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Abstract

The governing equations of plane elasticity in sectorial domain are derived 1o be
in Hamiltoinan form via variable substitutes and variational principles. The method of
separation of variables and eigenfunction expansion method are derive ' 1o solve the
finite element analyviically for the sectorial domain elasticity: problem, so that such
kind of analviical element can  be installed into FEM  program  svstems. [t
demonstrates  the spotential  of  the  Hamiltonian  system  theory  and  symplectic
mathematics.

key words elasticit . Hamiltonian system. symplectic
I. Introduction

Plane elasticity is a classical field' °, but there are still some problems openning to
further researches. From the analogy theory of computational structural mechanics and
optimal control **, the theory of Hamiltonian system can be applied to the problems of
elasticity in prismatic domain., and the method of transverse eigenfunction expansion of the
Hamiltonian operator matrix *’ can be applied to the analysis of Saint Venant problems. The
present paper extends such method to the problems in sectorial domain. see Fig. la. The radial
coordinate is selected as the longitudinal direction via an appropriate variable transformation
to simulate the “time coordinate”, so that the problem is derived tn be in Hamiltonian system
form and then the symplectic algebraic method can be applied to the problems in sectorial
domain. It can solve the exact singularity at the tip of sectorial domain. which is very
important in applicalions *". Deriving the analytical singular finite element of sectorial domain
and then installing i into FEM program system_ean expand the structural analysis with
singular elements. The present paper describes only such analytical element especially its
singular solutions.

For simplicity and convenience, the present paper gives only the homogeneous isotropic
plane elasticity problem. However, the method can also be applied to homogeneous
anisotropic problems. and to different materials adhesive at a radial line (Fig. 1b) or 3D
problems.

*Project supported by the National Natural Science Foundation of China. and Doctorial Program

Foundation of the National Commission of Education
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Fig. 1 Sectorial domains

H. The Fundamental Equations and Variational Principle

Let the domain be a ring sector as shown in Fig. lc. and the material being isotropic
homogeneous, described by E. v as usual ' © . Now the polar coordinate is sclected. and the
fundamental equations are given as:

Equalibrium:
i 1 oo, .
aaor, +7(0r-00)+— aﬁa 0 (2.1a)
do, 2 | do .
e T (2.19)
Stress-displacement relation:
ou ] u , | ov 1 _
or =E(ar vo,), T Y7 5l —E(UO vOy)
(2.2)

where the notations are as usual. The boundary conditions must be given appropriately.
The above equations can be derived from the variational equation

R
e ou (U , | ov gu v 1 Ou
5j—th,[0r Iri (7+r L) (79+( or r+r g6 )

ZiE (a‘,+o;—2vo,a,+2(1+v)o§,)]rdrd0=0 (2.3)

where the variables u. v. 0., 04, Gygure considered as mutually independent in the variational
operation. The free boundary conditions are treated as natural. and the displacement boundary
conditions must be satisfied beforehand. These are well-known results * ' .

To derive the system into Hamiltoman, the longitudinal direction. which simulates the
time coordinate, should be identified first. Now r is selected as longitudinal. thus ¢ is
transverse. The transverse force component should be eliminated. Maximizing the functional in
Eq. (2.3) with respect to 0, gives

‘U 1 Jdu )
ov= B+ Gr)tror (2.4

and the vanatonal Eq. (2.3) reduces to
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o T (Bt 25)) o (B2 L 2

Ky
_ ! : 2 o 1 E _l_ 2] _
S R et +5 (B 4L S5 Jrdrdo=0 (2.5)
Now the variable £ 1s introduced to substitute r
t=Inr (2.8)

and the vanational Eq. (2.5) becomes

e cloR: ov du dv E gu \?
aj_Jlnm[ (2t )+ s Sy g o)+ 5 (G
_7‘E—<(x—v2)s:+z(|+v)s;>]dgda=o (2.7)
where
Sp=rCp, Se=rJps (2'8)

and w, v. sy, g are considered as functions of £ and 0.
Now it can be formulated in Hamiltonian system form. let «. v compose the displacement

vector and s, sp compose the dual vector.Let

u r
('} (")

and a dot.denotes the differential with respect to £, 1t turns to be

1aR: ra
8" [ roma-#(a,p)1dods=0 (2.10)
laR, /o

—#(q,p) = (vu+v )+ s g; _U)_*_%( + g; )z

——=((1 =) +2(1+v)s}) (2.11)

which 1s the vanational principle of Hamiltonian system for ficld problems. Expanding the

variational equation zives the dual equations

(2.13)

q=Fq—-Gp (2.12a)
pP=—Qq—F'p (2.12b)
where '
- J-
[—(1— )/ E 0 J . —£ —Egr |
G = ’ =
0 -2y E _d_ d (g d-
(g7 ‘£ 7 (E55)
d [~ d-
v TV 48 e a9
F= ’ FT:'
d d
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and the symmetric or antisymmetric boundary conditions at §=0, and the free houndary
conditions at f=a

