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Abstract. We consider the question: “What is the smallest degree that
can be achieved for a plane spanner of a Euclidean graph E?” The best
known bound on the degree is 14. We show that E always contains a
plane spanner of maximum degree 6 and stretch factor 6. This spanner
can be constructed efficiently in linear time given the Triangular Distance
Delaunay triangulation introduced by Chew.

1 Introduction

In this paper we focus on the following question:

“What is the smallest maximum degree that can be achieved for plane
spanners of the complete, two-dimensional Euclidean graph E?”

This question happens to be Open Problem 14 in a very recent survey of plane
geometric spanners [BS]. It is an interesting, fundamental question that has
curiously not been studied much. (Unbounded degree) plane spanners have been
studied extensively: obtaining a tight bound on the stretch factor of the Delaunay
graph is one of the big open problems in the field. Dobkin et al. [ADDJ90]
were the first to prove that Delaunay graphs are (plane) spanners. The stretch
factor they obtained was subsequently improved by Keil & Gutwin [KG92] as
shown in Table 1. The plane spanner with the best known upper bound on the
stretch factor is not the Delaunay graph however, but the TD-Delaunay graph
introduced by Chew [Che89] whose stretch factor is 2 (see Table 1). We note
that the Delaunay and the TD-Delaunay graphs may have unbounded degree.

Just as (unbounded degree) plane spanners, bounded degree (but not nec-
essarily planar) spanners of E have been well studied and are, to some extent,
well understood: it is known that spanners of maximum degree 2 do not exist
in general and that spanners of maximum degree 3 can always be constructed
(Das & Heffernan [DH96]). In recent years, bounded degree plane spanners have
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Table 1. Results on plane spanners with maximum degree bounded by Δ

paper Δ stretch factor

Dobkin et al. [ADDJ90] ∞ π(1+
√

5)
2

≈ 5.08

Keil & Gutwin [KG92] ∞ C0 = 4π
√

3
9

≈ 2.42

Chew [Che89] ∞ 2

Bose et al. [BGS05] 27 (π + 1)C0 ≈ 10.016

Li & Wang [LW04] 23 (1 + π sin π
4
)C0 ≈ 7.79

Bose et al. [BSX09] 17 (2 + 2
√

3 + 3π
2

+ 2π sin( π
12

))C0 ≈ 28.54

Kanj & Perković [KP08] 14 (1 + 2π
14 cos( π

14 )
)C0 ≈ 3.53

This paper: Section 3 9 6

This paper: Section 4 6 6

been used as the building block of wireless network communication topologies.
Emerging wireless distributed system technologies such as wireless ad-hoc and
sensor networks are often modeled as proximity graphs in the Euclidean plane.
Spanners of proximity graphs represent topologies that can be used for efficient
unicasting, multicasting, and/or broadcasting. For these applications, spanners
are typically required to be planar and have bounded degree: the planarity re-
quirement is for efficient routing, while the bounded degree requirement is due
to the physical limitations of wireless devices.

Bose et al. [BGS05] were the first to show how to extract a spanning subgraph
of the Delaunay graph that is a bounded-degree, plane spanner of E . The maxi-
mum degree and stretch factor they obtained was subsequently improved by Li
& Wang [LW04], Bose et al. [BSX09], and by Kanj & Perković [KP08] (see all
bounds in Table 1). The approach used in all of these results was to extract a
bounded degree spanning subgraph of the classical Delaunay triangulation. The
main goal in this line of research was to obtain a bounded-degree plane spanner
of E with the smallest possible stretch factor.

In this paper we propose a new goal and a new approach. Our goal is to
obtain a plane spanner with the smallest possible maximum degree. We believe
this question is fundamental. The best known bound on the degree of a plane
spanner is 14 [KP08]. In some wireless network applications, such a bound is
too high. Bluetooth scatternets, for example, can be modeled as spanners of E
where master nodes must have at most 7 slave nodes [LSW04].

