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A b s t r a c t  

The .~overning equation.~ o/ plane ela.~lici O" m seclorial domain ctre dertvc'd t ,  lw 

in t l am i l l o imm. fo rm via variohle slth.slilUleS utld vari, l l imlal  pr i lwi l ,  h'.s. TIw me lh ,d  o/ 

M'ptlrtJlioll of 1'tll'itlhlt'.S" ulld ('i~r L'V~III,~iOII ItN'lhod tJrr d e r i v e  t i o  .soft't, 111(" 

/mile eh'ment am~11"licall.1 /or the sectorial domain elasticity prohh,m, ~,~ that such 

/<iml ~t! amdv l i ca l  eh, ment can he irerolled into FEM l,'o.~ram .~v.~wm.~. h 

delllon.Sll'olE'.s the ,potential O/ Ihe t tami l lon ian .~,.lS/r /hec~rl clml ~lml~h'clic 

lll(llhelllUliC.~. 

key words elasticit . Hamiltonian system, symplectic 

I. I n t r o d u c t i o n  

Plane elasticity is a classical field ~ -~, but there are still some problems openning to 

further researches. From the analogy theory of computational structural mechanics and 

optimal control ~-,i the theory of Hamiltonian system can be applied to the problems of 

elasticity in prismatic domain, and the method of transverse eigenfunction expansion of  the 

Hamiltonian operator matrix ~ 7 can be applied to the analysis of Saint Venant problems. The 

present paper extends such method to the problems in sectorial domain, see Fig. la. The radial 

coordinate is selected as the longitudinal direction via an appropriate variable transformation 

to simulate the "time coordinate ' ,  so that the problem is derived tc~ be in Hamiltonian system 

form and then the symplectic algebraic method can be applied to the problems in sectorial 

domain. It can solve the exact singularity at the tip of  sectorial domain, which is very 

important in applicalions ~:. Deriving the analytical singular finiie element of  sectorial domain 

and then installing it into FEM program systemzean expand the structural analysis with 

singular elements. The present paper describes only such analytical element especially its 

singular solutions. 

For simplicity arid convenience, the present paper gives only the homogeneous isotropic 

plane elasticity pr~,blem. However. the method can also be applied to homogeneous 

anisotropic problems, and to different materials adhesive at a radial line (Fig. Ib) or 3D 

problems. 

*Project supported by the National Natural Science Foundation of China.. and Doctorial Program 

Foundation of the National Commission of Education 
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:.f-:. 5 / / -  ~--"..~ material I . 

G o h c s l v c l i n e  ~ . . . "  

~ / ~ 1  d~--~3ma'~n malerial 2 - -  

(a) 2a angle (b) Two materials cohesion It) Ring area 

Fig. 1 Seetorial  domains  

II .  The Fundamenta l  Equat ions  and Variat ional  Principle 

Let the domain be a ring sector as shown in Fig. Ic. and the material bcing isotropic 

homogeneous, described by E. v as usual '  : .  Now thc polar coordinate is selected, and the 

fundamental equations tire given as: 
Equalibrium: 

C~Ol, ~_ 1 O Cr~ o ,~ 

Or F ( a , - - a o ) q -  r a { ~  .=0 (,.. la) 

aa,e F 2 a , e _ F  I aae (2 lb)  
Or �9 r 80 =0 

Stress-displacement relation: 

Ou 1 ~ _} I 6v  1 
Or = ~ - ( a , -  ~,a~) - - - ~  ' r r 60 = - ~ ( a , - - v a , )  

J 1 6 u  2 ( l + v )  
8Vor Vr +-r --3-U = E ,r,~ 

(2 .2 )  

where the notations are as usual. The boundary conditions must be given appropriately. 