5=0, u+-g—;—+%s,=0, when f=¢ (2.14)

III. Eigensolution and Adjoint Symplectic Ortho-Normalization Relation

The dual Eqgs. (2.12) and the boundary conditions can be solved by the method of
separation of variables

q=qexp[ué], Pp=peXpluf] (3.1)
where g, is the eigenvalue. The dual equations can be combined as
. a F -G
w=Hw, w={ } H=] ] (3.2)
P -Q -F

where qu can be termed as the whole state function vector. and the eigen-equation can be given
as

pbi=HY,  be={ :: } (3.3)

where Y4 is the eigen-function-vector depending only on 6. It must satisfy the boundary
condition (2.14) and symmetric condition. A rotational exchange operator matrix J can be
introduced as

J-[_OI ; ] =)=, J‘=[ _0'_‘:] (3.4)

where | is the identity operator. To describe the behaviour of Hamiltonian operator matrix H.
the boundary condition (2.14) should be considered simultaneously. Introduce the
operation<-..,.> as

<wl,P,w,> =j:.wawad9 (3.5)

where P is an arbitrary operator matrix. It can be verified by integration by parts and the
boundary conditions that

Ow)*, H, w>=<wl,HT, (Jw))> (3.6)
where w,and Wsare arbitrary whole state vectors satisfying the boundary conditions, and H?
is given as
FrF -Q
W =[ ] and Hr = shs (3.7)
-G -F

An operator matrix Hf satisfying Eq. (3.7) is called Hamiltonian by definition.

The eigen-problem (3.3) of Hamiltonian operator matrix has some distinguished
behaviour®", If ugis an eigenvalue. — y, is an eigenvalue also. Hence the eigen-solution can be
subdivided into two groups of (@) and (8): '



Plane Elasticity in Sectorial Domain and the Hamiltonian System 7

(a) oty (im1,2,+); Re(pe)>00r Re(pa) =0 and Im(pe) >0 (3.8a)
(B) Bpsy Bps= — g (3.8b)

and the corresponding eigen-function-vector can be denoted as

Vet and Yy (3.9)
respectively. Between any two of them. there is adjoint symplectic ortho-narmalization relation
<¢t‘!"!*ﬂl>=au, <‘|’rhjv¢al>=09 <¢Il;1ywll>=0 (310)

The expansion solution method based on the adjoint symplectic ortho-normalization relation is
of great value for such analytical element formulation.

1V. Expansion Theorem with the Eigen-Function-Vectors

An arbitrary whole state function-vector @ can always be expressed by the linear
combination of the eigen-function-vectors as

w=3" (Gfas+bebs) (4.1)

where ¢ are functions of ¢ only, and the coefficients a;,bs are functions of &. Using the
adjoint symplectic ortho-normalization relation gives

al=_<¢fl9ij>, b(=<¢rly1yw> (4.2)
Substituting Eq. (4.1) into Eq. (3.2) and using Eg. (3.3) gives
di=patGs, bi=—paiby (4.3)
Hence (written pg instead of Ha¢ ).

di=auexplut], b=byexp[ — uit] (4.4)

where the integration constants 8@ and by, should be solved by the boundary conditions at
S1=1In(R)) and £2=In(R;). Now let R,—0, i.e. £;>—o0. the problem reduces to the analysis of
stngularity at the tip of sectorial domain.

