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Abstract. This paper describes various representations of the space of
planes. The main focus is on the plane space representation in the sym-
metry plane detection in E3 where many candidate planes for many pairs
of points of the given object are created and then the most often can-
didate is found as a mode in the candidate space, so-called Mode-based
approach. The result depends on the representation used in the mode-
seeking process. The most important aspect is how well distances in the
space correspond to similarities of the actual planes with respect to the
input object. So, we describe various usable distance functions and com-
pare them both theoretically and practically. The results suggest that,
when using the Mode-based approach, representing planes by reflection
transformations is the best way but other simpler representations are
applicable as well. On the other hand, representations using 3D dual
spaces are not very appropriate. Furthermore, we introduce a novel way
of representing the reflection transformations using dual quaternions.
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1 Introduction and Related Work

Symmetry detection in 3D objects is a very large and progressive field with
many possible applications, mainly in computer graphics or computer vision,
such as object alignment, compression or reconstruction of incomplete objects.
One very popular approach to symmetry detection is to create a number of can-
didate transformations by matching different points or parts of the input object
and then finding those transformations that occur most often in the transfor-
mation space (see e.g. [13]). This can also be described as seeking modes in the
transformation space, so the approach is called Mode-based symmetry detection.
It can be applied to detect symmetries of various types, however, in this paper we
only focus on the detection of the planes of symmetry (reflectional symmetries)
of 3D objects.

c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12141, pp. 509–523, 2020.
https://doi.org/10.1007/978-3-030-50426-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50426-7_38&domain=pdf
https://doi.org/10.1007/978-3-030-50426-7_38


510 L. Hruda et al.

Mitra et al. [13] and Shi et al. [17] used the Mode-based approach to find
quite general partial (or local) symmetries – the transformations can contain
rotation with or without reflection, translation and uniform scaling or any sub-
group of these transformations including pure reflections (symmetry planes).
To find the modes these methods employ Mean shift clustering algorithm [3].
Li et al. [11] used the same approach to detect symmetry planes of damaged
skulls. Other uses for symmetry plane detection are in [9,12]. Similar approach
has recently been used by Hruda et al. in rigid surface registration [8] which
can be understood as symmetry detection between two objects. The candidate
space contained rigid transformations and a mode was found by a density peak
estimation algorithm. This could also be utilized to find the global plane of sym-
metry. A related approach was used by Podolak et al. [16] and Caillière et al. [2]
where Hough transform and voting are employed to find the symmetry planes.
The space of planes was divided into non-uniform discrete bins to count plane
occurrences. Regardless of the specific algorithm, any Mode-based method for
symmetry plane detection requires to define some representation of the space
of planes, the definition influences the result. The important aspect is to have
distances between points in the space well corresponding to the actual similar-
ity/dissimilarity of the planes in E3. The mode(s) can be found in an arbitrary
non-Euclidean space only using distances between the points, their coordinates
are not needed [8,18]. Proximity queries in non-Euclidean spaces can be acceler-
ated using the Vantage Point Tree data structure [19] as done in [8]. In context
of symmetry detection, planes can be understood as transformations reflecting
points over the given plane. The problem of computing distances between rigid
transformations has been analyzed in [8], however, the same problem does not
seem to be sufficiently addressed in the literature for reflection transformations
or planes, in spite of the popularity of the Mode-based approach.

This paper describes and analyzes several different representations of the
space of planes. For each representation, reasonable distance functions, suitable
in Mode-based symmetry plane detection, are discussed. The distance functions
are compared to the distance function closest to the ground truth but useless in
practice due to its large computation cost. The information about the described
representations can be useful in other applications where a plane representa-
tion is needed, although the presented distance functions might require some
application-based adjustment. We thus believe that researchers from various
fields, not restricted to symmetry plane detection, could benefit from this paper.

