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Preface to the English
Edition

I am very pleased that the AMS has decided to publish an English
version of the German text. This was a good opportunity to add a
new section (3.9) on the recently discovered Chebyshev curves and to
improve the appendix on the implicit function theorem. My thanks
go to the AMS and Vieweg for this joint project, to Leslie Kay for
her excellent translation, including many clarifications of details, and
to my students in Diisseldorf (especially Nadine Engeler, Thorsten
Haarhoff, and Thorsten Warmt) for their help in preparing the new
sections.

Miinich, January 2001 Gerd Fischer
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Preface to the German
Edition

How many zeros does a polynomial in one variable have? This ques-
tion is answered definitively by the “fundamental theorem of algebra.”
But if we go to two variables, the zero sets become infinite in general.
These sets can be viewed as geometric objects—more precisely, as
plane algebraic curves. So two paths intersect here, one from algebra
and one from geometry, and it is hardly surprising that properties of
such curves have been pondered for many centuries.

Adding yet another book to the countless books on this topic
demands justification, or at least an explanation of some special point
of view. I won’t conceal the external stimulus: Several years ago, I was
encouraged to write something about algebraic curves. My immediate
response was that there were already a lot of books—perhaps too
many books—about them. But I couldn’t resist the temptation to
keep giving lectures on the subject and writing up my notes. Let me
briefly explain what they eventually turned into.

The text consists of two very different parts. In Chapters 0 to 5,
the geometry of curves is explained in as elementary a way as possible:
tangents, singularities, inflection points, etc. The most important
technical tool is the intersection multiplicity, which is based on the
resultant, and the main result is Bézout’s theorem on the number

xiii



xiv Preface to the German Edition

of points of intersection of two curves. This part culminates in the
Pliicker formulas, in Chapter 5. These formulas relate the invariants
studied in the preceding chapters.

The Pliicker formulas can be given an almost—but not completely
——precise proof by elementary techniques. What is missing, in par-
ticular, is a deeper understanding of duality and an efficient way to
compute the intersection multiplicities that appear. The necessary
local and global techniques from analysis are given later, in Chapters
6 to 9. Although the results are relatively easy to state and apply,
laying a sound foundation takes some work.

Chapters 6 to 8 therefore contain an introduction to local com-
plex analysis. This is the theory of either convergent power series or
holomorphic functions of several variables, depending on one’s pre-
ferred point of view. Here power series and the algebraic properties
of rings of power series are emphasized; this approach goes back to
the pioneering work of Riickert [R].

In the last chapter, the local parametrizations are patched to-
gether into a Riemann surface. Borrowing from a famous quotation
of Felix Klein, one might say that curves are then regarded as freed
from their cage—the projective plane—and floating outside a fixed
space. The genus formula is ultimately an extension of the elemen-
tary Pliicker formulas.

The appendices contain some technical tools from algebra and
topology that are used repeatedly, as well as supplements to the pre-
ceding chapters.

Throughout the text an attempt was made to stay very concrete
and, when possible, to give procedures for computing something by
using polynomials and power series. The many examples and figures
should also help keep things concrete. This aspect of algebraic geom-
etry, long regarded as rather old-fashioned, has regained importance.

As one might expect, almost everything here can be found in a
similar form elsewhere. I would especially like to mention Walker
[Wal, Burau [Bu], and Brieskorn-Knérrer [B-K]. My goal was as con-
cise a text as possible for an introductory one- or two-semester course.
(Following a remark of Horst Knérrer, one could describe this little



Preface to the German Edition XV

book as a portable version of the stationary model [B-K].) All that
is assumed is some basic background, especially in elementary alge-
bra and complex function theory. A great deal of effort has only
strengthened my conviction that there hardly exists a more beautiful
approach to algebraic geometry and complex analysis than through
algebraic curves. Geometric intuition and “analytic” methods still lie
very close together here, and every new technique is completely mo-
tivated by clear geometric problems—as in paradise before the many
falls from grace.