The above equations can be derived t'rorr~ the variational equation 

I ~ r R ' r  & 8v ~, . /  dv v i & 
- 9 ~ J ' ; ~ + t  a t  r r aO 

] ] (2 a) 2E  ( a ~ ' W a ~ - 2 v a ' a e + 2  ( l + v ) a * , e )  r d r d O = O  

where the variables u. v. a , ,  o'e, a ,e are considered as mutuall} independent in the ,,ariation;,l 

operation. The free boundary conditions are treated as natural, and the displacement boundar', 

conditions must be satisfied befc)rehand. These are well-known results " '" 

To derive the system into Hamiltonian. the longitudinal direction. ,ahich simulates the 

linle coordinate, should be identified first. Now r is selected as longitudinal, thus 0 is 

transverse. The transverse force component should be eliminated. Maximizing the functional in 

Eq. (2.3) with respect to o'0 gives 

a~= E('---~ + • av ~+va,  (2 4) 
r 80 l 

and the variational Eq. (2.3) reduces to 
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[o [~'[ ( &  (~_ t a v ) )  ( &  v ~ & )  ,3 or, ---aT- +~' +-- --- +~,0 4 
" - " "  R, r t)O 6r �9 r 00 

, ~(,~ , ~ o y ]  
2E (r176 "~-'~ r t~O rdrdO=O (2.5) 

Nov, the variable ,~ is introduced to substitute r 

t, = l n r  

and the variational Eq. (2.5) becomes 

(2 .6 )  

x~ here 

J,o., [..(~+~"+' ~ ,+. ,(~+-v-o)+ +-~-) 
, , ] 

2 E  { ( l - v Z ) s ' + 2 ( l + ~ ) s ] )  dSdO==O ( 2 . 7 )  

s , = r a , ,  ss=rcr,o ( 2 . 8 )  

and u. v. s,,, sl are considered as functions o f  ~ and 0. 

Now it can be formulated in Hamihon ian  system li~rm, let u. v compose  the di,,placemenl 

xector and s,., s0 compose the dual vector. Let 

U 

J (2 9) 

and a dot .denotes  the dift'crenlial with respect to ~. it turns to be 

f 
lnR= '~.,oR, [or~,.~-.(q,p)~aoa;=o ( 2 . 1 0 )  

1 
"E (( l - v=)s" +'~( l +v)s~) ( 2 . t l )  

xshich is the variational principle of  Hamil tonian s~stem Ibr field problems. Expanding the 

xariational equat ion zives the dual equat ions 

c j = F q - G p  

l ~ = - Q q - F r P  

~ here 

- ( I - : , " ) / E  o 
G=[ ], 0.= 

o -"(l+v) E 

F= , F r=  
d. -d--~ 

(2.  12a) 

( 2 . 1 2 b )  

(E.) 

(v ) 
( 2 . 1 3 )  
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and the symmetric or antisymmetric boundary conditions at 0=0,  and the free boundary 

conditions at 0-----a 
�9 d o  . v 

s .=O,  u t  d - d ~ t ~ * , = O ,  when O f  a 

III .  

separation of variables 

(2.14) 

Eigensolution and Adjoint Symplectie Ortho-Normalization Relation 

The dual Eqs. (2.12) and the boundary conditions can be solved by the method of 

(3.1) q ~ q , e x p E p , ~ ]  , P ~ P , e x p E p , ~ ]  

where pj is the eigenvalue. The dual equations can be combined as 

~ t, "--IF -~ 
where ,wean be termed as the whole state function vector, and the eigen-equation can be given 

a s  

q'} 
#,0,= H0, , 0,=L [ (3.3) 

P~ 
where ~ , i s  the eigen-function-vector depending only on 0. It must satisfy the boundary 

condition (2.14) and symmetric condition. A rotational exchange operator matrix J can be 

introduced as 

--I 0 
j . [  O I ], j~'fj-t==_j, jtffi[ 0 - I  ] (3.4) 

- I  0 
where I is the identity operator. To describe the behaviour of Hamiltonian operator matrix H. 

the boundary condition (2.14) should be considered simultaneously. Introduce the 

operation<.. . , .  > as 

<,.,,,', P , . , ,>  

where p is an arbitrary operator matrix. It can be verified by integration by parts and the 

boundary conditions that 

<(J'Wl) e, H, ' w , > - - ( ' w j r , H T , ( J ' w l ) >  (3 .6)  

where "wland 'Wsare arbitrary whole state vectors satisfying the boundary conditions, and H r 

is given as 

F" -QF] ==k [ , and He-fJHJ (3.7) H ~ 

An operator matrix H e satisfying Eq. (3.7) is called Hamiltonian by definition. 

