
 

Planck scale potential associated with particles 
 
 

D. L. Bulathsinghala, K. A. I. L. Wijewardena Gamalath* 

Department of Physics, University of Colombo, Colombo 3, Sri Lanka 

*E-mail address: imalie@phys.cmb.ac.lk 

 

 

 
 

ABSTRACT 

As the particles originating from point-like entities are associated with infinite self energies, a 

postulate, that the scalar-potential associated with particles are bounded by a Planck scale potential is 

introduced. By defining the self energy of a particle, equivalences between charge-energy and mass-

energy are obtained. The electromagnetic energy-momentum equation, de-Broglie’s electromagnetic 

wave-length and frequency for a charge particle in motion are presented resolving the “4/3” 

discrepancy. The non-covariance nature of the present classical electrodynamics is discussed and how 

the proposed postulate makes it a fully covariant theorem with the rest of the classical 

electrodynamics is presented. A way electromagnetic energy-momentum equation could potentially 

resolve the stability-problem of a charge particle is discussed and thereby a theoretical explanation to 

electron’s spin is presented. 
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1.  INTRODUCTION 

 
In classical electrostatics, the self energy of a particle of charge assumed to be 

uniformly distributed over its surface, constructed by bringing in infinitesimal amounts of 
charge quantities of the particle from infinity, diverges or goes to infinity, when the radius 
approaches to zero. However to avoid the infinite energy problem, if the charge particle is 
assumed to be associated with a finite radius, then it give rise to the problem of explaining 
how the like-charge distribution of the particle is held together against the repulsive nature of 
the like-charges, known as the “stability-problem”.  

Historically, a few different approaches have been proposed in order to account for the 
self-energy problem arising from the point-like charge particles and the stability-problem 
arising from the finite radius models. Stokes [1] showed in 1844 that the inertia of a body 
moving in an incompressible perfect fluid is increased. 

Noticing that electromagnetic momentum and energy of charged bodies and therefore 
their masses depend on the speed of the bodies, Thomson in 1881 [2] recognized this effect 
for moving charged particles and showed that it is harder to set in motion a charged sphere 
moving in a space filled with a medium of a specific inductive capacity than an uncharged 
body. Due to this self-induction effect, electrostatic energy behaves as having some sort of 
momentum and apparent electromagnetic mass, which can increase the ordinary mechanical 
mass of the bodies, or in modern terms, the increase should arise from their electromagnetic 
self energy.  
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Using this model Searle [3] in 1897, derived the electromagnetic energy of a moving 

charge spheroid shell. In 1904, Lorentz [4] computed the electromagnetic momentum for a 

moving charge spheroid shell. However, the electromagnetic energy and momentum they 

obtained were neither relativistically covariant nor transformed as an energy-momentum four 

vector. In order to remove the 4/3 discrepancy appearing, Poincare [5] postulated that a non-

electromagnetic force was necessary to hold the like-charge distribution, and by doing so, he 

was able to solve the stability and the discrepancy problems.   

However, the non-covariant ad-hoc forces associated with Poincare’s postulate are 

assumed to compensate for the non-covariance of the electromagnetic force so that the entire 

electron system becomes covariant.  

Thereafter many others attempted to resolve the 4/3 discrepancy and noteworthy among 

them are Fermi [6], Mandel [7], Wilson [8], Dirac [9], Pryce [10], Kwal [11] and Rohrlich 

[12].  By showing that the Trouton-Noble experiment’s null result [13] can be explained if 

the energy density of an electromagnetic field can be expressed as  the difference in electric 

and magnetic energy in vacuum rather than their addition, Butler [14] derived the energy-

momentum four vector and  resolve  the “4/3” discrepancy problem and showed that the 

source of the non-covariance of the energy and momentum density expressions arise from the 

procedure used to derive the Poynting’s theorem, which is covariant only in the absence of 

charges in moving frames.  

Stratton has also pointed out that “the classical interpretation of Poynting’s theorem 

appears to rest to a considerable degree on hypothesis” [15] while Pauli had stated that “the 

Maxwell-Lorentz electrodynamics is quite incompatible with the existence of charges, unless 

it is supplemented by extraneous theoretical concepts” [16]. A similar analysis on hidden 

momentum and electromagnetic mass of a charge body was carried out by Hnizdo [17]. 

