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Plane strain deformation of an orthotropic elastic medium
using an eigenvalue approach
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The analytic expressions for the displacements and stresses at any point of an infinite orthotropic elastic medium
as a result of an inclined line load have been obtained. This plane strain problem has been solved by using eigenvalue
approach and the use of matrix notation avoids unwieldy mathematical expressions. The technique developed
in the present paper is simple, straightforward and convenient for numerical computation. The variations of the
displacements and stresses with the horizontal distance have been shown graphically.

1. Introduction
The slightest departure from isotropy is transversely

isotropy in which there is one axis of symmetry and there are
five elastic constants instead of two in an isotropic material.
Crystals of close-packed hexagonal form belong to the class
of such materials. A medium with three mutually orthogo-
nal planes of symmetry is known as orthorhombic. When
one of the plane of symmetry in an orthorhombic symmetry
is horizontal, the symmetry is termed as orthotropic symme-
try (Crampin, 1989). The orthotropy symmetry is exhibited
by olivine and orthopyroxenes, the principal rock-forming
minerals of deep crust and upper mantle. Dziewonski and
Anderson (1981) have established that the upper part of the
earth is anisotropic.

When the source surface is very long in one direction in
comparison with the others, the use of two-dimensional ap-
proximation is justified and consequently calculations are
simplified to a great extent and one gets a closed form analyt-
ical solution. A very long strip-source and a very long line-
source are examples of such two-dimensional sources. Love
(1944) obtained expressions for the displacements due to a
line source in an isotropic elastic medium. Maruyama (1966)
obtained the displacement and stress fields corresponding to
long strike-slip faults in a homogeneous isotropic half-space.
Okada (1985, 1992) provided a compact analytic expressions
for the surface deformation and internal deformation due to
inclined shear and tensile faults in a homogeneous isotropic
half space.

Using the body-force equivalent of dislocation source as
discussed by Burridge and Knopoff (1964) and Aki and
Richards (1980), Pan (1989) obtained the response of a
transversely isotropic layered medium to general dislocation
sources. Garg et al. (1996) obtained the representation of
seismic sources causing antiplane strain deformation of an
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orthotropic medium. Kumar et al. (2000) used eigenvalue
approach to solve the plane strain problem of poroelasticity
for an isotropic medium. The corresponding problem for a
transversely isotropic medium has been discussed by Kumar
et al. (2002).

Considering the earth model as orthotropic instead of
isotropic for better approximation, in the present paper, we
study the general plane-strain problem of an infinite or-
thotropic elastic-medium due to two-dimensional sources.
The eigenvalue approach has been used to solve it. We
have obtained the closed-form expressions for the two-
dimensional displacements and stresses at any point of an
infinite orthotropic medium due to an inclined line load. The
deformation due to other two-dimensional sources such as
strip loads, continuous line loads, etc., can also be similarly
obtained. The deformation at any point of the medium is use-
ful to analyse the deformation field around mining tremors
and drilling into the crust of the earth. It can also contribute
to the theoretical consideration of the seismic and volcanic
sources since it can account for the deformation fields in the
entire volume surrounding the source region. It may also
find application in various engineering problems regarding
the deformation of an orthotropic medium. One may also
find the deformation due to seismic sources by differentia-
tion and addition.

2. Basic Equations
The equilibrium equations in the Cartesian co-ordinate

system (x1, x2, x3) for zero body forces are

∂τ11

∂x1
+ ∂τ12

∂x2
+ ∂τ13

∂x3
= 0, (1)

∂τ21

∂x1
+ ∂τ22

∂x2
+ ∂τ23

∂x3
= 0, (2)

∂τ31

∂x1
+ ∂τ32

∂x2
+ ∂τ33

∂x3
= 0, (3)

where τi j (i, j = 1, 2, 3) are the components of stress tensor.
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The stress-strain relations for an orthotropic elastic
medium, with co-ordinate planes as planes, of elastic sym-
metry, are (Mase and Mase, 1999)