Our approach consists of two steps. We first extract a maximum degree 9 span-
ning subgraph H2 from Chew’s TD-Delaunay graph instead of the classical Delau-
nay graph. Graph H2 is a spanner of the TD-Delaunay graph of stretch factor 3,
and thus a spanner of E of stretch factor 6. With this fact, combined with a recent
result of [BGHI10], we derive en passant the following: Every Θ6-graph contains
a spanner of maximum degree 6 that has stretch factor 3. Secondly, by the use of
local modifications of H2, we show how to decrease the maximum degree from 9
to 6 without increasing the maximum stretch while preserving planarity.

Our approach leads to a significant improvement in the maximum degree of
the plane spanner, from 14 down to 6 (see Table 1). Just as the Delaunay graph,
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the TD-Delaunay graph of a set of n points in the plane can be computed in time
O(n log n) [Che89]. Given this graph, our final spanner H4 can be constructed
in O(n) time. We note that our analysis of the stretch factor of the spanner is
tight: we can place points in the plane so that the resulting degree 6 spanner
has stretch factor arbitrarily close to 6.

2 Preliminaries

Given points in the two-dimensional Euclidean plane, the complete Euclidean
graph E is the complete weighted graph embedded in the plane whose nodes are
identified with the points. In the following, given a graph G, V (G) and E(G)
stand for the set of nodes and edges of G. For every pair of nodes u and w,
we identify with edge uw the segment [uw] and associate an edge length equal
to the Euclidean distance |uw|. We say that a subgraph H of a graph G is a
t-spanner of G if for any pair of vertices u, v of G, the distance between u and
v in H is at most t times the distance between u and v in G; the constant t is
referred to as the stretch factor of H (with respect to G). We will say that H is
a spanner if it is a t-spanner of E for some constant t.

A cone C is the region in the plane between two rays that emanate from the
same point. Let us consider the rays obtained by a rotation of the positive x-
axis by angles of iπ/3 with i = 0, 1, . . . , 5. Each pair of successive rays defines a
cone whose apex is the origin. Let C6 = (C2, C1, C3, C2, C1, C3) be the sequence
of cones obtained, in counter-clockwise order, starting from the positive x-axis.
The cones C1, C2, C3 are said to be positive and the cones C1, C2, C3 are said to
be negative. We assume a cyclic structure on the labels so that i+1 and i−1 are
always defined. For a positive cone Ci, the clockwise next cone is the negative
cone Ci+1 and the counter-clockwise next cone is the negative cone Ci−1.

For each cone C ∈ C6, let �C be the bisector ray of C (in Figure 1, for example,
the bisector rays of the positive cones are shown). For each cone C and each point
u, we define Cu := {x + u : x ∈ C}, the translation of cone C from the origin to
point u. We set Cu

6 := {C + u : C ∈ C6}, the set of all six cones at u. Observe
that w ∈ Cu

i if and only if u ∈ C
w

i .
Let v be a point in a cone Cu. The projection distance from u to v, denoted

dP (u, v), is the Euclidean distance between u and the projection of v onto �Cu .

C1

C1

�C1

C3

�C3

C2
C3

�C2

C2

Fig. 1. Illustration of notations used for describing cones. Positive cones are white and
negative cones are grey. Bisector rays of the three positive cones are shown.
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For any two points v and w in Cu, v is closer to u than w if and only if dP (u, v) <
dP (u, w). We denote by parenti(u) the closest point from u belonging to cone Cu

i .
We say that a given set of points S are in general position if no two points of

S form a line parallel to one of the rays that define the cones of C6. For the sake
of simplicity, in the rest of the paper we only consider sets of points that are in
general position. This will imply that it is impossible that two points v and w
have equal projective distance from another point u. Note that, in any case, ties
can be broken arbitrarily when ordering points that have the same distance (for
instance, using a counter-clockwise ordering around u).

Our starting point is a geometric graph proposed in [BGHI10]. It represents
the first step of our construction.

Step 1. Every node u of E chooses parenti(u) in each non-empty cone Cu
i . We

denote by H1 the resulting subgraph.