The eigen-problem (3.3) of Hamiltonian operator matrix has some distinguished 

behaviour ~6~:. if#~ is an eigenvalue. --,u, is an eigenvalue also. Hence the eigen-solution can be 

subdivided into two groups of (a) and (fl): 
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(a) ~.,, ( i - - l , 2 , . . . ) j  R e ( ~ , , ) > 0  or R e ( ~ , , ) = 0  and I m ( t ~ , , ) > 0  

(.8) /ap,, /zp, = - / ~ . ,  

and the corresponding eigen-function-vector can be denoted as 

~o~ and Ill,01 

(3.8a) 
(3 .sb) 

(3.o) 
respectively. Between any two of them. there is adjoint symplectic ortho-n,,rmalization relation 

<l~l,r,,J,~tpj>----6,.t, <tl/,r,,J,~o.~>=0, < ~ t , J , ~ p # > = 0  (3.10)  

The expansion solution method based on the adjoint symplectic ortho-normalization relation is 

of great value for such analytical element formulation. 

IV. E x p a n s i o n  T h e o r e m  wi th  the  E i g e n - F u n c t i o n - V e c t o r s  

An arbitrary whole state function-vector 'w can always be expressed by the linear 

combination of the eigen-function-vectors as 

w =  ~ ( a , , o , + b , , # , )  (4.1) 
| - 1  

where *i are functions of 0 only. and the coefficients at,bj are functions of r Using the 

adjoint symplectic ortho-normalization relation gives 

at---- -- < , ~ , ,  J,'tv>, b,--  <, .r , ,  J, ~=t~> (4 .2 )  

Substituting Eq. (4.1) into Eq. (3.2) and using Eq. (3.3) gives 

Hence (writ ten/~ instead of /~~ ). 

a, = a , 0 e x p  [~,~ ] ,  

b, = - go,b, ( 4 . 3 )  

b = b ,oexp  [ - t~d'] ( 4 . 4 )  

where the integration constants a,0 and b,0 should be solved by the boundary conditions at 
~,=ln(R,) and ~z----In(Rz). Now let R,---.0. i.e.~el--~--oo, the problem reduces to the analysis of 

singularity at the tip of sectorial domain. 

V. The  A n a l y t i c a l  E i g e n - S o l u t i o n s  

Expanding the Eq. (3.3) gives (drop the subscripts i) 

dv ( l E v)~ - (~+v )= -v - -Tg -  4 - ~ , + o = o  

du -~dO "F(l-~)~176 2(J+V)E s , = o  

dso ----0 E u + E - ~ 6 f  + ( v - t~ ) s ,  - 

d d E d O \  d 
ao 

Assuming E and v are independent on 0. to solve Eq.(5.1) the determinant equation 
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- ( l * + v )  - , ' :  ( l - v : )  1:' 

J )J ( l - H )  t) 

_ t : ' / ,  _ 1 : ' ; -  _ ,... 

' ,hould hc xl~lxctt first. Expanding it gixcs the Cquailioll Ior z 

..{' + / : :  ( :' 

t ind ing the ,,olt l t ion ,L,,nltnctric ,,~,i 

(I 

:( +~,)I E 
-;~ 

i + s, ) 

+ 2 # : )  -+-( 1 - - / c ) -  = ,; ) 

( ] + t . t ) . ) , . , + =  _+_i(I--/~) J" 

lh ro ,  p c c l  1,.', t h e  line 0 _ 0  ~ .ei',c-. 

(,5. ,,) 

u = : l & O S ( l + / z ) # + ( , , c o s ( l - # ) O  "1 

~ ' = , , l , , s i n ( l + l t ~ } O + ( ' , , s i n ( i  - t l ) O  

. ' ; ,= .l,.COS( I + . ~ ) 0 + t  ",cosL , - iz)0 

so= ,-t0sin ( I + t z l 0 + ( ' 0 s i n t  I - ~.~)0 

lT, o.c t . 'Ol lqa l l t , ,  - ] u ,  ( ' u ,  +1,., " '" , ("0 1111.151 sa t t , . l )  Eq .  15. I ). h e n c e  

( ! ;  :~) 

and 

- ( ~ + , ' ) , 4 . - - v ( ~  + # ) A , + ( ( l - - v ~ - )  E ) : t , +  i = (j 