τ11 = d11e11 + d12e22 + d13e33, (4a)

τ22 = d12e11 + d22e22 + d23e33, (4b)

τ33 = d13e11 + d23e22 + d33e33, (4c)

τ23 = 2d44e23, (4d)

τ13 = 2d55e13, (4e)

τ12 = 2d66e12, (4f)

where ei j (i, j = 1, 2, 3) are the components of the
strain tensor and are related with displacement components
(u1, u2, u3) through the relations

ei j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, 1 ≤ i, j ≤ 3. (5)

The two-suffix quantity di j (i, j = 1, 2, . . . , 6) are the elas-
tic moduli for the orthotropic elastic medium.

For convenience, we shall write (x1, x2, x3) = (x, y, z)
and (u1, u2, u3) = (u, v, w).

The equilibrium equations in terms of displacement com-
ponents can be obtained from Eqs. (1)–(5). We find

d11
∂2u

∂x2
+ d66

∂2u

∂y2
+ d55

∂2u

∂z2
+ (d12 + d66)

∂2v

∂x∂y

+ (d13 + d55)
∂2w

∂x∂z
= 0, (6)

(d66 + d12)
∂2u

∂x∂y
+ d66

∂2v

∂x2
+ d22

∂2v

∂y2
+ d44

∂2v

∂z2

+ (d23 + d44)
∂2w

∂z∂y
= 0, (7)

(d55 + d13)
∂2u

∂x∂z
+ (d44 + d23)

∂2v

∂z∂y
+ d55

∂2w

∂x2

+ d44
∂2w

∂y2
+ d33

∂2w

∂z2
= 0. (8)

3. Formulation of the Problem
We consider an infinite orthotropic elastic medium with

x-axis vertically downwards. Suppose that an inclined line
load F0, per unit length, is acting on the z-axis and its
inclination with x-direction is δ (Fig. 1). This is a two-
dimensional plane strain problem. We shall calculate the
resulting stresses and displacements at any point of an or-
thotropic infinite elastic medium.

4. Theory
We consider plane strain deformation, parallel to xy-

plane, in which the displacement components are indepen-
dent of z and are of the type

u = u(x, y), v = v(x, y), w ≡ 0. (9)

The non-zero stresses for the plane strain problem are

τ11 = d11
∂u

∂x
+ d12

∂v

∂y
, (10)

F0

x = 0 y
O

x

δ

Fig. 1. z = 0 section of the infinite orthotropic medium.

τ22 = d12
∂u

∂x
+ d22

∂v

∂y
, (11)

τ33 = d13
∂u

∂x
+ d23

∂v

∂y
, (12)

τ12 = d66

(
∂u

∂y
+ ∂v

∂x

)
. (13)

The equilibrium equations for an orthotropic elastic medium
due to plane strain deformation are to be found from Eqs.
(6)–(9). We find

d11
∂2u

∂x2
+ d66

∂2u

∂y2
+ (d66 + d12)

∂2v

∂x∂y
= 0, (14)

(d66 + d12)
∂2u

∂x∂y
+ d66

∂2v

∂x2
+ d22

∂2v

∂y2
= 0, (15)

and equilibrium equation (8) becomes an identity.
We define Fourier transform f̄ (x, k) of f (x, y) by the

relation (Debnath, 1995)

f̄ (x, k) = F[ f (x, y)] =
∫ ∞

−∞
f (x, y)eikydy, (16)

so that

f (x, y) = 1

2π

∫ ∞

−∞
f̄ (x, k)e−ikydk, (17)

where k is the transformed Fourier parameter. We know that

F

(
∂

∂y
f (x, y)

)
= (−ik) f̄ (x, k), (18)

and

F

(
∂2

∂y2
f (x, y)

)
= −k2 f̄ (x, k). (19)