My thanks go to all who helped bring this book into being: my
teacher R. Remmert for his encouragement; my students at Diisseldorf
and UC Davis for their suggestions for improvements; Mr. H.-J. Stop-
pel for his untiring help in countless details and the production of the
TEX manuscript; Mr. U. Daub for plotting the first pictures; Mr.
C. Toller for the final production of the finished figures; and finally
Vieweg, the publishers, who expressed their willingness to publish the
book in the German language and at a student-friendly price.

Diisseldorf, June 1994 Gerd Fischer



Chapter 0

Introduction

Let an object move through space as time passes. The task of curve
theory is to describe this process abstractly and study it in detail.
Modern curve theory has many branches, and no attempt will be
made here to give an overview of the numerous questions that are
treated in this context. Instead we will carefully examine a small,
clearly delimited, but very exciting part: the elementary theory of
plane algebraic curves. The first restriction, plane, means that the
space in which the motion occurs is only two-dimensional; this makes
a number of things easier. Before explaining what we mean by an
algebraic curve, we give a few examples of general plane curves.

The moving object is assumed to be a point. Then its motion in
the plane is described by a map
p:l =Rt p(t) = (21(t), 22(1),

where I C R denotes an interval. The parameter t can be viewed as
time.

0.1. A line can be described by
o(t) = v + tw,

where v, w € R? are vectors and the direction vector w is not the zero
vector. Here we may take I to be R. The same subset C' = ¢(R) C R?
can be traced in many different ways; that is, there are many different

1



2 0. Introduction

parametrizations ¢ with the same trace ¢(I)—just as the railroad,
with a fixed network of tracks, can keep setting up new timetables. It
will turn out that there is far less freedom of choice in the equations
f that describe C'; that is,

C = {(x1,22) € R?: f(x1,29) = 0}.
In the case of a line, we always have a linear equation
f(x1,22) = a121 + asxo + b, with (a1, a2) # (0,0),

but every g = ¢ - f* with ¢ € R* and k € N* obviously describes the
same line. In Section 1.6 we will study carefully what other equations
there can be.

0.2. The circle C with center (21, 22) and radius r has an equation

(x1 — 21)2 + (22 — 22)2 =72

and a transcendental parametrization
o(t) = (21 + rcost, zo + rsint).

There is also a rational parametrization, which we construct for the
case (z1,22) = (0,0) and r = 1. To do this, we project the circle from
the point p = (0,1) onto the line zo = 0. It is easy to check that
under this projection the point

(p1(8), 2 (1)) = (%’ %)

is mapped to (¢,0). This results in the parametrization

p:R—C\{p} CR?* t (p1(t),2(t))

of the punctured circle; see Figure 0.1. If we adjoin an infinitely
distant point, or “point at infinity,” co to R, it makes sense to extend
¢ by setting p(co0) = p. In Chapter 2 we discuss how crucial such
points at infinity are.

Rational parametrizations of arbitrary conic sections (ellipses, hy-
perbolas, parabolas) can be obtained in exactly the same way.
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X,

P = (0’1)

(p. (1), 0,(1)

Figure 0.1. Rational parametrization of the circle

0.3. The cuspidal cubic (or Neil’s parabola) C' C R? is given by the
parametrization

o(t) = (tzvtg)
and has the equation

Figure 0.2. Cuspidal cubic

This is a polynomial of degree three, so the curve is called a cubic.
The tangent vector is given by

o(t) = (2t,3t%), so ¢(0) = (0,0).



4 0. Introduction

At time ¢ = 0 the velocity with which C' is traced reverses direction,
and its magnitude is zero. It can be shown that (0) = (0, 0) for any
differentiable parametrization

Y:R— CCR? with (0)=(0,0).

For sufficiently differentiable 1);, this follows easily from 7 = 3. It
takes more work if 1 can be differentiated only once. This phenome-
non can occur only at a singular point; the cusp of the cuspidal cubic
is the simplest and most important example of a singularity.

