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Abstract

Odometry consists in using data from a moving sensor to estimate change in position

over time. It is a crucial step for several applications in robotics and computer vision.

This paper presents a novel approach for estimating the relative motion between suc-

cessive RGB-D frames that uses plane-primitives instead of point features. The planes

in the scene are extracted and the motion estimation is cast as a plane-to-plane registra-

tion problem with a closed-form solution. Point features are only extracted in the cases

where the plane surface configuration is insufficient to determine motion with no ambi-

guity. The initial estimate is refined in a photo-geometric optimization step that takes

full advantage of the plane detection and simultaneous availability of depth and visual

appearance cues. Extensive experiments show that our plane-based approach is as accu-

rate as state-of-the-art point-based approaches when the camera displacement is small,

and significantly outperforms them in case of wide-baseline and/or dynamic foreground.

1 Introduction

Visual odometry is the process of estimating the motion of a robot using the input of a single

or multiple cameras attached to it. It has important applications in robotics, for control and

navigation in the absence of an external reference system. Research has been made in order

to tackle this problem using RGB cameras [8, 10]. However, these methods face significant

challenges including the reconstruction of textureless regions. RGB-D sensors, such as the

Microsoft Kinect and the Asus Xtion Pro Live, cope with this issue since they provide the

3D geometry and the visual appearance of the scene simultaneously.

Recently, odometry methods that take advantage of the depth and color information pro-

vided by RGB-D sensors have been developed [9, 13]. They run in real-time and provide

accurate estimations for high frame rate acquisitions and moderate sensor velocity. However,

they are not able to properly cope with large displacements between consecutive frames. In

[13], it has been experimentally shown that the performance of the method degrades as the
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frame interval increases, which is equivalent to decreasing the frame rate of the acquisition,

or increasing the sensor velocity.

We propose a new odometry method which uses both depth and color information for ex-

tracting planes from the scene, and the relative pose estimation between consecutive frames

is cast as a plane registration problem. In the absence of the minimum number of required

planes, 2D point correspondences are extracted for finding the remaining degrees of freedom

(DOF). This procedure allows the method to cope with large baselines, since it only requires

that there exists a few plane and/or point correspondences.

The algorithm uses an hierarchical scheme for selecting the correspondences, in the sense

that it favors plane correspondences, and points are only extracted if strictly necessary, i.e.,

if the requirement for the minimum number of planes in the scene is not satisfied. This

leads to a more robust estimation because extracting point correspondences in the presence

of wider baselines is more difficult. As a final step, we perform the refinement of the initial

estimation by minimizing the photometric error. The algorithm estimates the entire motion

of the sensor using only the information acquired from pairs of consecutive frames, and no

prior knowledge is considered.

We validated our approach on three image sequences from a recently proposed dataset

[14], as well as on a sequence acquired at high resolution by our Kinect device. For all

the sequences, the performance of our approach was compared to the state-of-the-art method

presented in [9]. We found that we achieve similar accuracy for small camera displacements,

significantly outperforming [9] in the presence of wide baselines.

Notation: Matrices are represented by symbols in sans serif font, e.g. G, and image

signals are denoted by symbols in typewriter font, e.g. I. Vectors and vector functions

are typically represented by bold symbols, and scalars are indicated by plain letters, e.g.

x = (x,y)T and f(x) = ( fx(x), fy(x))
T

. The symbol ∼ denotes an equality up to scale.

2 Related Work

Typical visual odometry systems can be split into 3 steps: (1) feature tracking/matching be-

tween images; (2) estimation of the camera motion inside a random-sample based procedure

for robustness against outlier matches, and (3) optimization using bundle-adjustment for re-

fining the camera poses. Novel RGB-D sensors, like the Microsoft Kinect, provide dense

depth maps in addition to the color images. Odometry systems that operate with such infor-

mation are, therefore, different from the monocular systems, since depth information can be

explored for providing reliable camera poses and 3D reconstructions.