Applying the Fourier transformation on equilibrium equa-
tions (14) and (15) for an orthotropic elastic medium, we
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find

d11
d2ū

dx2
− k2d66ū + (d66 + d12)(−ik)

d v̄

dx
= 0, (20)

(d66 + d12)(−ik)
dū

dx
+ d66

d2v̄

dx2
+ d22(−k2v̄) = 0. (21)

The above two equations can be written in the following
vector-matrix differential equation

A
d2W

dx2
− ik B

dW

dx
− k2CW = 0, (22)

where

A =
(

d11 0

0 d66

)
, B =

(
0 d66 + d12

d66 + d12 0

)
,

C =
(

d66 0

0 d22

)
, W =

(
ū

v̄

)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (23)

We note that matrices A, B, C are all symmetric. Now we
try a solution of the matrix equation (22) of the form

W (x, k) = E(k)emx , (24)

where m is a parameter and E(k) is a matrix of the type 2×1.
Substitution of the value of W from Eq. (24) into Eq. (22)

gives the following characteristic equation.

(d11d66)m
4 − (d11d22 − 2d66d12 − d2

12)k
2m2

+ (d66d22)k
4 = 0. (25)

A transversely isotropy, with z-axis coinciding with the axis
of symmetry, is a particular case of orthotropy in which
(Payton, 1983)

d22 = d11, d23 = d13,

d55 = d44, d66 = 1/2(d11 − d12).
(26)

The characteristic equation (25) for a transversely isotropic
medium becomes

m4 − 2k2m2 + k4 = 0, (27)

provided d11 �= 0 and d11 �= d12. We observe that the char-
acteristic equation (27) for a transversely isotropic medium
is independent of its elastic moduli.

When the medium is isotropic (Payton, 1983), then

d11 = d22 = d33 = λ + 2μ, d12 = d13 = d23 = λ,

d44 = d55 = d66 = μ. (28)

where λ and μ are the Lamé elastic moduli. The characteris-
tic equation (25) for an isotropic elastic medium becomes

m4 − 2k2m2 + k4 = 0, (29)

which is independent of λ and μ. From above, we notice
that the characteristic equation is the same for both types of
elastic symmetries—transversely and isotropic.

The solution of characteristic equation (25) gives the
eigenvalues, in case of an orthotropic elastic medium, as

m2 = α2
1k2, α2

2k2, (30)

where

α2
1 =

A0 +
√

A2
0 − 4B0

2
, α2

2 =
A0 −

√
A2

0 − 4B0

2
, (31)

A0 = d11d22 − 2d66d12 − d2
12

d11d66
, B0 = d22/d11. (32)

We note that α1 and α2 for an orthotropic elastic medium
depends upon elastic moduli only (and not on k) and they
may be real or complex. We assume that α1 �= α2 for an
orthotropic medium. Then, the eigenvalues may be written
as

m1 = α1|k|, m2 = α2|k|,
m3 = −α1|k|, m4 = −α2|k|, (33)

with real parts of {α1, α2} as positive.
The eigenvalues for the orthotropic elastic medium are

obtained by solving the matrix equation

[m2 A − imk B − k2C]E(k) = 0, (34)

in which the matrices A, B, C are given by Eq. (23). The
eigenvectors are found to be

E T
N = [PN , 1], ET

N+2 = [−PN , 1], (35)

where

PN = i
αN (d66 + d12)

α2
N d11 − d66

= −i
α2

N d66 − d22

αN (d66 + d12)
for N = 1, 2. (36)

For a transversely isotropic medium as well as for a perfectly
isotropic elastic medium, we find that

αN = 1, PN = i for N = 1, 2. (37)

Thus, a solution of matrix equation (22) for the case of an
orthotropic elastic medium is

W (x, k) =
2∑

N=1

(BN ET
N eαN |k|x + BN+2 ET

N+2e−αN |k|x ). (38)

Where B1, B2, B3, B4 are constants to be determined from
boundary conditions and they may depend upon k. From
Eqs. (23), (35) and (38), we write