While we consider H1 to be undirected, we will refer to an edge in H1 as outgoing
with respect to u when chosen by u and incoming with respect to v = parenti(u),
and we color it i if it belongs to Cu

i . Note that edge uv is in the negative cone
C

v

i of v.

Theorem 1 ([BGHI10]). The subgraph H1 of E:

– is a plane graph such that every face (except the outerface) is a triangle,
– is a 2-spanner of E, and
– has at most one (outgoing) edge in every positive cone of every node.

Note that the number of incoming edges at a particular node of H1 is not
bounded.

In our construction of the subsequent subgraph H2 of H1, for every node u
some neighbors of u will play an important role. Given i, let childreni(u) be
the set of points v such that u = parenti(v). Note that childreni(u) ⊆ C

u

i . In
childreni(u), three special points are named:

– closesti(u) is the closest point of childreni(u);
– firsti(u) is the first point of childreni(u) in counter-clockwise order starting

from x axis;
– lasti(u) is the last point of childreni(u) in counter-clockwise order starting

from x axis.

Note that some of these nodes can be undefined if the cone C
u

i is empty. Let
(u, v) be an edge such that v = parenti(u). A node w is i-relevant with respect

to (wrt) u if w ∈ C
v

i = C
parenti(u)

i , and either w = firsti−1(u) �= closesti−1(u),
or w = lasti+1(u) �= closesti+1(u). When node w is defined as firsti−1(u) or
lasti+1(u), we will omit specifying “with respect to u”. For instance, in Figure 2
(a), the vertices vl and vr are i-relevant with respect to w. In Figure 2 (b) the
vertex vr = lasti+1(w) is not i-relevant since it is not in C

u

i and vl = firsti−1(w)
is not i-relevant since it is also closesti−1(w).
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3 A Simple Planar 6-Spanner of Maximum Degree 9

In this section we describe the construction of H2, a plane 6-spanner of E of
maximum degree 9. The construction of H2 is very simple and can be easily
distributed:

Step 2. Let H2 be the graph obtained by choosing edges of H1 as follows: for
each node u and each negative cone C

u

i :

– add edge (u, closesti(u)) if closesti(u) exists,
– add edge (u, firsti(u)) if firsti(u) exists and is (i + 1)-relevant and
– add edge (u, lasti(u)) if lasti(u) exists and is (i − 1)-relevant.

Note that H2 is a subgraph of H1 that is easily seen to have maximum degree
no greater than 12 (there are at most 3 incident edges per negative cone and 1
incident edge per positive cone). Surprisingly, we shall prove that:

Theorem 2. The graph H2

– has maximum degree 9,
– is a 3-spanner of H1, and thus a 6-spanner of E.

The remainder of this section is devoted to proving this theorem.

The charge of a cone. In order to bound the degree of a node in H2, we devise
a counting scheme. Each edge incident to a node is charged to some cone of that
node as follows:

– each negative cone C
u

i is charged by the edge (u, closesti(u)) if closesti(u)
exists.

– each positive cone Cu
i is charged by (u, parenti(u)) if this edge is in H2,

by edge (u, firsti−1(u)) if firsti−1(u) is i-relevant, and by (u, lasti+1(u)) if
lasti+1(u) is i-relevant.

For instance, in Figure 2 (a), the cone Cw
i is charged to twice: once by vlw and

once by vrw; the cone C
w

i−1 is charged to once by its smallest edge. In (b), the
cone Cw

i is not charged to at all: vlw is the shortest edge in C
w

i−1. In (c) the
cone Cw

i is charged to once by vlw and once by the edge wu.
We will denote by charge(C) the charge to cone C. With the counting scheme in

place, we can prove the following lemma, which implies the first part of Theorem 2,
since the sum of charges to cones of a vertex is equal to its degree in H2.

Lemma 1. Each negative cone of every node has at most 1 edge charged to it
and each positive cone of every node has at most 2 edges charged to it.