In quantum electro-dynamics with its renormalization techniques, the energy 

associated with an electron is separated into two parts: the energy associated by its 

interactions with other charge particles and the self-energy associated by its interactions with 

itself. In renormalization, the part that interacts with itself is removed or taken out from the 

theory and therefore the electron’s charge doesn’t fly-off or repel itself.  

With this treatment, the infinities which arise when the radius of the spherical electron 

goes to zero, is removed. 

In the present paper, a new postulate, that a scalar potential associated with particles 

bounded by the Planck scale is presented. Including this postulate, equivalence between 

charge and energy was achieved and conventional mass-energy equivalence was re-affirmed 

by a similar procedure.  

Deriving the relativistic energy-momentum relation for a charge particle in motion, 

both relativistically covariant, energy and momentum expressions were obtained resolving 

the 4/3 discrepancy.  

Using de-Broglie’s hypothesis, an electromagnetic matter wavelength and matter 

frequency for a charge particle in motion are presented. With the proposed postulate the non-

covariance nature of the present classical electrodynamics was changed into a fully covariant 

form. Discussing how the proposed postulate could potentially resolve the stability problem 

of a charge particle, a theoretical explanation to the electron’s spin is presented. 
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2.  SELF ENERGY OF A CHARGE PARTICLE   

 

The energy of a particle of charge q, assumed to be uniformly distributed over the 

surface of the particle’s body of radius r, is given by: 
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Similarly, if the charge q is assumed to be distributed over the particle’s volume with a 

constant charge density, the energy expression reads: 
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The energy of the charge particle due to surface charge density or volume charge 

density diverges or said to give rise to a singularity, when the radius approaches to zero. In 

other words the corresponding energies become infinite, for point-like charge particles. 

Further, they only take into account the amount of potential energy that is stored in 

constructing such configurations, when bringing infinitesimal amounts of charge quantities 

from infinity, and that the subsequent infinitesimal charge amounts do not possess self 

energies associated to them. The conventional energy expressions given in equations 1 and 2 

are based on the assumption that charge is continuous and indefinitely sub divisible and that 

the subdivided infinitesimal charge quantities alone do not possess a self energy associated to 

them. Thus, the expressions in equations 1 and 2 can be regarded as the potential energy of a 

system comprising infinite number of infinitesimal charge quantities, whose individual self 

energies are assumed to be zero. 

Einstein [15] proposed equivalence between mass and energy in 1905 and concluded 

that the mass of a body is a measure of its energy content. That is, if the energy changes by E, 

the mass m changes in the same sense, i.e. 

  
2E mc  (3) 

 

Further, the relativistic energy of a particle with rest mass m and velocity u, is obtained from 

the energy momentum relation. 
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Nevertheless, in the context of relativity, mass is not considered as an additive quantity, in the 

sense that, in a system, the collection of rest masses of the particles adding up to give the total 

rest mass of the system. Instead, the energy-momentum equation quantifies the amount of 

total invariant mass M of the system:  
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where the speed ui of each particle mi are obtained relative to the center-of-momentum of  the 

mass body M.  A system composed of a collection of particles obeys the equation 5, whereas 

individual particles at rest obey the equation 3 while when they are in a constant velocity 

motion they obey equation 4.  

The mass-energy equivalence given in equation 5 is not constructed by bringing in an 

infinitesimal amount of mass quantities, each associated with zero self energy content at 

infinity  and even at infinity, a corresponding infinitesimal amount of mass quantity m, is 

assumed to be associated with a self energy: 

 
2E mc   (6) 

  

In view of the self-energy problem arising from point-like charge particle models, the zero 

self-energies associated with infinitesimal amounts of charge quantities at infinity arising 

from finite radius charge particle models and the 4/3 problem associated with the classical 

electron theory, the postulate that the scalar-potential associated with particles are bounded 

by the Planck scale potential is put forwarded to construct a physical theory consistent with 

the theory of relativity. The self-energy associated with a charge quantity q, interacting with 

its own field E  is given by: 
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As the radius approaches to zero, the scalar-potential E  becomes infinite and thereby the 

corresponding self-energy of the charge particle becomes infinite as well. However from the 

proposed postulate, the scalar-potential associated with particles are bounded by the Planck 

scale potential or voltage Vplanck: 
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Therefore the self-energy of a charge particle is obtained as 

 

planckE qV  .  (9) 

 

 

3.  MASS-ENERGY EQUIVALENCE  

 

The self-energy associated with a spherical mass quantity m with a radius r interacting 

with its own field G  is given by: 
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where G is the universal gravitational constant. As the radius approaches to zero, the scalar-

potential G  becomes infinite and thereby the corresponding self-energy of the mass particle 

becomes infinite as well. However, from the proposed postulate, the scalar-potential 

associated with the particles are bounded by the Planck scale potential such that: 
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Thus, the self-energy of a mass particle is obtained as equation 3. 