( ~ + v ) . i , + ( l - : z )  ' , + 0 + ( : z ( l - I - , , )  E,.46=,~ 

E..t .  + E (  1 +v) .4~ + t v - ; }  A , - -  ( [ +U).-to = o 

E ( l  +I~) A ,  + E I + ,u)u+q~-Fv(l  nt-#) zlp - ( t +#) . . t o=u  

} (.-,. 4) 

1 __1,2 - ( V + v ) C . - v (  -i~)(',+-~(1 ) C , + 0 = i ,  

.3 
( t - U ) ( r , + ( ] - U ) C + 0 + E ( I + v ) q = 0  (:7.:,~ 

EC,+E(t -u)C,+(v-~)C,- (1-/.z) Cl= 0 

E(1 - ~),",, + E(  t -/~)"(.'o + v (  I -u)C,-  (t + u ) C 0 =  o 

There is one superf luous  equat ion in each o f  the above  equa t ion  sets. hence each has one 

independent  coefficient, such as Ae and Co . The  eigenvalue p is to be determined.  

Subst i tut ing the solution Eq. (5 .3 ) in to  the bounda ry  condi t ion (2.14). tv~o homogeneous  

linear equat ions  for ..t.~ and ('o are established but trixial solution is u~,cless, hence its 

de te rminant  must be zero. ~hich gi~cs the eigen-cquat ion Ibr c igemalues .  From (5.4) gi~cs 

l + v  . 
A , z - & ,  A , = - A . ,  . 4 . = ~ A ,  

and Iroln (5.5) i t  solxcs 

s 
# ( l - - , u ) C , ,  + - - ~  ( -  :~-'t-V-Fla.-Fvu) = 0 ,  (1 - I t )  C , -  ( 3 - / - s  

u(t-u)C~ +@--(3-v+u+vu)=o 
} 

(5.6) 

(5.7) 
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lhe boundary  condi t ion 12.14) gives 

A o s i n ( l + ~ ) a + C o s i n ( l - u ) a - - O  

(A,+A.(I+#)+EA, )cos({+/~)a +(C,+C,( , - , )  +EC, ) c o s  I-u)a=0 } 
(5.8) 

Sub,.titutirlg Eqs. (5.6) and (5.7) into the above equat ion gi,.es 

A , s i n  ( t + U ) a  + C 0 s i n  ( 1 - U)a  = 0 ,[ 

I 
( l - g)  Aocos  ( 1 + , u ) a  + ( 1 + ~ )  Cocos  ( t - # ) a  = 0 

l h c  determinant  equals :e ro  gi~es the eigen-equat.ion 

s in2/~a- .k / . t s in2a  = 0 

tt+twn v, hich it is ea~ib, seen that both /a a n d - - # a r e  eigenvalue~,. 

\Vllcna~>.,~/2. the tip (~ - - - } - -o~ )o f  sectorial domain  has a singularity. 

c l ;cn \a lue  in 0 .~ ,u .~ l .  and it must be2p .a~zr .  Nurnerical results are listed in Table 

I.q 12,";) that the stress singularit> is r o ' - t  . 

Table 1 E i g e n v a l u e  of  s y m m e t r i c  d e f o r m a t i o n  for  i so t rop ie  m a t e r i a l  

(5.9) 

(5.t0) 

i. e. there is 

I. Notc  

2Gig 2.0 i 1.9 1.8 1.7 1.6 1.5 1.4 } 1.3 1.2 1.1 1.0 
I I 

0 . 5  0 . 5 0 0 3 1 0 0 . 5 0 2 5 3 0 0 . 5 0 8 8 0 0 0 . 5 2 1 7 1 1 0 . 5 4 4 4 8 4 0 . 5 8 1 1 4 2 0 . 6 3 6 7 2 8 0 . 7 1 7 7 9 9 0 . 8 3 3 6 9 1  1 
, 

\Vhcn a~v:,,'2, it asserts that there is m+ singularity at the tip of  sector. Because s in(2a)>  

tl. t-+q (5  I())is mlpo,,sible to haxe root m 0,~,u.~ I. ~,hich coincides with the assertion. 