2 Background

A general plane P can be defined by its implicit equation as P : ax + by + cz +
d = 0 where n = [a, b, c]T is the normal vector of the plane. We always consider
the coefficients to be normalized such that ‖n‖ = 1 in which case d represents
the signed distance of the plane from the origin. A function rP (x) ∈ E3 that
reflects an arbitrary point x ∈ E3 over the plane P can be defined as shown in
Eq. (1).

rP (x) = x − 2(nT x + d)n (1)
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2.1 Candidate Creation Algorithm

Let us have a set of input points representing the object for which the set of
candidate symmetry planes is to be found: X = {x1,x2, . . . ,xN}, xi ∈ E3, i =
1, 2, . . . , N . We use the point set representation due to its generality. We first
create a 3D uniform grid with cell size

lavrg

δ
×

lavrg

δ
×

lavrg

δ
where lavrg is the

estimated size of the object computed as the average distance of the points of
X from their centroid. We mark each cell as either occupied if any point from
X falls into it, otherwise unoccupied. Then we start randomly selecting pairs of
points xi,xj from X and construct a plane P such that rP (xi) = xj . To avoid
clutter in the candidate space we perform a quick check to determine whether
P is a plausible candidate by randomly selecting another five points from X,
reflecting them over P and checking whether all of them end up in an occupied
cell of the previously created grid. If they do P is accepted as a candidate. If
at least one of them reflects into an unoccupied cell then P is rejected. We
keep iterating this process until we have k accepted candidates and if not stated
otherwise we set δ = 5, k = 2000. The key idea behind the Mode-based approach
is that now there should be significant modes in the candidate space of planes
corresponding to the strongest symmetries of the input point set X.

2.2 Dependence on Scale and Position

The a, b, c coefficients are bounded on finite interval 〈−1; 1〉. The value of the d

coefficient of any candidate plane depends on the position and overall scale of
the input object because d represents the distance of the given candidate plane
from the origin and if the size of the object changes, the span of the d coefficient
will change as well. However, the a, b, c coefficients will stay the same.

The dependence on the position is less obvious. If we translate the input
object (all points in X) by some arbitrary vector t, then for an arbitrary candi-
date plane P , d will change by tT n against the original position. As the change of
d depends also on the orientation of the given plane, the change of d is inconsis-
tent throughout the candidate planes and this inconsistency grows with distance
of the input object from the origin. Therefore, the position of the input object
influences the span of d but does not influence the span of a, b, c.

Generally, the distance functions for planes are negatively influenced by sig-
nificantly different span of d and a, b, c, therefore, we always translate the input
object’s centroid into the origin and, if necessary, we also normalize d by lavrg

to make the spans of d and of a, b, c similar. For those distance functions where
the translation to origin is not necessary, this fact will be pointed out explicitly.

2.3 Ground Truth

As pointed out in [8], distance between transformations cannot be well defined
without the context (the object on which the transformations are applied), which
is consistent with Sect. 2.2. Therefore, the most meaningful distance function for
planes is the one used for error evaluation of registration results in [8], only with
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reflection transformations instead of rigid ones. Given two arbitrary planes P1

and P2, the distance function measures the exact difference between the effects
of two reflections defined by P1 and P2 on the input object. It will be considered
the ground truth distance function, denoted DGT (P1, P2) and defined

DGT (P1, P2) =

N
∑

i=1

‖rP1
(xi) − rP2

(xi)‖, where xi ∈ X, i = 1, . . . , N. (2)

The DGT distance function is not affected by the position of the input object,
so it does not require the translation to origin, and the object size only effects
its overall scale. Unfortunately, the time complexity of computing DGT is O(N)
where N is the point count of the input object, which makes it too computation-
ally expensive and, therefore, virtually unusable in any Mode-based symmetry
detection algorithm. However, we can use it to compare other distance functions.

3 Plane Space Representations

In this section we describe and visualize various representations of the space
of planes in E3 plus possible distance functions usable in an arbitrary Mode-
based symmetry plane detection algorithm. We use the algorithm from Sect. 2.1
to create a set of candidate symmetry planes of the object shown in Fig. 1.
The black line in the figure represents the correct symmetry plane, the object is
rotated to have this plane perpendicular to the projection. We purposely selected
a slightly asymmetrical object. Although the object is visualized as a triangle
mesh, only its vertices are used to compute the candidates.