Proof. Since a negative cone never has more than one edge charged to it, all we
need to do is to argue that no positive cone has 3 edges charged to it. Let Cw

i

be a positive cone at some node w.
Let u = parenti(w). If the edge (w, u) is not in H2 then clearly charge(Cw

i ) ≤
2. Otherwise, we consider three cases:



24 N. Bonichon et al.

C
w
i+1

vr

(a)

C
w
i−1 C

w
i+1

vl

Cw
i

C
u
i

u

w

(c)

vl

u

w

vr

(b)

vl

Cw
i

Cw
i

C
u
i C

u
i

C
w
i−1

C
w
i−1

C
w
i+1

u

w

Fig. 2. In all three cases, edge wu is in H1 but w �= closesti(u). Solid edges are edges
that are in H2. (a) The edges wvl and wvr are, respectively, the clockwise last in Cw

i−1

and clockwise first in Cw
i+1 and are i-relevant with respect to w. (b) The edge wvr is

not i-relevant because wvr is not in C
u
i . The edge wvl is in H2 but is not i-relevant

because it is the shortest edge in C
w
i−1. (c) Edge wvl is i-relevant. Note that edge wu

is in H2 because it is (i − 1)-relevant with respect to u.

Case 1: w = closesti(u). Any point of R = C
u

i ∩{C
w

i−1∪C
w

i+1} is closer to u than
w. Since w is the closest neighbor of u in C

u

i the region R is empty. Hence the
nodes firsti−1(w) and lasti+1(w) are not i-relevant. Hence charge(Cw

i ) = 1.
Case 2: w = lasti(u) and w is (i − 1)-relevant (with respect to u, see Fig-

ure 2 (c)). In this case, w, u and parenti−1(w) = parenti−1(u) form an
empty triangle in H1. Therefore, C

u

i ∩ C
w

i+1 is empty. Hence lasti+1(w) is
not i-relevant. Hence charge(Cw

i ) ≤ 2.
Case 3: w = firsti(u) and w is (i + 1)-relevant. Using an argument symmetric

to the one in Case 2, C
u

i ∩C
w

i−1 is empty. Hence firsti−1(w) is not i-relevant.
Hence charge(Cw

i ) ≤ 2. �	
The above proof gives additional structural information that we will use in the
next section:

Corollary 1. Let u = parenti(w). If charge(Cw
i ) = 2 then either:

1. (w, u) is not in H2, and firsti−1(w) and lasti+1(w) are i-relevant (and are
therefore neighbors of w in H2), or

2. w = lasti(u) is (i− 1)-relevant and firsti−1(w) is i-relevant (and thus (w, u)
and (firsti−1(w), w) are in H2), or

3. w = firsti(u) is (i + 1)-relevant and lasti+1(w) is i-relevant (and thus (w, u)
and (lasti+1(w), w) are in H2).

In case 1 above, note that nodes firsti−1(w), w, and lasti+1(w) are both in C
u

i

and that u is closer from both firsti−1(w) and lasti+1(w) than from w. When
the case 1 condition holds, we say that w is i-distant.

In order to prove that H2 is a 3-spanner of H1, we need to show that for
every edge wu in H1 but not in H2 there is a path from u to w in H2 whose
length is at most 3|uw|. Let wu be an incoming edge of H1 with respect to u.
Since wu �∈ H2, the shortest incoming edge of H1 in the cone C of u containing
wu must be in H2: we call it vu. Without loss of generality, we assume vu is
clockwise from wu with respect to u.
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r

u

v1
v2

v3

w

v0

m0
m1

m2 m4m3

l

w′

w′′

Fig. 3. Canonical path

We consider all the edges of H1 incident to u that are contained in the cone
C

u

i and lying in-between vu and wu, and we denote them, in counter-clockwise
order, vu = v0u, v1u, ..., vku = wu. Because H1 is a triangulation, the path
v0v1, v1v2, ..., vk−1vk is in H1. We call this path the canonical path with respect
to u and w (see Figure 3). Note that the order – u first, w second – matters.