ū(x, k) = B1 P1eα1|k|x + B2 P2eα2|k|x − B3 P1e−α1|k|x

− B4 P2e−α2|k|x , (39)

v̄(x, k) = B1eα1|k|x + B2eα2|k|x + B3e−α1|k|x

+ B4e−α2|k|x . (40)

Inversion of Eqs. (39) and (40) yield the displacements in the
following integral forms

u(x, y) = 1

2π

∫ ∞

−∞
(B1 P1eα1|k|x + B2 P2eα2|k|x

− B3 P1e−α1|k|x − B4 P2e−α2|k|x )e−ikydk, (41)

v(x, y) = 1

2π

∫ ∞

−∞
(B1eα1|k|x + B2eα2|k|x

+ B3e−α1|k|x + B4e−α2|k|x )e−ikydk, (42)
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The stress components in integral forms for an orthotropic
elastic medium due to plane strain deformation are obtained
from Eqs. (14), (41) and (42). We find

τ11 = 1

2π

∫ ∞

−∞
(Q1 B1eα1|k|x + Q2 B2eα2|k|x

+ Q1 B3e−α1|k|x + Q2 B4e−α2|k|x )e−ikydk, (43)

τ12 = 1

2π

∫ ∞

−∞
d66(R1 B1eα1|k|x + R2 B2eα2|k|x

− R1 B3e−α1|k|x − R2 B4e−α2|k|x )e−ikydk, (44)

where

QN = d11 PN αN |k| − id12k,

RN = αN |k| − i PN k, N = 1, 2. (45)

5. Solution of the Problem
To find the displacements and stresses at any point of an

orthotropic infinite elastic medium due to an inclined line
load F0, per unit length, acting on the z-axis, we consider
the infinite medium as consisting of Medium I (x > 0) and
Medium II (x < 0) of identical elastic properties.

The displacement and stress components for the Medium
I are

uI(x, y) = 1

2π

∫ ∞

−∞
(−B3 P1e−α1|k|x

− B4 P2e−α2|k|x )e−ikydk, (46)

vI(x, y) = 1

2π

∫ ∞

−∞
(B3e−α1|k|x + B4e−α2|k|x )e−ikydk,

(47)

τ I
11(x, y) = 1

2π

∫ ∞

−∞
(Q1 B3e−α1|k|x

+ Q2 B4e−α2|k|x )e−ikydk, (48)

τ I
12(x, y) = 1

2π

∫ ∞

−∞
d66(−R1 B3e−α1|k|x

− R2 B4e−α2|k|x )e−ikydk, (49)

and the displacement and stress components for the Medium
II are

uII(x, y) = 1

2π

∫ ∞

−∞
(B1 P1eα1|k|x

+ B2 P2eα2|k|x )e−ikydk, (50)

vII(x, y) = 1

2π

∫ ∞

−∞
(B1eα1|k|x + B2eα2|k|x )e−ikydk, (51)

τ II
11(x, y) = 1

2π

∫ ∞

−∞
(Q1 B1eα1|k|x

+ Q2 B2eα2|k|x )e−ikydk, (52)

τ II
12(x, y) = 1

2π

∫ ∞

−∞
d66(R1 B1eα1|k|x

+ R2 B2eα2|k|x )e−ikydk. (53)

5.1 Normal line load
Consider a normal line load F1, per unit length, acting in

the positive x-direction on the interface x = 0 along the z-

y
O

   x

Medium-I
(x > 0)

F1

Medium-II
(x < 0)

Fig. 2. A normal line load.

axis (Fig. 2). Then the boundary conditions at x = 0 are

uI(x, y) − uII(x, y) = 0, vI(x, y) − vII(x, y) = 0, (54)

τ I
11(x, y) − τ II

11(x, y) = −F1δ(y),

τ I
12(x, y) − τ II

12(x, y) = 0,
(55)

where δ(y) is the Dirac delta function satisfying the follow-
ing properties

∫ ∞

−∞
δ(y)dy = 1, δ(y) = 1

2π

∫ ∞

−∞
e−ikydk. (56)

From Eqs. (46) to (56), we find the values of coefficients for
a normal line load as below.