Fig. 1. Model object with its correct symmetry plane

3.1 Dual Representation in E
3

The implicit equation of a plane has four coefficients but there are only three
degrees of freedom when defining a plane because the space of planes is a 3-
dimensional manifold embedded in 4-dimensional space. We can thus use a dual
representation of any plane as a point in E3. We denote ρ(P ) ∈ E3 a dual
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(a) ρ1 (b) ρ2 (c) ρ3

Fig. 2. Dual representations of the candidate symmetry planes. The colors represent
density (the darker, the larger density), the red spot shows the correct symmetry plane.
(Color figure online)

representation of a plane P . Euclidean metric can then be used to compute the
distance between two planes P1, P2 as Dρ(P1, P2) = ‖ρ(P1) − ρ(P2)‖.

One possible representation is to encode the plane orientation into a vector in
E3 with the same direction as the plane normal vector, and d into the length of
this vector. Such dual representation can be defined as ρ1(P ) = dn. Obviously,
for d → 0 there is ambiguity because such planes are shrunk into a single point.
To solve this problem, the value of d is shifted by a constant μ, then these planes
get spread on the surface of a sphere with radius μ instead of being all at the
origin. We set μ = 1

2 lavrg so that rotating the normal by π and changing d by
lavrg make approximately similar change in position of the point in the dual
space. The dual representation is therefore finally defined as

ρ1(P ) =

{

(d + 1
2 lavrg)n d ≥ 0

(d − 1
2 lavrg)n d < 0

.

Distances in such dual space still do not very well correspond to similarities
of the actual planes. Mainly, two planes with d close to 0 and similar normal
vectors can be on the other sides of the sphere, and therefore more than 2μ
apart, although they are actually very similar. However, such representation can
be very good for visualization as each point in the dual space represents the
plane quite intuitively. Figure 2a shows the generated candidates on the given
model in the dual E3 space transformed with ρ1. The darker spots correspond
to larger density of the points in the space, the red spot to the correct plane
from Fig. 1. The viewpoint was selected manually to maximize the information
in the image. It can be seen that the correct plane is in a noticeable mode (dense
spot) but this mode is split on the sphere surface corresponding to d = 0 and
its non-negligible part is on the other side. This is undesirable because it makes
the mode much less significant than it would be if the two parts were together.

Another duality, also called polar duality (described e.g. in [6]), uses normal-
ization of the plane coefficients such that d = 1, then the a, b, c coefficients are
used as coordinates in E3 i.e 1

d
n. This again poses a problem for d → 0 which
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makes the dual points approach infinity. We solve this issue in the same way as
with ρ1 by shifting the d coefficient and we define this dual representation as

ρ2(P ) =

{

1
(d+ 1

2
lavrg)

n d ≥ 0

1
(d− 1

2
lavrg)

n d < 0
.

Figure 2b shows the candidates transformed by ρ2 into the dual space. The right
plane is in a noticeable mode, split again into two separate parts very far apart.
There are also other significant modes corresponding to very different planes.

Another duality commonly used in computational geometry expresses a plane
using its coefficients in explicit representation [1]. There are three possible
explicit representations of a plane in E3:

x = −
b

a
y −

c

a
z −

d

a
, y = −

a

b
x −

c

b
z −

d

b
, z = −

a

c
x −

b

c
y −

d

c
.

For demonstration, we select the first one, the dual representation is then
defined as ρ3(P ) = [ b

a
, c

a
, d

lavrg·a
]. The division of d by lavrg is necessary to

normalize the span of d. Such duality obviously cannot represent planes parallel
to the x-axis and planes with a → 0 approach infinity in the dual space. We
could solve this by shifting a but this time, we do not include lavrg into the shift
because the span of a does not depend on the size of the input object, so we get

ρ3(P ) =

{

[ b
a+ 1

2

, c
a+ 1

2

, d
lavrg(a+ 1

2
)
] a ≥ 0

[ b
a− 1

2

, c
a− 1

2

, d
lavrg(a− 1

2
)
] a < 0

.

Figure 2c shows the candidates in the dual space transformed by ρ3 and in
this case there do not seem to be any significant modes.

In general, the dual representations appear not very appropriate for repre-
senting planes in Mode-based symmetry detection due to their singularities. This
problem can be solved by shifting the value of some coefficient by a constant but
the choice of this constant is rather arbitrary and even then the distances between
points in the dual space might not well correspond to similarities of the planes.
However, the dual representations can be useful to visualize the candidates as
the dual points are 3-dimensional.