0.4. Newton’s nodal cubic is given by
C = {(x1,22) €R? : 2% = 23(x1 + 1)}.

To obtain a picture of the curve, it is useful to determine the points
of intersection of C' with the lines 1 = A. For A < —1 there are none,
for A\ = —1 and A = 0 there is one, and for all other A there are two,
with the square roots of A3 + A? as abscissas.

T,

Ty

Figure 0.3. Nodal cubic

A rational parametrization

0:R—C, tw (12 —1,t—1t%)
can be obtained by projecting the curve from the origin to the line
1 = —1. Under this projection ¢(1) = ¢(—1) = (0,0). The origin
is an ordinary double point; around it the curve has two branches,
which correspond to the distinct values +1 of the parameter ¢.



0.4. The Nodal Cubic

——
N
\

-2 —r—1 2 —x?4+z-1 2B2tz?-z-1

T

N

23+ 22 B4l —z+1 B4zl e+l

/ /

C ¢
A\ N\

Figure 0.4. Newton’s diverging parabolas: The curves
y = g(z) and y* = g(z)




6 0. Introduction

In Newton’s classification of cubic curves [Ne], as it was published
in 1710, both the nodal cubic and the cuspidal cubic belong to the
family of “diverging parabolas.” These are defined in general by an
equation of the form x3 = g(z1), where g is a cubic polynomial. Some
examples of curves xo = g(x1) and 23 = g(x1) can be seen in Figure
0.4. There x = z1 and y = x».

0.5. The folium of Descartes (named after R. Descartes) looks simi-
lar to the nodal cubic but, according to Newton, belongs to the family
of “defective hyperbolas.” The usual equation is

x3 + 23 — 3129 = 0.

T,

Figure 0.5. Folium of Descartes

The essential difference between this and the nodal cubic is the
existence of an asymptote, which has the equation

r1+2x9+1=0.

If we rotate so that the axis of symmetry becomes x5 = 0, then shift
the asymptote to z; = 0, the folium of Descartes has an equation of
the form

xlx% = g(xl)a
where ¢ is a cubic polynomial. According to Newton, this is charac-
teristic of the defective hyperbolas. Newton’s list of cubics contains
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72 “species.” Later it was completed and, by switching to a coarser
equivalence relation (complex projective instead of real affine—see
Chapter 2), considerably simplified. Once this switch is made, the
equation of any smooth cubic can be brought into Hesse normal form,
which contains one complex parameter (see [B-K]).

The passage from quadrics to cubics already indicates that as the
degrees of the equations increase, the classification problem becomes
more and more difficult, and soon becomes hopeless. From degree 4
on, the list of examples can only be sporadic.

0.6. The path traced by the valve on a bicycle tire is an example of
a cycloid. It can be parametrized by

x1 =t —sint, x9 =1 — cost.

L2

(&1(1),2(1))

Figure 0.6. Cycloid

Since it meets the line x5 = 0 in infinitely many points, it cannot be
described by a polynomial (see Section 1.7). If a circle of radius r
is permitted to roll along the inside of a circle of radius R > r, the
path traced by a point on the inner circle is called a hypocycloid. It
is closed when r/R is rational. If, say, R = 1 and r = 1/3, then the
center of the small circle has coordinates z = %(COS t,sint) and the
moving point is

1 . 1 . .
p=(z1,22) = z—l—g(cos 2t, —sin2t) = 3 (2 cost+cos 2t, 2 sin t—sin 2t).
Applying a few trigonometric identities gives

3(z? + 22)? +8x1(325 — 2) + 6(z +22) =1

as the equation of the hypocycloid of three cusps. This polynomial
has degree four, so it is called a quartic.
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Figure 0.7. Constructing the hypocycloid of three cusps

T,

M.
N

Figure 0.8. Hypocycloid of three cusps

A rational parametrization can be obtained by setting 7 = tan(t/2).

