source at the same time but with

different energies, Eq. (82). This is an effect which is

being currently tested with astrophysical observations

[31,33–36]. We could confirm the results of [27], valid

for a spatially flat universe, for a specific choice of the

parameters in [27]. Our results also generalize the compu-

tation to a universe with arbitrary spatial curvature.

In an upcoming article we will use the Hamilton

geometry framework to study modified dispersion relations

in arbitrary curved spacetimes. In the same article we will
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then introduce spherically symmetric Planck-scale-modi-

fied geometries, which can be interpreted as deformations

of Schwarzschild geometry.

ACKNOWLEDGMENTS

GG acknowledges support form the John Templeton

Foundation. NL acknowledges support by the European

Union Seventh Framework Programme (FP7 2007-2013)

under grant agreement 291823 Marie Curie FP7-PEOPLE-

2011-COFUND (The new International Fellowship

Mobility Programme for Experienced Researchers in

Croatia—NEWFELPRO), and also partial support by the

H2020 Twinning project no 692194, RBI-TWINNING and

by the 000008 15 RS Avvio alla ricerca 2015 fellowship

(by the italian ministry of university and research). LKB is

supported by a Ph.D. grant of the German Research

Foundation within its Research Training Group 1620,

Models of Gravity. CP gratefully thanks the Center of

Applied Space Technology and Microgravity (ZARM) at

the University of Bremen for their kind hospitality.

LKB and CP would also like to thank their colleague

Michael Fennen for critical remarks and important

discussions.

APPENDIX A: COMPLETE LIFTS OF THE

SYMMETRY GENERATORS

In Sec. III, the symmetry conditions on dispersion

relations are formulated in terms of complete lifts of the

symmetry vector fields (12)–(13) on spacetime. Here we

display these lifts explicitly.

Defining χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kr2
p

the lifted translations are:

XC
1
¼ χ sin θ cosϕ∂r þ

χ

r
cos θ cosϕ∂θ −

χ

r

sinϕ

sin θ
∂ϕ

þ
�

kr

χ
sin θ cosϕpr þ

1

χr2
cos θ cosϕpθ −

1

χr2
sinϕ

sin θ
pϕ

�

∂̄r

þ
�

−χ cos θ cosϕpr þ
χ

r
sin θ cosϕpθ −

χ

r

cos θ

sin θ2
sinϕpϕ

�

∂̄θ

þ
�

χ sin θ sinϕpr þ
χ

r
cos θ sinϕpθ þ

χ

r

cosϕ

sin θ
pθ

�

∂̄θ; ðA1Þ

XC
2
¼ χ sin θ sinϕ∂r þ

χ

r
cos θ sinϕ∂θ þ

χ

r

cosϕ

sin θ
∂ϕ

þ
�

kr

χ
sin θ sinϕpr þ

1

χr2
cos θ sinϕpθ þ

1

χr2
cosϕ

sin θ
pϕ

�

∂̄r

þ
�

−χ cos θ sinϕpr þ
χ

r
sin θ sinϕpθ þ

χ

r

cos θ

sin θ2
cosϕpϕ

�

∂̄θ

þ
�

−χ sin θ cosϕpr −
χ

r
cos θ cosϕpθ þ

χ

r

sinϕ

sin θ
pθ

�

∂̄θ; ðA2Þ

XC
3
¼ χ cos θ∂r −

χ

r
sin θ∂θ

þ
�

kr

χ
cos θpr −

1

χr2
sin θpθ

�

∂̄r

þ
�

χ sin θpr þ
χ

r
cos θpθ

�

∂̄θ; ðA3Þ

while the lifted rotations are

XC
4
¼ sinϕ∂θ þ cot θ cosϕ∂ϕ

þ cosϕ

sin θ2
pϕ∂̄

θ
− ðcosϕpθ − cot θ sinϕpϕÞ∂̄ϕ;

ðA4Þ

XC
5
¼ − cosϕ∂θ þ cot θ sinϕ∂ϕ

þ sinϕ

sin θ2
pϕ∂̄

θ
− ðsinϕpθ þ cot θ cosϕpϕÞ∂̄ϕ;