Nms turn to look at the solution ant i-sxmmetric  with respect to0--~.0 ~ The general 

",~l t l t l O t ]  is 

~hcrc it must be 

u = B , , s i n (  t + / ~ ) 0 + D . s i n (  l - u ) 0  "1 

v = B , e o s (  t + u ) 0 + D . e o s (  l - - u ) 0  

s,.=B,.sin( l +p.)O+D,sin( l -u)O 
so = B0eos  ( l + ~) 0 + D 0 c o s  ( l - u)  0 

B,=Bj, B,,--B., # B . = ( I + v ) B ~ / E  

( ] - u ) D , =  ( u -  3)D0, Eu(t-u)D,,+(:~-v-/.L-vu)Do= o } 
Eu( l -u )D~  + ( a - v + ~ + v ~ ) D , = o  

and the free boundary  condi t ion gives 

B o e o s  ( 1 + o ) a  + D 0 e o s  ( l - , u ) a  = 0 

(B,,-B,,({+,,) +~B, )sin(l+,)a+(D,,-D.(I-#)+-.~-D, ) s i n ( l - / , ) a = 0  

Substituting Eqs. (5.12) and 15.13)in the latter equat ion gives 

1 + #  
B, s i n  ( ] + u ) a  + ~ D 0 s i n  ( 1 - u ) a  = 0 

l - / g  

(5.it)  

(5.12) 

(5.13) 



1120 Zhong Wan-xie 

Because B0 and Do must not bcsimultaneottsly zero. which givesthccigcn-cquat ion 

s i n 2 # a -  #sin2cr  = 0 (5 .14)  

It is easil> ~,een that p and--/a are roots simultaneously. 

When 2 a >  I. 430297rc. there will be ~,ingulareigen~,alue in 0 ~ p ~ l ,  Numerical rc',tdl a,, 

given in Table 2. 

Table 9. Eigenvalues  of a n t i s y m m e t r i c  de fo rma t ion  

2a/n 2.0 1.9 1.8 1.7 1.6 1.5 1.45 1.4303 

ta 0.5 0. 555202 0.621710 0.701175 0.795785 0.908529 0.972947 
i 

Next. the case of two different materials adhered together ),, considered,  fig. Ib}. Stq'oose 
the material property E being vcrv large ~tfld can bc regarded as rigid, h,. cc the bound~tr,. 

condition is treated as 

u=v=O, when 0=-0 (5 .1 5 )  

and the free condition o f l . i  (2.14) still holds. 

The general cigen-sof tion is the sum of E q ,  (5.3) and (5.11). who),: the coefficients 

satin, f; Eqs. (5.6--7) and (5 .12-13) .  The indefwndent coefficients a r c . ~ , B o ) C 0 , O 0 , t h c  

eigcn~,alue u is also to be determined. According x,, boundary condition (5.15). . A , = - - C u ,  

B , , = - D , , .  Using Eqs. ( 5 . 6 - 7 )  and (5 .12-13)  

(3-v+u+vu) ( 3 - v - U - v ~ )  C,, B ,= 19, (5 16) ~ "  ( ~ + ~ ) ( ~ - u )  (~+--~U) ( ~ - ~  " 

Substituting the general eigen-solutzon into the free boundar )cond i t ion  {2.14). using Eqs. (5.6 

--7) and (5.1 ' -  13) also gives 

Aesin  ( x + U ) a  + B ,  c o s (  1 +U)a + C , s m (  l - #)a +D, cos( 1 - # ) a =  0 

. . ~ ,  1 nu# OS A, cos( I Wl~)a- Bosin( l + p ) a - i - b o ~ c  (1 q -p ) a  

0.999999 

14-# s i n ( l - - ~ ) a - - 0  [ ( 5 . 1 7 ) *  
- D o  I - ~  

u 

Substituting Eq. (5.16) into the above equation gives a simultaneous equation set for Co and 
Do . its determinant equals zero gives the eigenvalue equation as 