Then
(cost, sint) 1—72 2T
cost,sint) = | ——=, ——
’ 147271472
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(see Section 0.2). Hence

1
TP
When ¢t = 7, we have p = (—1/3,0); the corresponding parameter is
tan(t/2) = co.

Example (d) of Section 5.1 gives a more elegant way of using the
relationship between the circle and the hypocycloid.

p=(om2) = 3 6r2 -1 870

If the ratio of the radii is irrational, then the cusps of the hypocy-
cloid are dense in the outer circle. This is an immediate consequence
of the following theorem.

Kronecker’s Theorem. Let o € R be irrational, and let £ € R be
arbitrary. Then for every € > 0 there exist integers n and p such that

[na— & —p| <e.
In short: the multiples n - & are dense mod 1 (see [Cha], VIII).

0.7. Felix Klein constructed an interesting family of quartics as fol-
lows: Start with two ellipses C1, Cy, with equations

fi=ai+ 325 -1=0,

fo=3a?+a3-1=0.

e>0 T2 e=0 Z2 €< 0 (&)

ChEbdte
\/

Figure 0.9. Three members of Felix Klein’s family of quartics

The equation fi - fo = 0 describes the curve Cy = C1 U Cy. For small
real g, let C, be the curve described by fi - fo = e. If we consider the
signs of the functions f1, fo, and f; - fo, we get an idea of how C.
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looks: for € < 0, the curve consists of four kidney-shaped pieces; for
€ > 0, it splits into two belts.

The kidney-shaped quartic is remarkable because (in contrast to
quadrics and cubics) it has bitangents, which have two points of tan-
gency with the curve. A careful count gives 28 of them.

24 1 214186 28 25 42016 8 9 21

22

i 13

17

26 27

25 28

19

:
—_ 7

24

X

23 9 6 14 18 2 27 26 82016 4 1 22
Figure 0.10. The 28 bitangents to the kidney-shaped quartic

For ¢ > 0, on the other hand, C. has only four real bitangents.

0.8. There is a good reason why almost all the curves introduced
so far have had polynomial equations. You can already see from
the rationality condition for hypocycloids how rare this is for curves
parametrized in an elementary way.
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Things can become quite pathological when the curve admits only
a continuous parametrization. One example is the Peano curve, a
continuous surjective map

p: I —1x1I, where I=1/0,1].

@ is constructed as the uniform limit of piecewise linear maps. In
1890 Hilbert, in Bremen, illustrated it to the Association of German
Natural Scientists and Physicians as follows:

7 2 3 ¥ g23 1 é: 7.2
s | 7w | o m=ilis=il==1lss
| o
2 k4
NEg g gy nuy g
{22 BeES
] 1] |
¥ E ¥ 13
| T
| Dandlnniluudlnn
7 2 K 1 A AT I
il i /14
Abb. 1, Abb. 2. Abb, 3.

Figure 0.11. Peano curve

The trace of the curve in this case is the whole square, so just looking
at the trace gives absolutely no idea how the “curve” was formed.

In constructing the snowflake curve (see Figure 0.12), we can
think of a geographer who wants to draw the coastline of Brittany
with greater and greater accuracy.

We start with an equilateral triangle and, at each stage, attach a
triangle with sides of length a/3 to each existing side of length a.

The length of the curve increases at each step by the factor
4/3. The uniform limit of this sequence is a continuous curve that is
nowhere rectifiable; we can no longer write an equation for its trace.

The last examples should show above all that whoever is inter-
ested in particular regularity properties cannot avoid restricting the
class of curves considered. The existence of a polynomial equation
is a very rigid condition. But in this case we can expect more pre-
cise statements about (for instance) possible singularities, inflection
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/NT I
LAEIE]

Figure 0.12. Snowflake curve

points, bitangents, and relations among their numbers. Finding these
precise statements is the goal of the following chapters.

Exercise. Investigate the symmetry group of the kidney-shaped
quartic of Section 0.7 and its action on the 28 bitangents.
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