3.2 4D Vector Representation

Probably the most intuitive way of representing a plane is by a 4D vector of the
plane coefficients. Given a plane P we represent it by a vector p = [a, b, c, d

lavrg

]T .

In such a space we can easily define a distance function as the Euclidean distance
of the two 4D vectors. However, p and −p represent the same plane so we need
to take this into account. The Euclidean distance function is then defined as

DED(P1, P2) =

{

‖p1 − p2‖ pT
1 p2 ≥ 0

‖p1 + p2‖ pT
1 p2 < 0

.
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(a) DED (b) DAD (c) DACD

Fig. 3. The candidates represented by 4D vectors projected into E3 with MDS using
different distance functions.

In this case the points cannot be visualized directly, so we use the multidimen-
sional scaling (MDS) technique to transform the points into E3 while maintain-
ing their distances, w.r.t. the given distance function. However, the projection
into E3 might cause some imprecision in the visualization. Figure 3a shows the
candidate planes projected into E3 with MDS using the DED distance function
and there is a very significant mode visible around the correct symmetry plane.

The distances in 4D vector space of planes can also be measured as angles
between the vectors because the length of the vector p does not influence the
plane P it represents. The angle distance function can be defined as

DAD(P1, P2) = arccos

(

|pT
1 p2|

‖p1‖‖p2‖

)

.

Figure 3b shows the candidates after using MDS with the DAD distance function
and the correct plane is again placed inside a noticeable mode.

We can also use only the cosine of the angle and measure its deviation from
1. The angle cosine distance function can be defined as

DACD(P1, P2) = 1 −
|pT

1 p2|

‖p1‖‖p2‖

and its visualization using MDS is shown in Fig. 3c. There is again a noticeable
mode around the correct plane.

The 4D representation of the plane space is more appropriate for any Mode-
based symmetry detection algorithm than the dual representations in E3. How-
ever, they are not as convenient for visualization as the points first need to be
projected into a lower dimensional space which causes a loss of information.

3.3 Transformation Representation

As already mentioned, the distance between arbitrary two planes P1 and P2 can
be defined as the distance between the two reflection transformations rP1

and
rP2

defined according to Eq. (1). One way of doing this is using the compound
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(a) DSSD (b) DDQ

Fig. 4. The candidates represented as transformations projected into E3 with MDS
using different distance functions.

metric evaluated as the most suitable for rigid transformations in [8]. It is based
on sum of squared distances between the transformed points and is defined as

DSSD(P1, P2) =

√

√

√

√

N
∑

i=1

‖rP1
(xi) − rP2

(xi)‖2

where xi ∈ X, i = 1, . . . , N . Certain similarity between DSSD and the ground
truth distance function DGT (see Eq. (2)) can be noticed with two major differ-
ences. First, DSSD uses squared distances, favouring smaller displacements over
larger ones, which leads to different distances. Second, unlike DGT , DSSD can
be computed in O(1) with O(N) preprocessing [8]. The transformations must be
expressed as Mx + t where M is an orthogonal transformation matrix, t is an
arbitrary translation vector and x is the transformed point. From Eq. (1) we get

rP (x) = x − 2nnT x − 2dn = (I − 2nnT )x − 2dn

where I is the identity matrix. If we denote M = (I − 2nnT ) and t = −2dn,
then the reflection is rP (x) = Mx + t. As M is orthogonal (and symmetric),
we can use the same approach as in [8] to compute DSSD in O(1) with O(N)
preprocessing. The DSSD distance function, as well as DGT , is not affected by
the position of the input object, so the translation to the origin is not required,
and the object size only effects the overall scale of the distance function.

Figure 4a shows the candidates projected into E3 using MDS with the DSSD

distance function and the correct plane is again in a significant mode. There
is another smaller significant mode visible in the figure, however, this can very
likely be caused by the distortion of the MDS projection.