Historically, Poincare arrived at equation 3 in 1900 based on the concept of the 

radiation pressure, associated with electromagnetic radiation energy with a fictitious-fluid 

having mass and momentum. Einstein first entered the discussion in 1905 by relating the 

radiation energy to the change of mass [15]. He then affirmed this relation in many different 

presentations, revisiting the discussion with different experiments, devised to affirm the 

equivalence. However, from a recent review from Hecht [16], it is argued that Einstein was 

not able to provide a conclusive general proof of this seminal hypothesis from first principles. 

 

 

4.  RELATIVISTIC ENERGY-MOMENTUM RELATION ASSOCIATED WITH A 

     CHARGED PARTICLE IN MOTION 

 

Starting from the classical interpretation, a generalized relation for the change in energy 

dE and momentum dP can be derived for a particle in motion, from force F, and velocity u. 

Consider a particle moving in x-direction under an external force F, the change in energy, 

 

d dE
dE d d d u

dt dp
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p
F r r p u   (12) 

   

Further, the electromagnetic vector-potential A, located on the surface of a charge particle 

with charge q and radius r, moving at a velocity u is defined from the Helmholtz theorem, 
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where J is the current density,  is the charge density, E  is the electrical scalar-potential and 
2

0 0 1/ c   . The electromagnetic momentum pq of a particle with charge q and velocity u is 

defined as: 

 

2q Eq q
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u
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As the radius of the charge particle approaches to zero, the corresponding scalar-potential and 

the vector-potential become infinite and give rise to unbounded quantities. However, by using 

the postulate presented in this paper, the vector-potential and the electromagnetic momentum 

obtained in terms of scalar potential in equation 13 and 14 become bounded from equation 8: 
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 and equations 12 reads: 
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The momentum and energy formulas leading to relativistic energy-momentum relations 

for mass particle and charge particle are tabulated in Table 1. The constant of integration 

were obtained by introducing rest frame energies, 2

0m c  and 
planckqV  when the mass and 

charge particles are at rest respectively.  

 
Table 1. Momentum and energy formulas of mass and charge particles. 
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Thereby the energy of a charge particle in motion is relativistically covariant, similar to 

that of a mass particle in motion. This shows that the mass-energy equivalence and the 

charge-energy equivalence are both relativistically covariant. 
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From equation 18, 
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Since the relativistic-mass is derived from the relativistic energy or relativistic momentum of 

the system, the relativistic-mass 0m
 
is not a good concept. Einstein wrote, “It is not good to 

introduce the concept of the mass 0M m  of a moving body for which no clear definition 

can be given. It is better to introduce no other mass concept than the rest-mass m0. Instead of 

introducing M,  it is better to mention the expressions for the momentum and energy of a 

body in motion” [17]. The same set of arguments holds true for the relativistic charge 0q  

associated with relativistic charge-energy 
0( )planckq V  and relativistic charge-momentum  
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 expressions as well. 

 

 

5.  CHARGE PARTICLE AND DE BROGLIE’S MATTER WAVE HYPOTHESIS  

 

This distinction between waves, propagating according to Maxwell’s equations and 

particles considered to consist of localized particles was challenged when Einstein [18] in 

1905, introduced the concept  that light behaved as a collection of localized energy packets or 

energy quant which was later termed ’photons’. de-Broglie expanded Einstein’s hypothesis to 

all matter particles arguing that just as light exhibits a wave-particle duality, all particles must 

also be associated with a wave into which they are incorporated [19] and showed that every 

particle of matter with mass m and velocity u, a real wave with a wavelength known as de-

Broglie’s wavelength associated with its momentum exist. That is , 
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Using the concept of de-Broglie, the charge particles can also be associated with a wave into 

which they are incorporated and their de-Broglie’s wavelength for a charge particle with 

charge q and velocity u is given by 
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and, the frequency of the matter-wave associated with the charge particle reads: 
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In 1927, Davisson and Germer confirmed that electrons diffracted and behaved like 

waves and the diffraction was thought to have arisen from the electromagnetic mass of 

electrons [20]. However, the matter-wave relations presented in equations 21 and 22 for a 

charge particle in motion are derived from a relativistically covariant energy-momentum 

relation, and therefore could potentially account for the observed scattering of the electrons 

which give rise to a diffracted wave-like behavior. 

