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ABSTRACT

Thin-gaged or high toughness materials containing cracks usually fail

in a ductile manner with nominal failure stresses approaching the ultimate

strength of the material. For such materials, a two-parameter fracture

criterion was developed. An equation which related the linear elastic stress

intensity factor, elastic nominal stress, and two material parameters has

previously been derived and has been used as a fracture criterion for surface-

and through-cracked specimens under tensile loading. In the present paper

the two-parameter fracture criterion was rederived in a more general form

and was extended to compact and notch-bend fracture specimens. A close

correlation was found between experimental and predicted failure stresses.
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PLANE-STRESS FRACTURE OF COMPACT AND NOTCH-BEND SPECIMENS

J. C. Newman, Jr.
NASA-Langley Research Center, Hampton, VA 23665

INTRODUCTION

In many applications, thin-gaged or high toughness materials are neces-

sary for efficient and light-weight structures. These materials, in the

presence of cracks, usually fail in a ductile mode involving large inelastic

crack-tip deformations. As a result, the widely-used concepts of Linear

Elastic Fracture Mechanics (LEFM) often do not apply. To obtain fracture

criteria for these materials, the elastic-plastic behavior at the crack tip

must be considered.

Several equations have been proposed for calculating the elastic-

plastic stress-strain behavior at notches and cracks. For notches, equa-

tions have been derived by Hardrath and Ohman [1] and by Neuber [2]. For

cracks, equations have been derived by Hutchinson [3] and by Rice and

Rosengren [4]. The Hardrath-Ohman relation was generalized for a cracked

plate by Kuhn and Figge [5]. In a similar way, Newman [6] used Neuber's

relation to derive an equation which related the linear elastic stress-

intensity factor, elastic nominal stress, and two material parameters. This

equation was used as a Two-Parameter Fracture Criterion (TPFC) in [61 to

analyze failure of surface- and through-cracked sheet and plate specimens

under tensile loading.

In the present paper the TPFC has been rederived in a more general

form and has been extended to compact and notch-bend specimens. The
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application of the TPFC to such specimens was evaluated by using fracture

data on two steels and two aluminum alloys.

SYMBOLS

a initial crack length, mm

E Young's modulus, MN/m 2

F(a/W) stress-intensity correction factor based on nominal stress

KF  fracture toughness computed from eq. (4), MN/m3/2

Kie elastic stress-intensity factor at failure, MN/m3/2

L major span length for notch-bend specimen, mm

m fracture toughness parameter

P applied load, N

r* characteristic length parameter for a crack, mm

Sn  elastic nominal (net-section) stress, MN/m 2

S maximum value of elastic nominal stress, MN/m2

t specimen thickness, mm

W specimen width, mm

Ef local fracture strain

Of local fracture strength, MN/m 2

au ultimate tensile strength, MN/m2

as yield stress (0.2 percent offset), MN/m2ys



TWO-PARAMETER FRACTURE CRITERION

The elastic stress distribution in front of a crack tip ( = 0) in a

finite plate subjected to symmetric inplane loading has the general form

a0ee = C + C + C 2 +... ()

where the coordinate system (r,0) is shown in Fig. (1). The coefficient

C1 is a constant and the other C's depend upon the applied loading and

configuration. Near the crack tip the first term dominates because of the

singular behavior in stresses. The determination of the stress-intensity

factor, KI, is the basis for LEFM. The stress-intensity factor is a func-

tion of loading, configuration, size and location of the crack. In this

study, the stress-intensity factor was expressed as

KI = Sn V7a F(a/W) (2)

The application of LEFM to fracture has a number of limitations. One

is that as the crack size approaches zero, the stresses in front of the

crack tip, expressed only as the first term in eq. (1), also approach zero

instead of the nominal stress. Therefore, additional terms in eq. (1)

must be included in the analysis. Secondly, the use of LEFM is restricted

to conditions in which the plastic deformations at the crack tip are very

small (plane-strain fracture [7]). For such cases, Ke , the critical

elastic stress intensity factor, is found to be constant (KIc). However,

when large plastic deformations occur at the crack tip Kie varies with

planar dimensions, such as crack length or specimen width [81-[10]. To



extend the analysis to cases involving large plastic deformations the

elastic-plastic behavior near the crack tip must be considered.

Neuber [2] analyzed the elastic-plastic stresses and strains in shear-

strained bodies with notches and concluded that the product of stress- and

strain-concentration was equal to the elastic stress concentration squared.