Several researchers have focused on the problem of odometry and SLAM for RGD-D

sensors [4, 6, 9, 13, 16]. Endres et al. [4] proposed a two-fold SLAM system for RGB-

sensors. On the front-end, the spatial relation between adjacent RGB-D images is established

by extracting and matching image features. The matches are then used to estimate the relative

transformation between sensor poses using a RANSAC-based procedure. The back-end of

the SLAM system optimizes the pose observations with a graph-optimization procedure to

keep long-term reliable reconstructions. A similar work to [4] was presented by Henry et al.

[6]. Their approach uses sparse feature matches to compute an initial pose estimate using

RANSAC, which is refined using an ICP procedure.

Steinbruecker et al. [13] proposed a photo-consistency approach that aims to find the

best transformation between two sequential RGB-D frames. For robustness against large
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image displacements, the optimization is carried from a coarse-to-fine image resolution. This

approach was then generalized by Kerl et al. [9] by including a probabilistic derivation and

by showing how motion priors can be used to further improve the performance of [13]. Kerl

et al. also study the performance of different outlier weighting functions, concluding that

weighting outlier pixels with t-distribution in conjunction with motion priors leads to the

best performance.

An important difference in our method is that all the motion estimation is performed

pairwise, whereas in the state-of-the-art methods temporal information is often explored to

enforce smoothness in the trajectories. As baseline comparison, we adopt the DVO method

proposed by Kerl et al. [9] since it outperforms previously published algorithms [4, 6, 13].

Closely related with this work is the recent paper by Taguchi et al. that has been pre-

released on-line [16] and to the best of our knowledge it is the first work that proposes

plane-based SLAM for RGB-D sensors. It uses both points and planes as primitives, and the

registration of 3D data in different coordinate systems provides the relative pose estimation.

Although our method also relies on planes and points for achieving the pose estimation, reg-

istration is performed pairwise and not in relation to a global map. Moreover, we only use

points if strictly necessary, as opposed to Taguchi’s method. Also, our points are not recon-

structed, being more robust to measurement errors. Another key difference is the refinement

step, where in [16] a bundle-adjustment procedure to minimize error between points (and

between points and planes) is performed, whereas in our method photo-consistency is used.

3 Algorithm Overview

We propose a new method for estimating an RGB-D sensor motion from the acquired color

image-depth map pairs. For each pair of RGB-D images, two main consecutive steps are

performed: an estimation of the sensor’s relative pose between the two frames, and a refine-

ment of this initial estimation. The reconstruction of the whole trajectory of the sensor is

achieved by using only the pairs of consecutive frames, and does not take into account any

prior information.

3.1 Initial Estimation

The initialization step uses corresponding planes extracted from both RGB-D images for

determining the relative pose. If a given pair of images does not contain at least three corre-

sponding non-parallel planes, it is not possible to fully determine the transformation between

the images. In this case, a local feature detector (SURF [3]) is used for extracting image

points, which are used to determine the remaining degrees of freedom. Table 1 shows the

number of points and planes used for all the possible cases. The algorithm favors the usage

of planes, by using the maximum number of non-parallel planes present in the image pair,

and only using points when strictly necessary. Note that the points are not reconstructed, and

only 2D points are used. This way, the estimation is less affected by measurement noise.

The initialization step starts by segmenting the planes present in both RGB-D images,

which is performed by using the method proposed by Taylor and Crowley [15]. Next, a

search for the corresponding sets of planes in both frames is performed hierarchically, mean-

ing that sets with more planes are selected first. As an example, sets of two planes are only

selected if there are no corresponding sets of three planes in the pair of frames.
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No. of no parallel planes 3 2 1 0

No. of 2D points 0 1 4 5

Table 1: Possible combinations of the number of points and planes used in the relative pose

estimation process.

Two planes are considered parallel if the smallest angle between their normals is below

a pre-defined threshold (≈ 6°). If there are no parallel planes in a triple set, then this set

is selected, and the triples in the other frame that correspond in relative normal orientation

are considered putative matches. The association is carried by computing the three smallest

angles between the normals of the planes in each set, sorting them, and computing their

difference. If any of these differences is higher than a pre-defined threshold (≈ 3°), the two

sets do not correspond. Although many correspondences are discarded with this procedure,

erroneous ones may be selected. Thus, the dominant color of each plane is extracted, and

only sets with corresponding colors are selected as hypothesis to test.