V. The Analytical Eigen-Solutions
Expanding the Eq. (3.3) gives (drop the subscripts /)

PR
— (=3 + L2 om0 \
—%:‘7+(1—u)v+o+—2ﬂg”—)s.=o
> (5.1)
dv _ ds. _
EutE—g-+(v—p)se = —5-=0

__d_ d (o dv _ d _
35 (Ew) =g E-qg) ~ g s =1 +w) =0

Assuming E and v are independent on (. to solve Eq.(5.1) the determinant equation
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—(u+v) — e (1—v* [ 0
-/ (1— ) 0] ) F [
FE F V- t) - =
-k — 14 -1 —{1+u)

should be sobved first. Expanding it gives the equation for 7
A2 (L) = }
Ane= (1) A= Fi(1— )

Finding the solution ssmmetric with respect to the line §=0° gives

u=A,cos(i+u))+C,cos(i— )
v=_f SIN( I+ 04Cosingi — o0
se=_Lcos(i+ 0+ ,cosu~ )0
so=cpsin (1 +) 0+ Cesing ) — )0
These constants 4, Oy, oy -, Co must satisty Eq. (5.1). henee
~(uF Ay —v(F ) Ao+ U=y E) e+ =0
(1) ded =) oo+ (2(t v Erde=n
EAa+E(I+p) Aot v—p) Ap— (14p) =0
EO+myAe+E( ) AoFv(ltu) de— (1 Fp) dg =0

and

= () Cy—w( f—/t)('.,+Fl(1-—v2)C,+O=U

(l—p)c'.+(1—u)c‘u+u+éi(1+v)c.=o (5.5

ECu+E(1'—“)Cv+(V_.u)Cr_(l_#)(:o—‘—"o
EQ—m) '+ EQ—)* 0 +v (=) Co= (1 +p)Co=0  /

There 1y one superfluous equation in each of the above equation sets. hence cach has one
independent coefTicient. such as .4y and ¢, . The eigenvalue u is to be determined.
Substituting the solution Eq. (5.3) into the boundary condition (2.14). two homogencous
Iincar equations for 3 and ¢, are established but trivial solution is uscless. hence its
determinant must be zero. which gives the eigen-equation for cigenvalues. From (5.4) gives

Ar*'-A‘) Auz_Av; »‘1v= lE-t;Jv Al (56)

and from (53.5) it solhves

¢
p(=p)Cu +—5 (= 3+vtutm) =0, (1—4) C,~ (3—p)Cy=0

(5.7)

p(1—u)C, +%—(3—v+u+vu) =0
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['he boundary condition (2.14) gives
Asin(1+p)a+Cesin(1l—p)a=0
(At AeQ1 ) +5eds Joos(i+u)a +(CotColi =) +5C, Jeos(1-ma=0 }

(5.8)
Substituting Egs. (5.6) and (5.7) into the above equation gives
Asin(1+p)a+Cesin(t—p)a=0
(1—p)Awcos(1+u)a+ (14+u)Cicos(1 —p)a=0 } (5.9)
The determinant equals zero gives the eigen-equation
sin2ua+pusin2a=0 (5.10)

from which 1t 1s easily seen that both g and —pare eigenvalues.

Whena>a /2. the tip (£— — oo) of sectorial domain has a singularity. i ¢, there is
creenvalue i 0<p<1. and 1t must be2pa<Cr. Numerical results are listed in Table 1. Note
Fq (2.8) that the stress singularity is o7,

Table 1 Eigenvalue of symmetric deformation for isotropic material

2a/n 20 119 18 17 1.6 15 14 |13 12 11 1.0

— b —

[z 0.5 0.5003100.5025300.5088000.5217110.5444840.5811420.6367280.7177990.833691 1

When a<lm /2. it asserts that there is no singularity at the tip of sector. Because sin(2a)>
0o kg (5.10) 1s timpossible to have root in 0<<u< 1. which coincides with the assertion.
Now turn 0 look uat the solution anti-ssmmetric with respect tod=0° The general

salution s

u=B.sin(14+up)0+Dasin(1—u)d
v=RB,cos(1+u)8+D,cos(1-u)d
sp=B.sin{(14+u)0+D,sin(1—u)b
se=Bycos (1 +u)f+Dscos(l—pu)b

(5.11)

where 1t must be
B,=Bs, Bs=B,, pB,=(14v)Bs/E (5.12)
(1—=)Dy=(u—3)Ds, Eu(1—p)Du+(3—v—p—yu)Dy=0 }
Epu(i—p) Do+ (3—v+u+tvu)Dy=0

and the free boundary condition gives

Bycos (1 4u)ya+Dicos(1—u)a=0

(5.13)

(B.—B.(1+n) +z-B. )sin(|+u)a+(Du—D,( \= 1) +2D, Jsin(1~u)a=o
Substituting Eqs. (5.12) and (5.13) in the latter equation gives

1+u

Besin(14+u)a+ —a

Dysin(1—u)a=0
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Because By and Dy must not be simultancously zero. which gives the cigen-equation