(3- -  v +U +,uv) c o s  ( l + u ) a  

+(l+v)(l--U)~S(l--u)a 
- (3 - v+/~ + ~ v )  s i n  ( 1 + ~ ) a  

- (1  + v )  ( i -I- /~)  s i n  ( 1 - / ~ ) a  

( 3 - v -  u -  uv) s i n (  1 + u ) a  

+ ( l + v ) ( I - u ) s i n ( l - u ) a  

( 3 - v - U - / ~ v ) c o s ( l  + /~)a  

+ ( 1 + v )  ( l + u )  c o s  ( 1 - u ) a  

Expanding the determinant derives 

= 0  

( 5 . ~ s )  4 - -  ( 1 + v )  (3 -- v) s in t /~a- -  ~'  ( 1 + v )  Z s i n ' a = 0  

For the cases ofa=rt/2 and a=n respectwely 

*in flnrther research. Associate professor Zhang Hong-wu found an error in Eq. (5.17) of the original 

text. and proposed the correction text until Table-3. The author sincerely expresses gratitude to him. 
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2__~  n (5 IS)' 4--  (1 -.t-v) ( 3 - v )  s i n  -- (I - t - v ) = p ' ~ 0 ,  for a = ---~- 

/ ' ] ' ( l + v ) 4  s i n p a , -  _ ( 3 _ v )  > 1 ,  for a = =  ( 5 . 1 8 ) "  

The Eq. (5.18)" has no real root. but equation (5.18)~does has real root. that means when a 

locates between n/2 and r~ there must be a transition point from real root to complex roots. 

For the case of v=0.3 ,  the roots p versus the a angles are listed in the Table 3. The angle 

f f ~  131 ~ is the transition point for real and complex roots, that 9 0 * ~ a ~ i  gi,,es real root. 

~nd there are two real roots when I 19*~a~--<~. 

Table 3 Eigenvalues for the sector with one boundary clamped and the another free 
when u=0.3 

a" 180 170 160 150 140 131 

Re (/~) O.SO0 0.530 0.567 I 0.611 0.66S 0.730J0.230 

ha(tJ) I).116 0.122 0.123 I 0.117 0.097 0 

The cohesion of  differential materials is quite useful for composite material or in 

micro-electronics. Although only the case of a = n / 2  is calculated here. however other value of 

a can also be selected. The eigenvalue can be solved from Eq. (5.18). Selection of  best angle a 

to reduce the stress singularity within the tolerence of technology can be considered as one ot  
the measures to reduce possible cracking. 

For homogeneous isotropic plane problem, the Air2, stress function method and the 

method of  complex variable can also be applied to solve such problem. However. the 

Hamiltonian system method can be applied to all auto-modelling problem in linear elasticit,,. 
such as anisotropic material or even three dimensional case. 

The eigenvalues given above are only for the singular solutions, but there are infinite 

eigen~alues, which are generally complex conjugates. When substituting back to the 

simultaneous equations such as Eq. (5.9) and solve the constants. Eqs. (5.3) or (5.11) give the 

corresponding eigenvectors. These eigenvectors are mutually adjoint symplectic ortho- 

normtllized. The eigenvalue determines only the characteristics of the singularity, but the 

intensity of  the singularity should be determined by other means, such sitmltion is the same to 

the theory of fracture mechanics. The intensity of  singularity depends on the connection of the 

sector to the surrounding structure and its loading. Currently the structural analysis is ma;'nly 

by FEM and the sector is treated as a super-element of  the structure. The analytical stiffness 

matrix of  the sectorial super-element can be generated via the expansion method of  

eigen-function-vectors with combination of  the variational principle. The method v,'ill be given 
in the next section. 

VI. F o r m u l a t i o n  of  St i f fness  Matrix o f  the Sector ia i  D o m a i n  

Generally speaking, assuming there are n, external pionts on each inner and outer arcs 

of the ring sectorial domain (Fig. Ic). The inner arc will connect the phistic zone if an~,. and 

the outer arc boundary will connect the surrounding structure. For ring domain, both the 

e~gen-solutions of/~ and- /~a re  both necessary. When only elastic solution is considered. R~--,0. 
so that only the eigenvalue of  R e ~ ) > 0  is appropriate. 