 

 

6.  RELATIVISTICALLY COVARIANT ENERGY-MOMENTUM FOUR VECTOR 

 

Max Abraham [21] and H.A Lorentz [22], based on Maxwell’s theory of electricity and 

magnetism developed the first set of theories for the classical electron. From classical 

electrostatics, the rest energy U0 of a spherical charge body with total charge q, uniformly 

distributed over its spherical surface of radius r is given in equation 1. The relativistic 

electromagnetic energy U of the charge q, moving with velocity u can be derived, similar to 

derivations given by Panofsky [23]: 
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and its relativistic electromagnetic momentum P as: 
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However, according to mass-energy equivalence and the theory of relativity, the equivalent 

electromagnetic invariant mass me of an electron with charge e is from equation1 with q e , 
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The relativistic electromagnetic energy and momentum given in equations 23 and 24 can be 

written in terms of the electromagnetic invariant mass me as: 
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Therefore relativistic electromagnetic energy and momentum are neither relativistically 

covariant nor transformed as an energy-momentum four-vector.  

From the proposed hypothesis, the electromagnetic invariant mass me of an electron 

with charge e  can be obtained as, 
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The expressions of the relativistic electromagnetic energy and the momentum obtained 

in equations 18 and 19 can be expressed in terms of the electromagnetic invariant mass me , 
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The relativistic electromagnetic energy and the momentum obtained in equations 29 

and 30 are relativistically covariant and they form a relativistically covariant energy-

momentum four-vector in Minkowskian spacetime: 
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which gives rise to the energy-momentum relation as shown below. 
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7.  STABILITY PROBLEM IN FINITE RADIUS CHARGE PARTICLE MODEL  

 

Charge particle models with finite radii cannot explain how the repulsive like-charge 

distributions are held together. In order to explain this stability problem, Poincare, in 1905 

introduced a postulate, that a non-electromagnetic force was required, to hold the like-charge 

distribution together. However, in view of the energy-momentum expression for a collection 

of mass particles given in equation 5, which quantifies, the total invariant energy of the 

system without taking into account the potential energies associated with particle interactions, 

we emphasize that the electromagnetic energy-momentum relation alone would quantify the 

total energy of a system comprising of many charge particles, without having to incorporate 

the potential energies arising between its constituent particles. That is, the composite energy 
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of the system, associated with the energy-momentum equation, includes both the kinetic 

energy and the potential energy of the system. This yields that the electromagnetic energy-

momentum relation obtained for a charge particle in motion can be extended to a collection 

of many charge particles, and obtain the total invariant charge Q as given below. 
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Further, if the total energy of a collection of infinitesimal charge quantities can be 

quantified by the expression given in equation 33, then the momentum energy components 

associated with constituent charge quantities can be shown to give rise to a set of attractive 

magnetic forces between themselves, if they are associated with a relative motion in the same 

sense of direction, which could potentially resolve the stability problem associated with finite 

radius models. This yields that like-charge particles, such as electrons, with a finite radius 

model, requires that their corresponding charge distributions to be associated with an intrinsic 

spin. Thus, the electron model presented in this paper demands for an intrinsic spin associated 

with the electron’s charge distribution. Thus, a theoretical explanation to the electron’s spin is 

obtained. 

 

 

8.  CONCLUSION  

 

A new postulate to treat the electric and gravitational scalar-potentials, so that they 

become finite and bounded was proposed. This led to the derivation of both the charge-

energy and mass-energy equivalences. Extending this postulate to a charge particle in motion, 

its corresponding energy-momentum equation was derived and the total electromagnetic 

energy and the electromagnetic momentum associated with a charge particle in motion were 

relativistically covariant. Using the concept de-Broglie’s matter-wave hypothesis de-

Broglie’s wavelength for a charge particle is presented. The stability-problem associated with 

repulsive like-charge distribution is potentially resolved which demands that the electrons are 

associated with an intrinsic spin, consistent with the quantum mechanical description of the 

elementary particles. The present paper is a call for a revision of the classical 

electrodynamics to make it a fully covariant system with the rest of the classical physics. 
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