Experimentally, Crews [11] has shown that Neuber's equation represents

the local stress-strain behavior of notched sheet specimens. Theoretically

Rice and Rosengren [4] and Hutchinson [31 have shown that Neuber's equation

also applies for the local crack-tip elastic-plastic stress-strain behavior,

In this study, Neuber's equation was written as a E E = a2 where ae

and E are the local stress and strain, respectively, and oe is the local

elastic stress. The local elastic stresses were obtained from eq. (1).

Substituting eq. (1) into Neuber's equation and neglecting terms of order

(r )1/2 gave

1 - KI KI (3)C1 1 - 0 S

1- u n

The coefficient C2 is a linear function of the elastic nominal stress and,

therefore, was rewritten as a constant (1/8) times this stress. The

ultimate strength was introduced to nondimensionalize the nominal stress.

When eq. (3) is applied to fracture, the local o and E are assumed to

reach their critical values af and Ef over a volume of material which is
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characterized by r* (see [12]). Redefining those terms in eq. (3) which

contain constants, as was done in [6], and writing 8U as S gives
u u

le
KF = for Sn < SU  (4)

SU

where KF and m are the two material parameters. The value of S was chosenu

as the maximum possible elastic nominal stress and was computed from the

load required to produce the ultimate stress on the complete net section.

In eq. (4), if m equals zero, KF equals the elastic stress-intensity

factor and the equation is applicable to low-toughness materials (plane-

strain fracture). If m equals unity, the equation is similar to that ob-

tained by Kuhn [9] and is applicable to high-toughness materials. Thus, the

fracture toughness parameter, m, describes the crack sensitivity of the

material.

In the application of eq. (4) to compact and notch-bend specimens,

see fig. (2), the stress-intensity factor, nominal stress and S must beu
determined. For the notch-bend specimens, the stress intensity was given

by eq. (2) where

Sn = 3PL/[2t (W - a)2 (5)

and

F(a/W) = (1- a)2 f(a/W) (6)

The function f(a/W) was given in [7]. The maximum value of elastic nominal

stress, Su, was computed from the load required to produce a fully plastic

hinge on the net section and was 1.5 C .u
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For the compact specimen, the stress intensity was also given by eq.

(2) where

= P W +a (7)
Sn t(W - ) 11 + 3 - - (7)

and

F(a/W) = (1- ) f(a/w) / [ + 3W+a (8)

The function f(a/W) was given in [131 and [14]. The maximum nominal stress,

Su, was again computed from the load required to produce a fully plastic

hinge on the net section under combined tension and bending loads and was

given by

S={ a\+a a C( ) (9)u w - a I [ W - I u

For a range of a/W between 0.2 and 0.8, S = 1.61 a , agrees to within 4u u

percent of that given by eq. (9).

After the material parameters KF and m have been determined from

fracture tests, eq. (4) can be used to predict failure stresses for other

configurations. The nominal failure stress as a function of crack length,

specimen width, and the material parameters was calculated from eq. (2) and

(4) as

Sn = KF/[V-a F(a/W) + m- (10)

Eq. (10) was applied for nominal stresses up to the maximum nominal stress,

S . For small cracks or large a/W ratios, eq. (10) predicts that the nominalu
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failure stress equals or exceeds S . In those cases, the nominal failureu
stress was set equal to S u

ANALYSIS OF TEST DATA

Fracture data for aluminum alloy compact specimens and steel notch-

bend specimens were analyzed using eq. (4). The fracture parameters, KF
and m, were determined from the fracture data using a best-fit procedure

[6]. This section presents fracture data in terms of the critical elastic

stress-intensity factor, Kie , for a range of crack lengths and specimen

widths.

Compact Specimens

Kaufman and Nelson [10] conducted fracture tests on 2219-T851 alumi-

num alloy compact specimens for various thicknesses, widths, and crack

lengths. Fig. (3) shows the results for 13mm-thick specimens with a/W = 0.5

(symbols). The critical stress-intensity factors were computed from the

maximum load at failure and the initial crack length. The solid curves show

the calculated results based on eq. (4) for several values of a/W. The

Kie values are asymptotically approaching the fracture toughness KF (indi-

cated by dash-dot line) as the specimen width increases.

The results for 38mm-thick specimens with various a/W ratios and a con-

stant width (W = 150mm) are shown in fig. (4) as symbols. The fracture

parameters KF and m were obtained from fracture data in which the a/W ratio

was held constant at 0.5 and the specimen width was varied from 75 to 150mm.

Since the fracture parameters were obtained from tests on specimens with

constant a/W, they cannot automatically account for the influence of a/W

on Kie. Therefore, the fracture analysis must account for the influence.