Dual Quaternions. Dual quaternions combine the concepts of quaternions and
dual numbers. Let us show how to use them to represent a reflection over an
arbitrary plane. A general quaternion is defined as Q = q0+q1i+q2j+q3k where
the i, j, k units multiply according to the following rules

i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.
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A conjugate Q∗ of a quaternion Q is defined as Q∗ = q0 − q1i − q2j − q3k. We
denote v(x) = xi + yj + zk a quaternion that represents an arbitrary point x =
[x, y, z]T ∈ E3. If u is an arbitrary unit vector and we set Q = cos α+v(u) sin α,
then Qv(x)Q∗ represents the point x rotated by angle 2α around the axis that
passes through the origin and has the direction of u. Similarly, if we set Q = v(u)
then Qv(x)Q represents the point x reflected over the plane with normal u that
passes through the origin. For details about quaternions we refer to [7].

A dual quaternion, for more detail see e.g. [15], is defined as

Qd = Q + ǫQǫ = q0 + q1i + q2j + q3k + ǫ(qǫ0 + qǫ1i + qǫ2j + qǫ3k)

where Q and Qǫ are quaternions and ǫ is the dual unit which commutes with
the quaternion units i, j, k and it is that ǫ2 = 0. A quaternion conjugate of Qd is
defined as Q∗

d = Q∗ + ǫQ∗
ǫ , a dual conjugate of Qd is defined as Qd = Q − ǫQǫ.

These conjugations can be combined into Q∗
d = Q∗ − ǫQ∗

ǫ .
We denote vd(x) = 1 + ǫ(xi + yj + zk) a dual quaternion representing an

arbitrary point x = [x, y, z]T ∈ E3. If Q is a quaternion that represents rotation

and Qǫ = v(t)Q
2 where t = [tx, ty, tz]

T is an arbitrary translation vector then for
Qd = Q + ǫQǫ, using the rules of dual quaternion algebra, it can be shown that

Qdvd(x)Q∗
d = 1 + ǫ(Qv(x)Q∗ + v(t))

which represents the point x rotated via Q and then translated by t. This shows
how to use dual quaternions in connection with rigid transformations. Note that
Qd represents the same transformation as −Qd with the identity being repre-
sented by either 1 or −1. The transformations can be concatenated by multiply-
ing the corresponding dual quaternions and if Qd represents a rigid transforma-
tion, Q∗

d represents its inverse. Next, for Qd1, Qd2 representing rigid transforma-
tions, these transformations are the same only if Qd1Q

∗
d2 = 1 or Qd1Q

∗
d2 = −1.

Consider now a plane P and a dual quaternion Qd = Q + ǫQǫ defined such

that Q = v(n) and Qǫ = v(t)Q
2 where t = −2dn. Now Qd represents a trans-

formation that first rotates by π around the axis that passes through the origin
and has the direction of n, and then translates by −2dn. However, if we apply
the transformation on −x instead of x, it can be shown that we will get

Qdvd(−x)Q∗

d = 1 + ǫ(Qv(x)Q + v(t)) = 1 + ǫ(v(n)v(x)v(n) − v(2dn)) = vd(rP (x))

which exactly represents rP (x). This shows that a dual quaternion can also rep-
resent a reflection transformation by representing a rigid transformation that
transforms −x to rP (x). Therefore, to measure distances between reflection
transformations we can use a distance function for dual quaternions.

We denote vec(Qd) = [q0, q1, q2, q3, qǫ0, qǫ1, qǫ2, qǫ3]
T ∈ E8 an 8-dimensional

vector that is equivalent to Qd. Given a plane P , we create the corresponding

dual quaternion Qd such that Q = v(n) and Qǫ = v(−2dn)Q
2lavrg

, i.e. Qd = v(n) +

ǫ
v(−2dn)v(n)

2lavrg

. The division by lavrg is to normalize the translation part. Using

the algebra of dual quaternions we can actually get that Qǫ = d
lavrg

, so Qd can
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be finally expressed as shown in Eq. (3).

Qd = v(n) + ǫ
d

lavrg

= ai + bj + ck + ǫ
d

lavrg

(3)

There are two common distance functions for dual quaternions. The first
one uses differences between the equivalent 8-dimensional vectors [15]. Suppose
two arbitrary planes P1 and P2 represented by dual quaternions Qd1 and Qd2

respectively. Such distance function can be defined as

min{‖vec(Qd1) − vec(Qd2)‖, ‖vec(Qd1) + vec(Qd2)‖}

but given Eq. (3) this is exactly the same as DED. The second distance function
[5] uses a difference transformation Qd1Q

∗
d2 and computes its distance from the

identity, i.e. from 1 or −1. It is defined as

DDQ(P1, P2) = min{‖vec(1 − Qd1Q
∗
d2)‖, ‖vec(1 + Qd1Q

∗
d2)‖}.