0.67910.849 0.675]0.990 3.680 0.692 0.258 
o o o o 0 
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The elastic sector has n, points at the outer arc r=R2.  hence the analytical stiffness 

matrix of  the sector domain will be corresponding to the displacements of  these points. For 

plane problems two displacements u, u for each points, thus the external displacements of  the 

super-element have 2n,. degrees of  freedom. Hence 2n, eigen-solutions with Re lu )>0  will be 

necessary and the seclorial singular solution will be 

2n, 

"uo(~,O) = Y~. A,O,(O)exp(p,~ ) ( 6 .1 )  

where A~ are constants to be determined. For the case of complex eigen-solutions, its 

complex conjugate will also be eigen-solution and so is /1~. The eigen-function-vector O~are 

composed of u~, vt, s , t ,  so, .  The current FEM systems ;ire i, ll based on displacemen! 

method, the general solution (6. I 

displacements u. v of the n, 

imaginary parts). When the 2n, 

) should be transformed to e.xternal stilt"hess matrix. The 2n,. 

points can determine the 2n, coet'ficients A, ~the real and 

displacements u. v successively given as { 1 , 0 ; 0 , 0 ;  ...~ 0, 0} T, 

t 0 , 1 : 0 , 0 ; ' " ; 0 , 0 }  T, , [ 0 , 0 ; l , 0 ; . . . ; 0 , 0 } r , . . . ,  { 0 , 0 . . 0 , 0 ; . . . ; 0 , 1 }  r, totall) r 2n, independent 

vectors in turn. the 2n, sets of solutions of  contants A~ c;,n be solved Using lhese.fl, 

solutions as columns, a ?4, x 2 n ,  matrix T is composed, which trl, nsl'orms the external 

displacement vector to the vector of  .,4j. 

The clement stitTness matrix can be obtained fronl the strain encrg.~ of the element, which 

is right the funct ional of the v~,riational Eq. (2.3). or of Eqs. (2.7) or (2.10). Suhst i tut ing Eq. 

(6.1) into the functional of Eq. (2.1{l). b~, use of integration b.', parts and noting that the eigen- 

solution (6.1) satisfies i, ll the differential equations and boundar} conditions (except r = R . ) .  

the element strain energy can be d e m e d  as 

E .  =@I ~ [s,(O'.u(O)+s,(O).v(O)!dO 
- a  

= l - - a ~ ' . R ~  ( 6 . 2 )  
2 

~here I1 is the ~ector composed o1" A~ ( i = 1 ,  2 , " . ,  2n,) .  and R, i:., the elemen! matrix 

corresponding to vector11, v, ith size 2n, x 2n,. 

Let d , deno t e  the external displacement ~cc[or of  sectorial element so that 

~ here 

11=T d..  e . =  = 4 d ; R . d ,  

R,=Tr.R=.T 
i s t hee l emen~mat r ix  desired. T h e e l e m e n t s o f R ~  

(6.3) 

(6 .4 )  

ro  
(R~ =J_o [s,,C6)u,(6)+s,,(0)v,(8)]d0 (o.: ' ,) 

Betti reciprocal principle gives the s~mmetr~ of malrix R , .  

VII. On FEM of  S ingular  E l e m e n t  

The computat ion of the mtensit.,, |ktctor. the connection bet~een .anal)ileal clement ;.llld 
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FEM have been given in last section. Now the FEM application to the singular element, itself 

is discussed. So far analytical method is applied for isotropic plane problem, but for more 

complicated or 3D problems the pure analytical method will be difficult. The method of 

separation of veriables for Hamiltonian system can reduce only one dimension to the 

governing equation, so that applying FEM along the transverse direction can be considered. 

Usually the formulation for FEM is best via variational method, which is heavily used in this 
paper, and the free boundary condition is also treated with the variational principle. Note that 

along the radial coordinate e (or r) the formulation is analytical, hence the element is 

semi-analytical, which is important for identifying the characteristics of singularity. The detail 

is omitted. 

VIII. Concluding Remarks 

There are a number of auto-modelling-problems in applied mechanics, the sectorial 

domain problem in elasticity is one of them. For such kind of problems lhe variable 

substitution method and variational principle can be used to derive the governing equations to 

Hamiltonian system, and then the method of separation of variables, the eigen-function-vector 

expansion method and adjoint symplectic orthonormality and the corresponding mathematical 

tools can be applied. The present paper demonstrates such mathematical method via the 

sectorial domain plane elasticity problem, which can be imbedded into some fracture or 

composite material finite element analysis programs. 
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