3.1.1 Relative Pose Estimation

Depending on the number of corresponding non-parallel planes in both frames, the relative

pose estimation between the two frames is computed differently. All possible cases are

shown in table 1 and, for each case, the transformation between the poses of the sensor is

computed as follows.

Three Planes

For the case of two corresponding triplets of planes, a minimal, optimal solution is computed.

The registration problem is the one of estimating R and t such that

Π
(i)
s ∼

[

R 0

−tTR 1

]

Π
(i)
f , i = 1,2,3 (1)

verifies, where Π
(i)
f and Π

(i)
s are planes in the first and second reference frames, respectively,

in homogeneous representation Π
(i)
f ∼ [n f i 1]T (and equivalent for Π

(i)
s ). Knowing that

points and planes are dual entities in 3D - a plane in the projective space P3 is represented

as a point in the dual space P3∗, and vice-versa - equation (1) can be seen as a projective

transformation in P3∗ that maps points Π
(i)
f into points Π

(i)
s . It can be shown that R and t can

be determined separately. R is firstly computed by normalizing n f i and nsi, and applying the

algorithm from [7] for computing a transformation between two sets of unitary vectors. R

can be computed from N = 2 point-point correspondences, but t requires N = 3 point-point

correspondences to be estimated. Some algebraic manipulation of equation (1) leads to

nT

sinsin
T

f iR
Tt−nT

sinsi +nT

siRn f i = 0. (2)

Each pair Π
(i)
f , Π

(i)
s gives rise to a linear constraint in the entries of the translation vector t,

which is the solution of a linear system of equations.

Two Planes

In case of existing only two corresponding pairs of planes, the rotation R can be fully
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determined using Horn’s method [7], and two subsequent linear constraints in the form

of equation (2) are obtained. Thus, an extra point correspondence (xs,x f ) is needed for

computing the full translation vector t. In this case, the epipolar constraint xT
s Ex f = 0,

where E = [t]×R is the essential matrix, is stacked with the previous equations, forming a

linear system of equations whose solution is the translation vector.

One Plane

If there is only one corresponding plane between the two frames, only two orientation angles

of the rotation matrix R are known. It is thus necessary to find the remaining orientation

angle θ , and the translation vector t. This can be done by using one of the 3-point, 4-point

or 5-point algorithms described in [5]. In this work we implemented the simple 4-point

algorithm, which yielded good results. However, the minimal number of points required

in this case is two since, besides knowing two orientation angles of R, a constraint in the

entries of t and θ is known from equation (2). Thus, the 3-point algorithm from [5] can be

adapted to this particular case, and the transformation (up to scale) can be found from two

point correspondences.

The 4-point algorithm determines the relative pose transformation up to a scale factor.

Thus, the constraint (2) was used for finding the scale factor, and obtaining the true

translation vector.

No Planes

In this case, no information about the relative pose of the sensor between the two frames

can be extracted from plane correspondences. Thus, all 5 DOF (up to a scale factor) must be

determined from point correspondences. We used Nister’s solution [12] which is a minimal

solution since it uses 5 point correspondences.

For each pair of corresponding sets of planes found in the RGB-D image pair, and by

using the necessary number of point correspondences, a transformation matrix is computed.

If more than one estimation is obtained, a search for the best one must be performed. In the

perspective case, two images q f and qs of two planes Π f and Πs, respectively, are related by

an homography q f ∼ Hqs of the form:

H= K

[

R+ t
ñTf
d f

]

K
−1, (3)

where K represents the camera intrinsics, d f = 1/||n f || the distance of the plane to the origin

of the reference frame, and ñ f represents the unitary normal vector. The transformation that

best correlates the image intensities of the segmented planes is selected for further refine-

ment.

3.2 Pose Refinement with Photo-consistency

The relative pose estimation carried using the segmented planes can be affected by noise

in the plane segmentation step. To refine the initial estimation, we use an intensity-based

registration procedure. By performing a normalization of q f ∼ Hqs to non-homogeneous

coordinates, we can define a 2D warping function w(q f ; p) = Ψ

(

K

[

R+ t
ñTf
d f

]

K
−1q f

)

, with

Ψ denoting the normalization to non-homogeneous coordinates, and p being the warping
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parameter vector that encodes 3 parameters for camera rotation, 3 for translation, and 3 for

the plane structure.