Figure 4b shows the candidates projected into E3 using MDS with DDQ and the
correct plane is in an obvious mode.

4 Results

We compared the distance functions by generating the candidate symmetry
planes of a given object (using the model algorithm from Sect. 2.1), compar-
ing values of the given distance function and of the ground truth one. We did
this for the six test objects from Fig. 5, taken from datasets [4,10]. The objects
are represented by triangle meshes for easier visualization, but we again only
used their vertices as the input points for the candidate creation process.

(a)
Armadillo

10026

(b)
Bunny
9831

(c)
Lion
2213

(d)
Ant
3495

(e)
Formula
10969

(f)
Space ship

3099

Fig. 5. The test objects used to generate the candidate sets for comparing the distance
functions. The number under the name of each object expresses its point count.

Let C = {P1, P2, ..., Pk}, k = 2000 be the set of candidate planes created
for a given input object. The error of a given distance function D against the
ground truth is defined as

Err(D) =
1

Count(k)

k
∑

i=1

k
∑

j=i+1

∣

∣

∣

∣

DGT (Pi, Pj)

Avrg(DGT )
−

D(Pi, Pj)

Avrg(D)

∣

∣

∣

∣
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where

Avrg(D) =
1

Count(k)

k
∑

i=1

k
∑

j=i+1

D(Pi, Pj)

is the average distance between candidates in C and Count(k) = 1
2 (k2−k) is the

total number of candidate pairs used for the computation. The normalization by
Avrg is used because the overall scales of the distance functions do not matter so
the differences are computed after both DGT and D are divided by their mean
values. Table 1 shows the errors of all the distance functions described above
for all the test objects. We include the dual representations in the comparison.
The smallest error is obviously achieved using DSSD probably due to the same
principle of DSSD and DGT . It is still rather surprising that the DSSD function
which uses squared distances is so similar to DGT that uses absolute distances.
The DED, DAD and DDQ all have very similar errors (DDQ usually has the
lowest error) which are overall lower than those of DACD and the distances in
the dual spaces, but in case of DACD this can be explained by its resemblance to
the cosine function (DACD = 1−cos(DAD)). The function Dρ3

exhibits similar or
lower error than DACD on some objects (Arm, Ant) but also considerably larger
error on different ones (For, Shi) which suggests that Dρ3

is quite unpredictable.

Table 1. Errors of the distance functions for the candidate sets for different objects.

Arm Bun Ant For Lio Shi Average

DED 0.120 0.277 0.163 0.093 0.130 0.234 0.169

DAD 0.133 0.281 0.157 0.098 0.144 0.236 0.174

DACD 0.299 0.388 0.264 0.250 0.306 0.352 0.309

DSSD 0.012 0.023 0.009 0.014 0.011 0.012 0.013

DDQ 0.118 0.277 0.162 0.093 0.129 0.232 0.168

Dρ1
0.382 0.399 0.503 0.596 0.326 0.425 0.438

Dρ2
0.401 0.408 0.488 0.563 0.360 0.489 0.451

Dρ3
0.280 0.446 0.269 0.730 0.362 0.447 0.422

The graphs in Fig. 6 show the relation between DGT and the other distance
functions. We generated 50 candidates on the Armadillo and for each pair of the
candidates we put its distance computed by DGT on the horizontal axis and the
distance computed by a given different distance function on the vertical axis.
We normalize each value by Avrg. If some distance function D was the same
as DGT (apart from overall scale) there would be a perfect linear dependency
and the points would lie on a line in the graph. Figure 6a shows the relations
of DSSD, DED, DACD to DGT . The similarity of DAD, DDQ, DED is shown in
Fig. 6b, Fig. 6c shows the dual representations. For different objects the graphs
are slightly different but very similar. There is an obvious almost linear depen-
dency between DGT and DSSD (see Fig. 6a), however, DED, DAD, DDQ exhibit
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(a) (b)