Lemma 2. Let (w, u = parenti(w)) be an edge of H1 and v = closesti(u). If
w �= v then:

1. H2 contains the edge vu and the canonical path with respect to u and w
2. |uv| + ∑k

i=1 |vi−1vi| ≤ 3|uw|.

The second part of Theorem 2 follows because Lemma 2 shows that for every wu
in H1 but not in H2, if wu is incoming with respect to u then the path consisting
of uv and the canonical path with respect to u and w will exist in H2 and the
length of this path is at most 3|uw|.

Proof (of Lemma 2). Let e = (vj , vj+1) be an edge of the canonical path with
respect to u and w. First assume that e is incoming at vj . Observe that vj+1

is the neighbor of vj that is just before u in the counter-clockwise ordering of
neighbors around vj in the triangulation H1. Hence vj+1 = lasti+1(vj). Since
vj+1 is in C

u

i , vj+1 is i-relevant (with respect to vj) or vj+1 = closesti+1(vj).
In both cases, e is in H2. Now assume that the edge e is incoming at vj+1. We
similarly prove that vj = firsti−1(vj+1) and that vj is i-relevant (with respect
to vj+1) or vj = closesti−1(vj+1). In both cases, e is in H2. This proves the first
part of the lemma.

In order to prove the second part of Lemma 2, we denote by Cvi

i the cone
containing u of canonical path node vi, for i = 0, 1, ..., k. We denote by ri and
li the rays defining the clockwise and counter-clockwise boundaries of cone Cvi

i .
Let r and l be the rays defining the clockwise and counter-clockwise boundaries
of cone C

u

i . We define the point mo as the intersection of half-lines r and l0,
points mi as the intersections of half-lines ri−1 and li for every 1 ≤ i ≤ k. Let
w′ be the intersection of the half-line r and the line orthogonal to �C (C = Cw

i )
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passing through w, and let w′′ be the intersection of half-lines lk and r (see
Figure 3).

We note that |uv| = |uv0| ≤ |um0| + |m0v0|, and

|vi−1vi| ≤ |vi−1mi| + |mivi|
for every 1 ≤ i ≤ k. Also |uv0| ≥ |um0|. Then

|uv0| +
k∑

i=1

|vi−1vi| ≤ |um0| +
k∑

i=0

|mivi| +
k−1∑

i=0

|vimi+1|

≤ |um0| + |ww′′| + |w′′m0|
≤ |uw′| + |ww′| + |w′′w′|
≤ |uw′| + 2|ww′|

Observe that |uw|=√
(|uw′| cosπ/6)2 + (|ww′| − |uw′|/2)2. Let α= |ww′|/|uw′|;

note that 0 ≤ α ≤ 1. Then

|uw′| + 2|ww′|
|uw| ≤ (1 + 2α)|uw′|

√
(|uw′| cosπ/6)2 + ((α − 1/2)|uw′|)2

≤ 1 + 2α√
1 − α + α2

≤ max
α∈[0..1]

{
1 + 2α√

1 − α + α2

}

≤ 3

�	

4 A Planar 6-Spanner of Maximum Degree 6

We now carefully delete edges from and add other edges to H2, in order to
decrease the maximum degree of the graph to 6 while maintaining the stretch
factor. We do that by attempting to decrease the number of edges charged to
a positive cone down to 1. We will not be able to do so for some cones. We
will show that we can amortize the positive charge of 2 for such cones over a
neighboring negative cone with charge 0. By Corollary 1, we only need to take
care of two cases (the third case is symmetric to the second).

Before presenting our final construction, we start with a structural property
of some positive cones in H3 with a charge of 2. Recall that a node is i-distant if
it has two i-relevant neighbors in H2 (this corresponds to case 1 of Corollary 1).
For instance, in Figure 3, the node v2 is i-distant.