Given the 2D warping function w(q f ;p), it is possible to define a cost function describing

the sum of squared differences between the pixels of a planar patch in the reference and

incoming image:

ε = ∑
q f ∈N

[

Is(w(q f ; p))−I f (q f )
]2

, (4)

where N denoting a plane integration region. Since an initialization p of the parameters

vector is already known from previous steps, we iteratively solve for δp increments on the

warp parameters, with equation (4) begin approximated by

ε = ∑
q f ∈N

[

Is(w(q f ; p + δp))−I f (q f )
]2

≈ ∑
q f ∈N

[

Is(w(q f ;p))+∇Is

∂w

∂p
δp−I f (q f )

]2

.

(5)

By differentiating ε with respect to δp, we obtained a closed form solution for δp:

δp =H−1 ∑
q f∈N

[

∇Is

∂w(q f ; p)

∂p

]
T
(

I f (q f )−Is(w(q f ; p))
)

, (6)

with H being a 1st order approximation of the Hessian matrix [1], and the parameter vector

being additively updated pk+1← pk +δp at each iteration k. For robustness against a noisy

camera motion initialization, we use a coarse-to-fine registration framework. We build an

image pyramid by down-sampling the original image by factors of 2 (we use 3 pyramid

levels). We start by optimizing the parameters at the coarsest level. After convergence (or a

maximum number of iterations is reached), the resulting parameters are used to initialize the

next pyramid level. The algorithm proceeds until the original image resolution is reached.

As explained in [2, 11], if only one plane is available it is impossible to estimate the

9 parameters of p from the 8 non-linear constraints of the homography. In such cases we

fix the initial depth of the plane, and optimize the remaining 8 parameters of the warping

function. In cases of multiple plane optimization, where the camera extrinsic parameters are

the same for all the segmented planes, we adopt two different warping functions [11] that

enable to estimate the camera motion globally for all the features being tracked:

H
(1) = K(R+

t

d f1

ñT

f 1)K
−1, H

(i) = K(R+
t

d f 1

d f 1

d f i

ñT

f i)K
−1, i > 1 (7)

With such parametrization, we end up with a total of 6× 3i− 1 parameters to optimize per

frame pair. The parameter updates are computed using the Schur complement to explore the

sparsity of the system. For further details on how to compute the parameters, we refer the

reader to [2, 11].

4 Results

In this section we conduct two sets of experiments to validate the proposed method in real

scenarios. The first set uses a benchmark dataset with ground truth trajectories [14], while in

the second we perform a loop-close experiment with large baseline between frames.
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(a) Samples images (b) Rotation Error (c) Translation Error

Figure 1: Benchmark validation. (a) shows a sample image of each sequence, (b) and (c)

show the rotation and translation error per frame, respectively. The graphics show the per-

formance of the different methods for different frame intervals. The last column shows some

statistics regarding each dataset. We show the average number of frames per sequence, the

average percentage of cases using points for computing the camera motion, the average num-

ber of planes used for registration, and, finally, the average percentage of outlier observations

of our optimization step.

4.1 Benchmark Validation

The quantitative evaluation of our method is performed on 3 sequences from the TUM RGB-

D dataset [14]. For simulating different camera velocities, we conduct the experiments by

leaving out intermediate frames. We evaluate the pairwise camera motion estimations by

computing the angular difference between the estimated and ground truth rotation matrix,

and the norm of the difference between the estimated and ground truth translation vector.

For comparison we use the dense visual odometry (DVO) algorithm proposed by Kerl et al..

Figure 1 shows the results for this controlled set of experiments. The FR3_structure

dataset is dominated by large support textured planes without any occlusion. We can observe

that the DVO algorithm shows good performance for the smallest frame interval. As we

increase the baseline between frames, its performance starts to degrade due the larger number

of outlier image pixels used for the global image registration. Our method presents an almost

constant performance for all the baselines. In this particular dataset, the optimization by

plane registration enables to estimate the camera rotation with a median error of less than

0.5 degrees, which is within the measurement error of the sensors used to compute the ground

truth camera poses [14].