B4 = −B3 = −B2 = B1 = −F1

2(Q2 − Q1)
, (57)

where

Q2 − Q1 = d11(P2α2 − P1α1)|k|. (58)

Substituting the values of various constants Bi ’s from Eqs.
(57) and (58) into Eqs. (46) to (53) and using the standard
integrals (see, Appendix), we find the following closed-form
expressions for the displacements and stresses at any point of
an orthotropic infinite elastic medium as a result of a normal
line load.

uN (x, y) = F1

4πd11(P2α2 − P1α1)

× (P1 log(y2 + α2
1 x2) − P2 log(y2 + α2

2 x2)), (59)

vN (x, y) = ∓ F1

4πd11(P2α2 − P1α1)

× (log(y2 + α2
1 x2) − log(y2 + α2

2 x2)), (60)

τ N
11(x, y) = x F1

2π(P2α2 − P1α1)

×
(

y2(P1α
2
1 − P2α

2
2) + α2

1α
2
2 x2(P1 − P2)

(y2 + α2
1 x2)(y2 + α2

2 x2)

)
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± d12(α
2
1 − α2

2)x2 yF1

2πd11(P2α2 − P1α1)(y2 + α2
1 x2)(y2 + α2

2 x2)
(61)

τ N
12(x, y) = yd66 F1

2πd11(P2α2 − P1α1)

×
(

y2(P1 − P2) ∓ xy(α2
1 − α2

2) + x2(P1α
2
2 − P2α

2
1)

(y2 + α2
1 x2)(y2 + α2

2 x2)

)
,

(62)

where the upper sign is for Medium I and the lower sign for
Medium II and superscript (N ) indicates the deformation due
to a normal line load F1.
5.2 Tangential line load

Assume that a line force F2, per unit length, is acting at the
origin in the positive y-direction (Fig. 3). Then, the boundary
conditions at the horizontal plane x = 0 are

uI(x, y) − uII(x, y) = 0, vI(x, y) − vII(x, y) = 0, (63)

τ I
11(x, y) − τ II

11(x, y) = 0,

τ I
12(x, y) − τ II

12(x, y) = −F2δ(y),
(64)

where δ(y) is the Dirac delta function. From Eqs. (46) to
(53) and using the boundary conditions given in Eqs. (63)
and (64), we find the following values of the coefficients Bi

for a tangential line load.

B1 = B3 = F2 P2

2d66(P2 R1 − P1 R2)
, (65)

B2 = B4 = −F2 P1

2d66(P2 R1 − P1 R2)
, (66)

where

P2 R1 − P1 R2 = (P2α1 − P1α2)|k|. (67)

Substituting the values of various constants Bi ’s from Eqs.
(65) to (67) into Eqs. (46) to (53) and then using the standard
integrals (see, Appendix), we find the following closed-form
expressions for the displacements and stresses at any point of
an orthotropic infinite elastic medium as a result of tangential
line load, F2.

uT (x, y) = ± F2 P1 P2

4πd66(P2α1 − P1α2)

× [log(y2 + α2
1 x2) − log(y2 + α2

2 x2)], (68)

O

x

F2 Medium lI

Medium I
y

Fig. 3. A tangential line load.

vT (x, y) = −F2

4πd66(P2α1 − P1α2)

× [P2 log(y2 + α2
1 x2) − P1 log(y2 + α2

2 x2)], (69)

τ T
11(x, y) = d12 yF2

2πd66(P2α1 − P1α2)

×
(

y2(P1 − P2) + x2(P1α
2
1 − P2α

2
2)

(y2 + α2
1 x2)(y2 + α2

2 x2)

)