ðA5Þ

XC
6
¼ ∂ϕ: ðA6Þ

APPENDIX B: SOLVING THE SYMMETRY

CONDITIONS

As mentioned in Sec. III, we can solve the symmetry

conditions XC
I ðHÞ ¼ 0 for I ¼ 1;…; 6 as partial differ-

ential equations by the introduction of coordinates
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t̂ ¼ t; r̂ ¼ r; θ̂ ¼ θ; ϕ̂ ¼ ϕ;

p̂t ¼ pt; p̂r ¼ pr; p̂θ ¼ pθ; ðB1Þ

w2 ¼ ð1 − kr2Þp2
r þ

1

r2
p2

θ þ
1

r2 sin θ2
p2

ϕ: ðB2Þ

We replace all the pϕ in the expressions of the XC
I , which

are displayed in appendix A, with

p2

ϕ ¼ r2 sin θ2
�

w2
− ð1 − kr2Þp2

r −
1

r2
p2

θ

�

; ðB3Þ

and we transform the coordinate basis of the vectors fields

according to

∂t ¼ ∂̂t; ∂̄t ¼ ˆ̄∂
t
; ðB4Þ

∂r ¼ ∂̂r −

�

w2

r
−

�

1

r
− 2kr

�

p2
r

�

1

w
∂w; ðB5Þ

∂̄r ¼ ˆ̄∂
r þ ð1 − kr2Þpr

1

w
∂w; ðB6Þ

∂θ ¼ ∂̂θ − cot θ

�

w2
− ð1 − kr2Þp2

r −
1

r2
p2

θ

�

1

w
∂w; ðB7Þ

∂̄θ ¼ ˆ̄∂
θ þ pθ

r2
1

w
∂w; ðB8Þ

∂ϕ ¼ ∂̂ϕ ðB9Þ

∂̄ϕ ¼ 1

w

1

r sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
− ð1 − kr2Þp2

r −
1

r2
p2

θ

r

∂w: ðB10Þ

Expanding the symmetry equations XC
I ðHÞ ¼ 0 in these

new coordinates, we find

∂̂rH ¼ 0; ∂̂θH ¼ 0; ∂̂ϕH ¼ 0;

ˆ̄∂
r
H ¼ 0; ˆ̄∂

θ
H ¼ 0: ðB11Þ

The calculation is straightforward however quite lengthy.

One trick is to consider the equations ðsinϕXC
5
þ

cosϕXC
4
ÞH ¼ 0, ðcosϕXC

5
− sinϕXC

4
ÞH ¼ 0, ðsinϕXC

1
−

cosϕXC
2
ÞH ¼ 0 as well as ðcosϕXC

1
þ sinϕXC

2
ÞH ¼ 0

instead of XC
5
H¼ 0, XC

4
H ¼ 0, XC

2
H ¼ 0 and XC

1
H ¼ 0.

APPENDIX C: EXTRINSIC VIEWPOINT

ON HOMOGENEITY AND

ISOTROPY CONDITIONS

What underpins the postulate of isotropy and spatial

homogeneity from a group-theoretical point of view is

particularly visible when adopting the following extrinsic

viewpoint.

The assumption of maximal spatial symmetry means that

spacetime is foliated in time by three-dimensional, homo-

geneous submanifolds Σ, which are necessarily isometric to

either of the following:

Σ≅

8

>

>

<

>

>

:

S3 ≅SOð4Þ=SOð3Þ ða sphereÞ if k¼þ1;

E3
≅ ISOð3Þ=SOð3Þ ðEuclidean spaceÞ if k¼ 0;

H3
≅SOð1;3Þ=SOð3Þ ðhyperbolic spaceÞ if k¼−1:

ðC1Þ

Here, the parameter k indicates spatial curvature, and the

identification as either of the three given quotient spaces is

understood from an embedding of Σ into R
4 as

GMNX
MXN ¼ k−1 ðC2Þ

with metricG ¼ diagð1; 1; 1; k−1Þ, in Cartesian coordinates
XM (indices M;N;… between 1 and 4), where the case

k ¼ 0 is considered only in the limiting sense. In the case

Σ ≅ S3, choosing

XM ¼

0

B

B

B

@

sin ρ sin θ cosϕ

sin ρ sin θ sinϕ

sin ρ cos θ

cos ρ

1

C

C

C

A

for k ¼ þ1; ðC3Þ

induces on Σ the metric

h ¼ dρ2 þ sin2ρdΩ2

2
¼ ð1 − r2Þdr2 þ r2dΩ2

2
ðC4Þ

with dΩ2

2
¼ dθ2 þ sin2 ϕ, and, optionally, r ¼ sin ρ. The

remaining two cases are completely analogous. (Formally,

k ¼ −1 is obtained by sending ρ→ iρ, and k ¼ 0 when

neglecting all but linear terms in ρ). The isometries are

generated by the restriction of the vector fields Zij and kZ4i

(i, j ¼ 1, 2, 3) to Σ, where

ZMN ¼ 2XLGL½M∂N�: ðC5Þ

Cotangent vectors on Σ have, in this embedded view,

components

PM ¼ ∂ρ

∂XM pρ þ
∂θ

∂XM pθ þ
∂ϕ

∂XM pϕ: ðC6Þ

Lifting the vector fields (C5) to T�
R

4
≅ R

8 simply yields

ẐMN ¼ ZMN þ 2P½MGN�L∂̄
L; ðC7Þ

the action of which can be represented as

δẐMN
Y ¼ ΩMNY ðC8Þ
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with

ΩMN ¼
�

eNe
�
M − eMe

�
N 0

0 ðeMe�N − eNe
�
MÞt

�

ðC9Þ

and Y ¼ ðX1;…; X4; P1;…; P4Þt; ðC10Þ

when eM is the R
4 unit (column) vector in the M-th

direction, and e�M ¼ GðeMÞ the dual (row) vector. Since

both the lift and the matrix representation are linear

operations, the rescaling Z4i → kZ4i translates identically

to Ω4i → kΩ4i to yield the correct k → 0 limit. Respecting

this, any function invariant under (C8) must be a function of

some quadratic form YthY, with symmetric coefficient

matrix h. The condition it has to satisfy is

Ω
t
MNhþ hΩMN ¼ 0; ðC11Þ

which is the infinitesimal version of Ωt
MNhΩMN ¼ h. It is

solved if

h ∈ span

��

kG 0

0 0

�

;

�

0 0

0 G−1

�

;

�

0 1

1 0

��

; ðC12Þ

Now, XMPM ¼ 0 on Σ, and GMNX
MXN ¼ k−1 ¼ const

anyway, so that a generic function invariant under the

symmetry-generating vector fields ẐMN can only truly

depend on ðG−1ÞMNPMPN . But on T�
Σ, one easily finds,

with w from (15), that

w2 ¼ ðG−1ÞMNPMPN : ðC13Þ

This is the aimed-at result. Considering a time-dependent

embedding (C2) then creates the additional dependence

on the corresponding coordinates t and pt for a general

homogenous and isotropic Hamiltonian (17).

APPENDIX D: MORE ON THE FORM OF THE

QFLRW HAMILTONIAN

The ansatz we formulated at the beginning of Sec. V, for

what concerns the form of the Hamiltonian, can be derived

formally from the five-dimensional κ-Poincaré momentum-

space [37,38]. It is well argumented in the literature that

κ-Poincaré (bicrossproduct basis) Hopf algebra features can

be reproduced as a curved momentum-space Riemannian

geometry with a de Sitter-like metric [12,39–41]. Such a

curved momentum-space (here discussed in 1þ 1D for the

sake of simplicity) can be realized as a 1þ 1D hyperboloid

embedded into a 1þ 1þ 1D Minkowskian manifold with

coordinates Π0, Π1, Π4, which on the hyperboloid satisfy

the constraint

−Π
2

0
þ Π

2

1
þ ~Π

2

4 ¼
1

l
2
: ðD1Þ

We can redefine the coordinate ~Π4 − 1=l ¼ Π4, in order

to reabsorb the term 1=l2. This set of Minkowskian 1þ
1þ 1D spacetime coordinates are related to the 1þ 1D

corrdinates pμ defined on the hyperboloid by the following

relations:

Π0 ¼
1

l
sinhðlptÞ þ

l

2
elptp2

1
;

Π1 ¼ p1e
lpt ;