We use the source code provided by the authors at https://github.com/tum-vision/dvo

https://github.com/tum-vision/dvo
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(a) Ground truth (b) Our-Optim (c) DVO

Figure 2: 3D reconstruction for FR3_dynamic dataset. The figure shows the 3D reconstruc-

tion computed with 2(a) ground truth camera poses, 2(b) our method with optimization, and

2(c) the DVO method. The quality of the 3D reconstruction indicates that our algorithm is

more robust than DVO for scenes with dynamic motion.

The FR2_desk dataset was acquired in a typical office environment, where planar sur-

faces present low texture (e.g. tables, monitor and floor). This places some challenges to

our local photo-consistency optimization step. We observed this by the larger number of

outliers in the box-plots when compared with the DVO algorithm, where photo-consistency

is performed using all the available image pixels. By inspection of the results, we observed

that the outlier estimations are mainly due to small support planes that, in conjunction with

the noise from the initial estimation, do not allow enough overlap between views to success-

fully perform the registration. Overall, our algorithm performs better than the DVO for large

baselines, being consistently better in rotation across all the baselines tested.

Finally, in the FR3_dynamic we validate our algorithm in a dynamic scene with two

persons moving and partially occluding the surrounding environment. In this sequence, the

camera has been rotated along the principal axes, with a minimal translation amplitude (≈ 5

mm between camera poses). We can observe that our method clearly outperforms the DVO

algorithm in terms of rotation accuracy across all the baselines, and in translation for the

large baseline sequences. Despite of the DVO poor performance in rotation, the algorithm

is capable of providing good translation estimations. We believe this is a consequence of

the motion priors used in the optimization step. Since the translation vector is always very

small, the probabilistic filter, due the absence of reliable observations, probably favors the

current state keeping the translation vector almost unchanged across frames. Figure 2 shows

the 3D reconstruction obtained with the two methods for the sequence with 3 frames of

interval, where the DVO provides the lowest error in rotation. Since our algorithm is based

on planes, which typically remain static, the camera motion recovery is less error prune and

less influenced by the dynamic motion in the scene. This can be clearly seen by the accuracy

of the 3D reconstruction where our method reconstructs the 2 existing monitors, while the

DVO reconstruction present "phantoms" due to the poor inter-frame registration.

Note that none of the individual estimates where computed using only points. In every

pair of frames of all three sequences, the algorithm was able to identify at least one plane

correspondence.
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Figure 3: Loop closing experiment with N = 59 images. 3(a) shows some images of the

sequence, 3(b) shows the estimated trajectories, and (c) compares the epipolar error of the

different methods. The trajectory obtained with our method almost closes the loop.

4.2 Loop-closing Experiment

In this experiment we navigate with a hand-held Kinect in a corridor to perform a loop-closed

trajectory. This dataset is extremely challenging with difficult illumination conditions (see

Fig. 3(a) for some sample images), low texture, and fast camera motion (the images were

acquired at 3Hz with a resolution of 1280×1024).

Figure 3(b) shows the trajectory estimation for the different algorithms tested. Our al-

gorithm enables to keep a reliable trajectory estimation, with a consistent smooth transition

between frames. The DVO method diverges after the first couple of frames, providing an er-

roneous trajectory. We believe this happens due to the large baseline between frames, which

results in a large number of outlier pixels introduced in the DVO registration process.

Finally, we show in figure 3(c) the epipolar geometric error to provide a quantitative

error of the pairwise motion estimations. We use SURF to establish putative matches, which

are filtered using a RANSAC procedure with the fundamental matrix. The inlier points are

used to compute the Sampson distance for each method. We observe that our optimization

procedure greatly improves our initial estimations. The epipolar errors obtained with the

DVO algorithm justify the erroneous trajectory provided by this method.

Our algorithm was fully implemented in Matlab, taking in average 3 seconds per image

pair, while the DVO algorithm runs at 30Hz. We believe that an optimized C++ implemen-

tation of our algorithm can achieve more than 10Hz.