The solid curve in fig. (4) shows the predictions based on eq. (4). The
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agreement. between predicted and experimental results for a/W ratios less

than 0.5 is considered good and illustrates the ability of the TPFC to ac-

count for the influence of a/W on fracture. For a/W ratios greater than

0.8, the critical Kie values are predicted to decrease rapidly as a/W in-

creases. The dashed curve shows where Sn became equal to S .

Notch-Bend Specimens

Jones and Brown [131 conducted fracture tests on three-point notch-

bend specimens of 4340 steel at several strength levels. These tests were

conducted to determine the effects of thickness, crack length, and specimen

width on fracture toughness. Fig. (5) shows the results for 1.5mm-thick

specimens for various widths with a/W = 0.5 and L/W ratios of either 4 or

8 (symbols). Although this material had a high ultimate strength, it

exhibited an extremely ductile failure (m = 1) because of the thin-gaged

tested. The solid curves were calculated from the TPFC for a/W = 0.5 and

L/W equal either 4 or 8.

Fig. (6) shows the results for a lower strength 4340 steel than that

shown in fig. (5). The results are presented as KIe plotted against a/W

ratio for a constant width specimen (W = 50mm). The solid curve is the

predicted behavior based on eq. (4). Again, the dashed curves represent

fracture for which Sn equals Su . A close correlation between experimental

and calculated results illustrates how the TPFC can account for the influence

of crack length on fracture.
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CONCLUDING REMARKS

The Neuber stress-concentration equation was generalized for a crack

in a finite plate. An equation was derived which related the linear elastic

stress-intensity factor, the elastic nominal stress, and two material

parameters. This equation was evaluated as a Two-Parameter Fracture Crite-

rion for compact and notch-bend specimens. Although the materials analyzed

in this paper failed in a ductile manner, the TPFC was able to relate failure

stress to crack size and configuration. The TPFC reduces to LEFM for brittle

materials. Therefore, the TPFC should be useful to designers who must

calculate failure stresses in flawed components.



APPENDIX A

Elastic Stress-Intensity Factors for Notch-Bend

and Compact Specimens

The stress-intensity factors for notch-bend and compact specimens have

been obtained by previous investigators. In this paper the stress-intensity

factors were written in terms of nominal stress, crack length and specimen

width (see eq. (2)). This section gives the equations used to express

stress-intensity factors in terms of nominal stress.

Notch-Bend Specimens

The stress-intensity factors for three-point bend specimens were ob-

tained from [7] and the function f(a/W) to be used in eq. (6) for L/W = 4

and 8 was

f() = AO + A,() + AA3 (W )3 + A4( (Al)

L/W A0  A, A2  A A4

4 1.93 -3.07 14.53 -25.11 25.80

8 1.96 -2.75 13.66 -23.98 25.22

Compact Specimen

The stress-intensity factors for the compact specimen were obtained

from [13] and [14]. However, these stress-intensity factors were obtained

by boundary collocation analyses on configurations which did not include the
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pin-loaded holes. Although the results in reference 14 can be applied

over a wider range of a/W than the results from [13], reference 15 has

analyzed the compact specimen using a boundary collocation analysis on a

configuration which did include the pin-loaded holes. Therefore, the stress-

intensity factors from [15] were used in the fracture analysis. The function

f() to be used in eq.(6 ) was

f = 4.55 - 40.32 + 41.7 2 - 1698 3 + 3781(W

- 4287 5 + 2017 6 (A2)

for 0.2 < a 0.8.
Wo8
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Fig. 1 - Coordinate system for a crack in a finite plate.

4/ ~

P/2 
L P/2

(a) Compact (b) Notch bend

Fig. 2 - Compact and three-point notch-bend specimens.
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Fig. 3 - Critical stress-intensity factors for 2219-T851 aluminum
alloy compact specimens as a function of width.
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Fig. 4 - Comparison of experimental and predicted critical stress-

intensity factors for 2219-T851 aluminum alloy compact
specimens as a function of a/W.
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= 1600 MN/m2

a = 1470 
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0 50 100
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Fig. 5 - Critical stress-intensity factors for 4340 steel three-
point notch-bend specimens as a function of width.

150 %

100100 
= 255 MM/m3/2.

MN/m3/2 m = 0.71

- Eq.(4) 'S =
\ n u

50 u = 1340 MN/m2 W = 50 mm

ys= 1250 MN/m2  t = 25 mmys

0 0.5 1.0

a/W
Fig. 6 - Critical stress-intensity factors for 4340 steel three-

point notch-bend specimens as a function of a/W.