(c)

Fig. 6. Relations between a) DSSD/DED/DACD and DGT ; b) DDQ/DED/DAD and
DGT ; c) Dρ1

/Dρ2
/Dρ3

and DGT for the Armadillo object.

relation to DGT that is also nearly linear (see Fig. 6b). For DACD the resemblance
to cosine is visible. The dual representations show rather unstable behavior (see
Fig. 6c). This is mostly caused by the shift in some of their coordinates but with-
out it the dual representations would suffer from singularities which would make
them unusable. Different shifting constant could lead to better results, at least
for some objects, but there is no general way how to choose it.

Table 2 shows the Pearson correlations [14] between all pairs of the distance
functions for the data from Fig. 6. Value of 1 indicates perfect linear dependency
and the closer to 0 the weaker the dependency. Expectedly, DSSD shows the
best linear correlation with DGT . The correlations of DED, DAD, DDQ and even
DACD with DGT are all rather high. On the other hand, the distances in the
dual spaces have mostly low correlation with DGT . The high correlations among
DED, DAD and DDQ confirm the similarity of these three distance functions.

Based on the results, the most appropriate representation of the space of
planes in any Mode-based symmetry detection method is the transformation
representation with the DSSD distance function. But, except for the dual rep-
resentations, all the distance functions are similar and none of them deviates
significantly from DGT making all of them well applicable. However, all the dis-
tance functions except DSSD require translating the input object to the origin,
otherwise the normalization of the d coefficient would have to be done differently.
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Table 2. Pearson correlations of the distance functions for the Armadillo object.

GT ED AD ACD SSD DQ ρ1 ρ2 ρ3

GT 1.0000 0.9723 0.9644 0.9120 0.9998 0.9738 0.5361 0.3265 0.7238

ED 0.9723 1.0000 0.9989 0.9679 0.9713 0.9998 0.5537 0.3460 0.7621

AD 0.9644 0.9989 1.0000 0.9767 0.9635 0.9983 0.5499 0.3474 0.7548

ACD 0.9120 0.9679 0.9767 1.0000 0.9105 0.9664 0.5196 0.3111 0.7262

SSD 0.9998 0.9713 0.9635 0.9105 1.0000 0.9728 0.5351 0.3286 0.7214

DQ 0.9738 0.9998 0.9983 0.9664 0.9728 1.0000 0.5516 0.3423 0.7637

ρ1 0.5361 0.5537 0.5499 0.5196 0.5351 0.5516 1.0000 0.9248 0.4217

ρ2 0.3265 0.3460 0.3474 0.3111 0.3286 0.3423 0.9248 1.0000 0.1934

ρ3 0.7238 0.7621 0.7548 0.7262 0.7214 0.7637 0.4217 0.1934 1.0000

4.1 Theoretical Comparison

There are some theoretical differences between the various representations. The
dual and the 4D vector representations are basically Euclidean and the can-
didates can easily be stored in a data structure such as a KD-tree or a grid.
In case of the DAD and DACD distance functions some structure can be built
using the polar coordinates in 4D. Also, there are quite many possible algo-
rithms for mode-seeking in Euclidean data. The transformation representations
and the DSSD and DDQ distance functions are non-Euclidean, with smaller
choice of data structures and possible mode seeking algorithms [8,18,19]. Also,
the implementation of the DSSD and DDQ is more complex since they require
implementing the matrix and the dual quaternion algebras.

Although the DDQ distance function does not bring any considerable
improvement over simpler distance functions, the idea of representing reflec-
tions by dual quaternions seems novel and can possibly find its use in other
applications or new symmetry detection methods created in the future.

5 Conclusion

We described several representations of the space of planes suitable for any Mode-
based algorithm for symmetry plane detection and computation of the distances
in these representations. We showed that the 3D dual space representations are
not very appropriate for this purpose but usable for visualizations. In order to
represent the space of planes suitably in context of the Mode-based symmetry
detection, spaces of higher dimensions must be used and the most appropriate
representation is even non-Euclidean. However, the results suggest that apart
from the 3D dual spaces all the plane space representations are well applicable
in this context, although there are some theoretical differences between them.
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