± d11 P1 P2(α
2
1 − α2

2)xy2 F2

2πd66(P2α1 − P1α2)(y2 + α2
1 x2)(y2 + α2

2 x2)
(70)

τ T
12(x, y) = x F2

2π(P2α1 − P1α2)

×
(

α2
1α

2
2 x2(P1 − P2) + y2(P1α

2
2 − P2α

2
1)

(y2 + α2
1 x2)(y2 + α2

2 x2)

)

+ P1 P2(α
2
1 − α2

2)x2 yF2

(y2 + α2
1 x2)(y2 + α2

2 x2)
(71)

where the upper sign is for Medium I and the lower sign for
Medium II and (T ) indicate results due to a tangential line
load.
5.3 Inclined line load

For an inclined line load F0, per unit length, we have (see,
Fig. 1) (Saada, 1974)

F1 = F0 cos δ, F2 = F0 sin δ. (72)

The stresses and displacements subjected to inclined load
can be obtained by superposition of the vertical and tangen-
tial cases. The final deformation of the formulated problem
is given by

u(I N )(x, y) = u(N )(x, y) + u(T )(x, y), (73)

v(I N )(x, y) = v(N )(x, y) + v(T )(x, y), (74)

τ
(I N )

12 (x, y) = τ
(N )

12 (x, y) + τ
(T )

12 (x, y), (75)

τ
(I N )

11 (x, y) = τ
(N )

11 (x, y) + τ
(T )

11 (x, y), (76)

where deformations due to a normal line load F1 and a tan-
gential line load F2 are obtained earlier. The superscript
(I N ) indicates results due to an inclined line load F0.

6. Numerical Results
In Eqs. (73) to (76) we have obtained the closed form

expressions for the displacement and stress components at
any point of an infinite orthotropic elastic medium as a result
of an inclined line load F0, per unit length, acting on the z-
axis with its inclination δ with the x-direction. For numerical
computation, we use the values of elastic constants given by
Love (1944) for Topaz material, which are

d11 = 2870, d22 = 3560, d33 = 3000,

d12 = 1280, d23 = 900, d13 = 860,

d44 = 1100, d55 = 1350, d66 = 1330,

in terms of a unit stress of 106 grammes wt./cm2.
We have plotted graphs in Figs. 4–7 for the variation of

displacements and stresses against the horizontal distance y
for a fixed value of x = 1.0. Each figure has four curves
corresponding to four different values of δ, namely, δ = 0◦,
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Fig. 4. Variation of tangential displacement (v) against the horizontal
distance (y) on the plane x = 1.0.

Fig. 5. Variation of normal displacement (u) against the horizontal distance
(y) on the plane x = 1.0.

45◦, 60◦ and 90◦. The case δ = 0◦ corresponds to a normal
line load and δ = 90◦ for a tangential line load.

Figures 4–5 exhibit the graphs for the variation of tangen-
tial displacement (V ) and the variation of normal displace-
ment (U ), respectively. These figures show that the displace-
ments for δ = 45◦, 60◦ lie between the corresponding dis-
placements for a normal line load and tangential line load.

Figures 6–7 correspond to the variation of tangential and
normal stresses. In Fig. 6, the curves for different values of
δ change steadily. Figure 7 points frequent inter-crossing of
various curves for different values of δ.

Fig. 6. Variation of tangential stress (t12) against the horizontal distance
(y) on the plane x = 1.0.

Fig. 7. Variation of normal stress (t11) against the horizontal distance (y)

on the plane x = 1.0.
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Appendix A. (ξ > 0)

∫ ∞

−∞
exp(−|k|ξ) exp(−iky)dk = 2ξ

y2 + ξ 2∫ ∞

−∞
exp(−|k|ξ)

k

|k| exp(−iky)dk = −2iy

y2 + ξ 2∫ ∞

−∞
(|k|)−1 exp(−|k|ξ) exp(−iky)dk = − log(y2 + ξ 2)
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