Lemma 3 (Forbidden charge sequence). If, in H2, charge(Cw
i ) = 2 and w

is not a i-distant node:
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– either firsti−1(w) is i-relevant, charge(Cw
i−1) ≤ 1 and charge(C

w

i+1) = 0 or
– lasti+1(w) is i-relevant, charge(Cw

i+1) ≤ 1 and charge(C
w

i−1) = 0.

Proof. By Corollary 1, if w is not an i-distant node, either firsti−1(w) or lasti+1(w)
is i-relevant. We assume the second case, and the first will follow by symmetry.

We first prove the existence of a cone of charge 0. If u = parenti(w), then by
Corollary 1, w = lasti(u) and w is (i−1)-relevant (with respect to u). This means
that nodes w, u, and v = parenti−1(u) = parenti−1(w) form an empty triangle in
H1 and therefore there is no edge that ends up in C

w

i+1. Hence charge(C
w

i+1) = 0.
Let us prove now by contradiction that charge(Cw

i−1) ≤ 1. Assume that
charge(Cw

i−1) = 2. By Corollary 1 there can be three cases. We have just shown
that there are no edges in C

w

i+1, so there cannot be a node firsti+1(w) and the
first two cases cannot apply. Case 3 of Corollary 1 implies that w = firsti−1(v)
which is not possible because edge (u, v) is before (w, u) in the counter-clockwise
ordering of edges in Ci−1(v). �	
Step 3. We construct H3 from H2 as follows: for every integer 1 ≤ i ≤ 3 and
for every i-distant node w:

– add the edge (firsti−1(w), lasti+1(w)) to H3;
– let w′ be the node among {firsti−1(w), lasti+1(w)} which is greater in the

canonical path order. Remove the edge (w, w′) from H3.

New charge assignments. Since a new edge e is added between nodes firsti−1(w)

and lasti+1(w) in Step 3, we assign the charge of e to C
firsti−1(w)

i+1 and to

C
lasti+1(w)

i−1 . For the sake of convenience, we denote by ˜charge(C) the total charge,
after Step 3, of cone C in H3 and the next graph we will construct, H4. The
following lemma shows that the application of Step 3 does not create a cone of
charge 2 and decreases the charge of cone Cw

i of i-distant node w from 2 to 1.

Lemma 4 (Distant nodes). If w is an i-distant node then:

– ˜charge(Cw
i ) = charge(Cw

i ) − 1 = 1;

– ˜charge(C
firsti−1(w)

i+1 ) = charge(C
lasti+1(w)

i−1 ) = 1.

v
u1

u5

u2

u3

H1

u4

H2

u1

u5

u2

u3

u4

u1

u5

u2

u3

u4

H3

v v v
u1

u5

u2

u3

u4

H4

Fig. 4. From H1 (plain arrows are the closest edges) to H4. Light blue and pink positive
cones have a charge equal to 2. The node v is i-distant and the node u4 is i+1-distant.
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w
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C
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C
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Fig. 5. (a) Step 3 applied on the configuration of Figure 2 (a): the edge wvr is removed
because the canonical path of w with respect to u doesn’t use it. The edge is then
replaced by the edge vrvl. (b) Step 4 applied on the configuration of Figure 2 (c): the
edge wvl is removed. (c) the edge vlw is the shortest in Cw

i−1; the cone Cw
i is thus

charged to only once, by wu, and the edge vlw is not removed during step 4.

Step 4. We construct H4 from H3 as follows: for every integer 1 ≤ i ≤ 3 and for
every node w such that ˜charge(Cw

i ) = 2 and ˜charge(C
w

i−1) = ˜charge(C
w

i+1) = 1,
if w = lasti(parenti(w)) then remove the edge (w, firsti−1(w)) from H3 and
otherwise remove (w, lasti+1(w)).

Lemma 5. There is a 1-1 mapping between each positive cone Cw
i that has

charge 2 after step 4 and a negative cone at w that has charge 0.