Π4 ¼
1

l
ðcoshðlptÞ − 1Þ − l

2
elptp2

1
: ðD2Þ

For ηAB being the 1þ 1þ 1D Minkowskian metric with

signature ð−1; 1; 1Þ, we have

Hκ ¼ ηABΠAΠB ¼ −Π
2
0
þ Π

2
1
þ Π

2
4
¼ −

4

l
2
sinh2

�

l

2
pt

�

þ elptδαβ ~pα ~pβ: ðD3Þ

The physical interpretation of such momentum-space

geodesic equations can be formalized interpreting the

Hamiltonian as a “momentum-space invariant line-

element”:

Hκ ¼
Z

1

0

ηAB _ΠAðsÞ _ΠBðsÞds ¼
Z

1

0

ζαβðPÞ _PαðsÞ _PβðsÞds;

ðD4Þ

where the PαðsÞ are momentum-space geodesics and ζμν is

the 1þ 1D momentum-space metric, defined as

ζαβðpÞ ¼ ηAB
∂ΠA

∂pα

∂ΠB

∂pβ

¼
�

−1 0

0 e2lpt

�

: ðD5Þ

This simple observation allows us to define a de Sitter–

de Sitter framework in which Hamiltonian and metric can

be obtained from (D3) and (D5), just sending p1 → p1e
−ht,

id est

Π
dS−dS
0

¼ 1

l
sinhðlptÞ þ

l

2
elpte−2htp2

1
;

Π
dS−dS
1

¼ p1e
lpt−ht;

Π
dS−dS
4

¼ 1

l
ðcoshðlptÞ − 1Þ − l

2
elpte−2htp2

1
: ðD6Þ

The Hamiltonian then becomes

HdS−dS ¼ −
4

l
2
sinh2

�

lpt

2

�

þ elpte−2hx
0

p2

1
; ðD7Þ

and the metric of momentum space appears to be a de

Sitter–de Sitter–like one
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ζ
αβ
dS−dSðpÞ ¼ ηAB

∂ΠdS−dS
A

∂pα

∂ΠdS−dS
B

∂pβ

¼
�

−1 0

0 e−2hx
0

e2lpt

�

:

ðD8Þ

The extra-dimension formalism can be very useful to

deal with de Sitter momentum-space geodesic equations,

P̈α þ Γ
βγ
α
_Pβ

_Pγ ¼ 0; ðD9Þ

where the PμðsÞ are the momentum-space geodesics in

1þ 1D and the dotted coordinate _P is differentiated with

respect a geodesic affine parameter s. Those equations are,
in general, very complex to solve, as we will see in a few

lines. Using the metric (D5), geodesic equations (D9)

become

�

P̈0 þ le2lP0 _P2

1 ¼ 0

P̈1 þ 2l _P0
_P1 ¼ 0

ðD10Þ

with conditions Pαð0Þ ¼ 0 and Pαð1Þ ¼ pα. Those latter

equations (in which the connection is the usual Christoffel

symbol in terms of the momentum-space metric), as

previously observed, are not so easy to solve. However

being the 1þ 1þ 1D metric flat, we can take advantage of

Π̈α ¼ 0 and then _Πα ¼ const, which give us a couple of

simple differential equations,

�

_Π0 þ _Π4 ¼ elP0 _P0 ¼ C04

_Π1 ¼ lelP0 _P0P1 þ elP0 _P1 ¼ C1

; ðD11Þ

whose solutions

(

P0ðsÞ ¼ −
1

l
ln ð1þ ðelpt − 1ÞsÞ

P1ðsÞ ¼ elptp1s
1þðelpt−1Þs

; ðD12Þ

always satisfy the first equation in (D10) and also the

second one, if we take into account the additional on-shell

condition. A further check can be fulfilled by using those

latter solutions to calculate the κ-Poincaré Hamiltonian

with the procedure defined in Eq. (D4). The possibility to

describe κ-Poincaré Hopf algebra formalism as a curved

momentum-space allows us to establish a duality between

complex Hopf algebra properties and Riemannian geom-

etry, which makes it possible to interpret in a comprehen-

sible way all the otherwise obscure κ-Poincaré features like

the time-delay effect and nontrivial composition law for

momenta [19].
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