5 Conclusions

The advent of commodity RGB-D cameras gave rise to intense research in pipelines for mo-

tion estimation using simultaneously dense depth and visual appearance. Unlike previous

works that rely in either sparse or dense point features, we propose the use of planes, as an

alternative to points, for estimating the camera motion. Plane-based registration is advan-

tageous with respect to point-based registration because: (i) plane-primitives have a more

global character, which helps avoiding local minima issues, (ii) scenes are often dominated

by large planes, which allow correspondence between wide-baseline frames, (iii) plane prim-

itives are typically in the static background, which improves odometry robustness to possible

dynamic foreground, and (iv) the fact that the number of plane-features is much smaller than
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point-features, favors faster correspondence and scalability under increasing image resolu-

tion.

Extensive experiments show that the proposed method is well suited for operation in

man-made environments, which are typically dominated by planes. We show that our algo-

rithm outperforms the state-of-the-art algorithm of Kerl et al. [9] for large baselines, while

keeping similar performance for small baseline sequences. In particular, we have observed

that our algorithm provides better rotation estimations across all the baselines tested, and it

is more robust to dynamic motion in the scene. In the future, we will improve our algorithm

for dealing with partial plane occlusions by using a robust cost function in the optimization

[1], and by including motion priors to increase the performance in small baseline situations.

Acknowledgement

The authors acknowledge the Portuguese Science Foundation (FCT) that generously

funded this work through grants SFRH/BD/47488/2008, SFRH/BD/63118/2009 and

SFRH/BD/88446/2012. This work has also been supported by the FCT and COMPETE

program (co-funded by FEDER) under Project PTDC/EEA-AUT/113818/2009.

References

[1] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework.

IJCV, 56(3):221 – 255, March 2004.

[2] Simon Baker, Ankur Datta, and Takeo Kanade. Parameterizing homographies. Tech-

nical Report CMU-RI-TR-06-11, Robotics Institute, Pittsburgh, PA, March 2006.

[3] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust

features (surf). CVIU, 110(3):346–359, June 2008. ISSN 1077-3142.

[4] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An evaluation

of the RGB-D SLAM system. In IEEE-ICRA, May 2012.

[5] Friedrich Fraundorfer, Petri Tanskanen, and Marc Pollefeys. A minimal case solution

to the calibrated relative pose problem for the case of two known orientation angles. In

ECCV, pages 269–282, 2010.

[6] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. Rgb-d

mapping: Using depth cameras for dense 3d modeling of indoor environments. In

ISER, volume 20, pages 22–25, 2010.

[7] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quater-

nions. J. Opt. Soc. Am. A, 4(4):629–642, Apr 1987.

[8] A. Howard. Real-time stereo visual odometry for autonomous ground vehicles. In

IEEE-IROS, pages 3946–3952, 2008.

[9] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation for rgb-d cameras. In

IEEE-ICRA, May 2013.

[10] Kurt Konolige, Motilal Agrawal, Robert C. Bolles, Cregg Cowan, Martin Fischler, and

Brian Gerkey. Outdoor mapping and navigation using stereo vision. In ISER, 2006.



RAPOSO ET AL.: PLANE-BASED ODOMETRY USING AN RGB-D CAMERA 11

[11] C. Mei, S. Benhimane, E. Malis, and P. Rives. Efficient homography-based tracking

and 3-d reconstruction for single-viewpoint sensors. IEEE-TRO, 24(6):1352–1364,

Dec. 2008. ISSN 1552-3098.

[12] David Nistér. An efficient solution to the five-point relative pose problem. IEEE-

TPAMI, 26(6):756–777, June 2004. ISSN 0162-8828.

[13] F. Steinbruecker, J. Sturm, and D. Cremers. Real-time visual odometry from dense

rgb-d images. In IEEE-ICCV Workshop on Live Dense Reconstruction with Moving

Cameras, 2011.

[14] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the

evaluation of rgb-d slam systems. In IEEE-IROS, Oct. 2012.

[15] Camillo J. Taylor and Anthony Cowley. Parsing indoor scenes using rgb-d imagery. In

RSS, July 2012.

[16] Srikumar Ramalingam Yuichi Taguchi, Yong-Dian Jian and Chen Feng. Point-plane

slam for hand-held 3d sensors.