It 15 easily seen that g and—g are roots simultaneously.
When 2a>>1. 430297z, there will be singularcigenvalue m 0<lu<1,

given in Table 2.

sin2ua— usSin2a=0

(5.14)

Numericitl result s

Table 2 Eigenvalues of antisymmetric deformation
2a/n 2.0 1.9 1.8 1.7 1.6 1.5 1.45 1.4303
u 0.5 §.555202 0.621710 0.701175 0.795785 0.908529 0.972947 0.999999

Next. the case of two different materials adhered together i considered ' Fig. 1b). Suppose
the material property £ being very large and can be regarded as rigid. he ce the boundary

condition s treated as

u=v=0, when =0 (5.15)

and the free condition of 1. (2.14) sul holds.
The general cigen-soir ton is the sum of Egs (5.3) and (5.11). where the coellicients

satisfy  Eqs. (5.6—7) and (5.12—13). The independent coefficients ure Ay, By, Cy, Dy, the

eigenmvalue g is also to be determined. According 1 boundary condition (5.15). Ag=—C,,
B,=—D,. Using Egs. (5.6—7)and (5.12—13)
(3—y—pu— v#) B, (3=vtutwn) o
= C 5.16
A= 05y = O B e (5.16)

Substituting the general eigen-soluiton into the free boundary condition (2.14). using Egs. (5.6
—7)and (5.1°—13) also gives

Asin(14+p)a+Becos(1+u)a+Cosin(1—p)a+ Dycos(1 —p)a=0

Awoul+ma—Bthl+Ma+C.:chou1+ma

(5.17)%

14—#

—Dy ——sin(l—u)a=0

Substituting Eq. (5.16) into the above equation gives a simultaneous equation set for Cy and
D, . Its determinant equals zero gives the eigenvalue equation as

(3—v—pu—pv)sin(14+u)a (3—v+u+uv)cos(t+u)a
+(14+v)(1—p)8in(1 —wa +(1+v)(1—u)gos(1—p)a
(3—v—p—pv)cos(l4u)a = (3—v+i+pv)sin(14u)a =0
+(14v)(14pu)cos(l—u)a = (1+v) (1+p)sin(1 —p)a
Expanding the determinant derives
4—(14v)(3=v)sin*ua—pu*(1 +v)*8inta=0 (5.18)

For the cases of @=r,/2 and a=n respectively

*in further research. Associate professor Zhang Hong-wu found an error in Eq. (5.17) of the origmal
text. and proposed the correction text until Table-3. The author sincerely expresses gratitude to him.
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4—(14v)(3—v)sin* “2" — (1 4+v)ut=0, fora=_’21 (5.18)"

Sinpum e /m__ﬁs___v)y, for a=n (5.18)"

The Eq. (5.18)" has no real root. but equation (5.18)" does has real root. that meuns when a

locates between n/2 and r there must be a transition point from real root to complex roots.

For the case of ¥=0.3. the roots u versus the a angles are listed in the Table 3. The angle

&=~131° is the transition point for real and complex roots. that 90°<Ca<C& gives real root.

and there are two real roots when 113° <a<(&.

Table 3 Eigenvalues for the sector with one boundary clamped and the another free
when v=0.3

a’ 180 170 160 150 140 126 119 115 | 108 %

131
Re (4) 10.500 | 0.530 | 0.567 (0.611 | 0.665 0.734010.730 0.679/0.849 0.67510.990 .680 10.692 10.758
0 0 0 0 0 0

Im (u) Jo.us 0.122 | 0.123 | 0.117 | 0.097

The cohesion of differential materials is quite useful for composite material or in
micro-electronics. Although only the case of @=n/2 is calculated here. however other value of
acan also be selected. The eigenvalue can be solved from Eq. (5.18). Selection of best angle a
to reduce the stress singularity within the tolerence of technology cun be considered as one of
the measures to reduce possible cracking.

For homogeneous isotropic plune problem. the Airy stress function method and the
method of complex variable can also be applied to solve such problem. However. the
Hamiltonian system method can be applied to all auto-modelling problem in linear elasticity.
such as anisotropic material or even three dimensional case.

The eigenvalues given above are only for the singular solutions. but there are infinite
cigenvalues, which are generally complex conjugates. When substituting back to the
simultaneous equations such as Eq. (5.9) and solve the constants. Eqgs. (5.3) or (5.11) give the
corresponding eigenvectors. These eigenvectors are mutually adjoint symplectic  ortho-
normalized. The eigenvalue determines only the characteristics of the singularity. but the
intensity of the singularity should be determined by other meuns. such situation is the same to
the theory of fracture mechanics. The intensity of singularity depends on the connection of the
sector to the surrounding structure and its loading. Currently the structural analysis is mainly
by FEM and the sector is treated as a super-element of the structure. The analytical stiffness
matrix of the sectorial super-element can be generated via the expansion method of
eigen-function-vectors with combination of the variational principle. The method will be given
in the next section.