Proof. Corollary 1 gives the properties of two types of cones with charge 2 in
H2. If cone Cw

i is one in which w is an i-distant node in H2, then Cw
i will have a

charge of 1 after Step 3, by Lemma 4. If w is not i-distant, there can be two cases
according to Lemma 3. We assume the first (the second follows by symmetry);
so we assume that C

w

i+1 has charge 0 in H2. If that charge is increased to 1 in
step 3, then step 4 will decrease the charge of Cw

i down to 1. So, if Cw
i still has

a charge of 2 after step 4, then C
w

i+1 will still has charge 0 and we map Cw
i to

this adjacent negative cone. The only positive cone that could possibly map to
C

w

i+1 would be the other positive cone adjacent to C
w

i+1, Cw
i−1, but that cone has

charge at most 1 by Lemma 3. �	
Theorem 3. H4 is a plane 6-spanner of E of maximum degree 6.

Proof. By Corollary 1, Lemma 4, and Lemma 5, it is clear that H4 has maximum
degree 6.

Let us show H4 is a 6-spanner of E . By Lemma 2, for every edge wu in H1 but
not in H2, the canonical path with respect to u and w in H2 has total length at
most 3|wu|. We argue that the removal, in step 3, of edges on the canonical path
from u is compensated by the addition of other edges in step 3. Observe first
that while some edges of the canonical path may have been removed from H2

in step 3, in every case a shortcut has been added. Some edges have also been
removed in step 4. The removed edge is always the last edge on the canonical
path from u to w, where uw is the first or last edge, in counterclockwise order,
in some negative cone at u and uw ∈ H2. This means that the canonical path
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edge is only needed to reach w from u, and no other nodes. Therefore it can be
removed since wu ∈ H2. In summary, no “intermediate” canonical path edge is
dropped without a shortcut, and “final” canonical path edges will be dropped
only when no longer needed. Therefore any canonical path (of length at most
3|wu|) in H2 is replaced by a new path (with shortcuts) of length at most 3|wu|.
By Lemma 2, the above argument can also be directly applied for every edge
xy ∈ H2 removed in H3.

It remains to show that H4 is planar. More precisely we have to show that
edges introduced during step 3 do not create crossings in H3. Let vlvr be an edge
created during step 3. Observe that in H1 there are two adjacent triangular faces
f1 = uvlw and f2 = uwvr. Since the edge wvl is in Cw

i−1 and vr is in Cw
i+1 the

angle vluvr is less than π. Hence the edge vlvr is inside the two faces f1 and f2.
The only edge of H1 that crosses the edge vlvr is the edge wu. Since the edge wu
is not present in H4 there is no crossing between an edge of H1∩H3 and an edge
added during step 3. What now remains to be done is to show that two edges
added during step 3 cannot cross each other. Let v′lv

′
r be an edge created during

step 3 and let f ′
1 = u′v′lw

′ and f ′
2 = u′w′v′r the two faces of H1 containing this

edge. If the edges vlvr and v′lv
′
r cross each other, then they are supported by at

least one common face of H1, i.e. {f1, f2}∩ {f ′
1, f

′
2} �= ∅. Observe that the edges

vlu, wu and vru are colored i, the edge wvl is colored i − 1 and the edge wvr is
colored i+1. Similarly the edges v′lu

′, w′u′ and v′ru
′ are colored i′, the edge w′v′l

is colored i′ − 1 and the edge w′v′r is colored i′ + 1. Each face f1, f2, f
′
1 and f ′

2

has two edges of the same color, hence i = i′. Because of the color of the third
edge of each face, this implies that f1 = f ′

1 and f2 = f ′
2, and so vlvr = v′lv

′
r. This

shows that H4 has no crossing. �	

5 Conclusion

Our construction can be used to obtain a spanner of the unit-hexagonal graph,
a generalization of the complete Euclidean graph. More precisely, every unit-
hexagonal graph G has a spanner of maximum degree 6 and stretch factor 6.
This can be done by observing that, in our construction, the canonical path
associated with each edge e ∈ G \ H2 is composed of edges of “length” at most
the “length” of e, where the “length” of e is the hexagonal-distance1 between its
end-points.
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