VI. Formulation of Stiffness Matrix of the Sectorial Domain

Generally speaking. assuming there are n, external pionts on euach inner and outer arcs
of the ring sectorial domain (Fig. Ic). The inner arc will connect the plastic zone if any. and
the outer arc boundary will connect the surrounding structure. For ring domain. both the
¢igen-solutions of g and —pare both necessary. When only elastic solution is considered. R, —(.
S0 that only the eigenvalue of Re(u)>0 is appropriate.
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The elastic sector has n, points at the outer arc r=R,. hence the analytical stiffness
matrix of the sector domain will be corresponding to the displacements of these points. For
plane problems two displacements . v for each points. thus the external displacements of the
super-element have 2n, degrees of freedom. Hence 2m, eigen-solutions with Rew)>0 will be
necessary and the sectorial singular solution will be

2n,
w(£,0) =7 Ai(fexp(ui) (6.1)
t=1
where A; are constants to be determined. For the case of complex cigen-solutions. its
complex conjugate will also be eigen-solution und so is 4 . The eigen-function-vector Yy are
composed of u;, Ui, Spry Sp . The current FEM systems are all based on displacement
method, the general solution (6.1) should be transformed to external stiffness matrix. The 27,
displacements n. v of the n, points can determine the 2n, coefficients .4 (the reul und
imaginary parts). When the 2n, displacements . v successively given as {1,0;0.0; e 0,047,
{0.1:0,0;;0,0}7, {0,0,1,0;-;0,0}T,+, {0,0;0,0;-;0,1}7. totally 2n, independent
vectors in turn. the 2n, sets of solutions of contants A; can be solved. Using these A,
solutions as columns. a 24, X 21, matrix T is composed. which trunsforms the external
displacement vector to the vector of 4,

The clement stiffness matrix can be obtained from the strain energy of the element. which
is right the functional of the variational Eq. (2.3). or of Egs. (2.7) or (2.10). Substituting Eyq.
(6.1) into the functional of Eq. (2.10). by use of integration by parts and noting that the cigen-
solution (6.1) satisfies all the differential equations and boundary conditions (except r=R,).
the element stram energy can be derived as

E. =%r (5o (8 -u(f) +55(8) - 0(A)1dY

=-l7-a"-R,~a (6.2)

where @ is the vector composed of A4y (=1, 2,:, 2n,). and R, is the element matrin
corresponding to vector@. with size 2n, X 21,,
Letd,denote the external displacement vector of sectorial element so that
l ! n
a=T-d,, E.=TaTR¢a=TdIR.d, (6.3)
where
R.=T7-R.-T (6.4)

15 the element matrix desired. The elements of Rgis

(Redors =] Tsret@1u,(6) +501(0)0,(6)1d0 (6.5)

Betti reciprocal principle gives the ssmmetry of matrix R, .
VII. On FEM of Singular Element

The computation of the intensity factor. the connection between anah tical clement and
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FEM have been given in last section. Now the FEM application 1o the singular element. itself
is discussed. So far analytical method is applied for isotropic plane problem, but for more
complicated or 3D problems the pure analytical method will be difficult. The method of
separation of veriables for Hamiltonian system can reduce only one dimension to the
governing equation, so that applying FEM along the transverse direction can be considered.
Usually the formulation for FEM is best via variational method. which is heavily used in this
paper, and the free boundary condition is also treated with the variational principle. Note that
along the radial coordinate £ (or r) the formulation is analytical. hence the element is
semi-analytical. which is important for identifying the characteristics of singularity. The detail
is omitted.

VIiI. Concluding Remarks

There are a number of auto-modelling: problems in applied mechanics, the sectorial
domain problem in elasticity is one of them. For such kind of problems the variable
substitution method and variational principle can be used to derive the governing equations to
Hamiltonian system, and then the method of separation of variables. the eigen-function-vector
expansion method and adjoint symplectic orthonormality and the corresponding mathematical
tools can be applied. The present paper demonstrates such mathematical method via the
sectorial domain plane elasticity problem, which can be imbedded into some fracture or
composite material finite element analysis programs,
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