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1 Introduction

Recent years have seen the discovery of myriad structures in perturbative quantum field

theory (QFT) which are non-obvious (or indeed, completely invisible) from the perspective

of traditional, space-time perturbation theory. A particularly illustrative example of such

a structure is colour-kinematics duality [1], a relationship between the colour structures

and kinematic numerators of gauge theory observables computed perturbatively around

flat space. In the setting of pure Yang-Mills theory, this duality can be stated as follows:

consider a n-point, L-loop gluon scattering amplitude, written in the form

A(L)
n = δd

(
n∑
i=1

ki

) ∫
dLd`

(2π)Ld

∑
Γ∈cubic

cΓNΓ

DΓ
, (1.1)

where {ki} are the on-shell external momenta, the sum is over cubic graphs, {cΓ} are

colour factors (built from the structure constants of the gauge group), {DΓ} are scalar
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propagators (built from the external and loop momenta), and {NΓ} are numerators built

from the kinematic data. Due to the Jacobi identity, there are linear relations between the

colour factors of the form cα−cβ +cγ = 0. Colour-kinematics duality is the statement that

there exists a representation of the amplitude (1.1) for which the kinematic numerators

obey the same linear relations: Nα −Nβ +Nγ = 0.

It is a theorem that colour-kinematics duality holds at tree-level [2–6], and representa-

tions satisfying the duality have been constructed for supersymmetric theories at 4-points

through 4-loops [7–10], with generalisations holding at 5-loops [11, 12]. The duality under-

pins the Bern-Carrasco-Johansson (BCJ) relations between colour-ordered partial ampli-

tudes [1], which (along with the photon decoupling identity and the Kleiss-Kuijf relations)

reduce the number of independent partial amplitudes at tree-level to (n−3)!. The power of

the duality lies in its relationship with double copy [1, 13, 14], which enables trivial calcu-

lations of gravitational amplitudes (at the level of an integrand) once a colour-kinematics

representation of the corresponding gauge theory amplitude has been found. Indeed, for

colour-kinematics dual numerators, the gravitational amplitude is given by simply replac-

ing cΓ → NΓ in (1.1). This has enabled computations of supergravity scattering amplitudes

to five loops [12, 15]; calculations which would have never been possible with conventional

perturbative methods.

Despite its efficacy, the origins and robustness of colour-kinematics duality and double

copy (as well as a host of other novel structures in perturbative QFT) remain mysterious.

At tree-level, colour-kinematics duality and the double copy can be understood as the field

theory limit of the KLT relations [16] between open and closed string amplitudes, but at

loop level their stringy origin is not clear. Optimistically, one hopes that colour-kinematics

duality and double copy are general properties of perturbative gauge theory and gravity;

however, if this is true they should hold on any perturbative background.

In [17], we showed that double copy between gauge theory and gravitational 3-point tree

amplitudes holds on plane wave backgrounds. These are the simplest curved backgrounds

which admit a well-posed scattering problem, and are also universal in the sense that

any metric [18] or (free) gauge field [19] looks like a plane wave in the neighborhood of

a null geodesic. While the fact that double copy holds even at 3-points on the plane

wave background is highly non-trivial (the amplitudes encode background-dependent tail

effects), the real test of double copy’s robustness will be at 4-points. But in order to

perform this test, one must first actually know the 4-point, tree-level gluon amplitude on

a gauge theory plane wave background.

In this paper, we study perturbative Yang-Mills theory on a plane wave background

with the overarching goals of computing the 4-point gluon amplitude to provide ‘theoretical

data’ for use in future tests of double copy, as well as to test whether there is some remnant

of colour-kinematics duality which survives on the plane wave background. After a brief

review of the gauge theory plane waves of interest, we determine the Feynman rules of

Yang-Mills theory on this perturbative background in section 2. The resulting expressions

for propagators and vertices (in Feynman-’t Hooft gauge) have not, to our knowledge,

appeared before in the literature, although they are related to analogous structures arising

in the study of strong field QED on plane wave backgrounds [20–23].
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These Feynman rules are used to calculate the tree-level 4-gluon scattering amplitude

on a plane wave background in section 3, as well as replicating the results from [17] for

the 3-gluon tree-amplitude. In section 4, we show how this 4-point amplitude can be cast

into a colour-kinematics form, and demonstrate that although color-kinematics duality is

obstructed on a plane wave background, the obstruction is highly structured. Let {cs, ct, cu}
be the colour structures for the s-, t- and u- channels, respectively. These obey a Jacobi

identity cs−ct+cu = 0; we find that the plane wave analogue of colour-kinematics duality is

σ (ns − nt + nu) ' 0 , (1.2)

where {ns, nt, nu} are certain kinematic tree-level integrands associated to each channel, σ is

a projection map and ‘'’ is an equivalence relation up to a particular class of obstructions,

proportional to the background gauge field. Remarkably, this relation seems to constrain

representations of tree-level scattering in the same way as usual colour-kinematics duality,

and reduces to the kinematic Jacobi identity Ns−Nt+Nu = 0 in the flat background limit.

Section 5 concludes with a discussion of future directions, including the study of double

copy, higher numbers of external gluons, loops and the prospects for computing these

amplitudes with certain worldsheet models called ambitwistor strings.

2 Perturbative gauge theory on a plane wave

The setting of interest will be perturbative Yang-Mills theory with a non-trivial plane

wave background gauge field. In this section, we review the features of the plane wave

background and then derive the Feynman rules (free fields, vertices and propagator) for

gauge theory on this background.

2.1 The plane wave background

A gauge potential on Minkowski space-time is said to be a (vacuum) plane wave if it is

a solution of the (source-free) Yang-Mills equations which has (2d− 3) symmetries whose

generators, one of which is covariantly constant, form a Heisenberg algebra [17, 20, 21, 24,

25]. For simplicity, we restrict our attention to those gauge fields which are valued in the

Cartan of the gauge group. In light cone coordinates for which the Minkowski metric reads

ds2 = dXµ dXµ = 2 dx+ dx− − dxa dxa , (2.1)

for Xµ = (x+, xa, x−), a = 1, . . . , d− 2, a plane wave gauge field is

A = −Aa(x−) dxa , (2.2)

where the coefficient functions Aa are valued in the Cartan of the gauge group (and the

overall negative sign is for later convenience).

It is easy to see that this gauge field is a solution of the (Cartan-valued) Yang-Mills

equations, and it is clearly symmetric under transformations generated by ∂+, ∂a. There

are (d− 2) further symmetries of (2.2) which are less obvious, generated by

X a = xa ∂+ + x− ∂a +

∫ x−

dsAa(s) . (2.3)
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Figure 1. The sandwich plane wave with xa-directions suppressed. The field strength Fa = Ȧa(x−)

is non-zero only in the shaded region; the gauge field is flat on the in- and out-regions.

The set of (2d−3) symmetry generators {∂+, ∂a,X b} form an algebra whose only non-trivial

commutators are [
∂a, X b

]
= δab ∂+ , (2.4)

which is the required Heisenberg algebra. It is straightforward to check that the generator

∂+ is in fact covariantly constant.

An intuitive way of understanding the plane wave solution is as a coherent super-

position of gluons. A linearised gluon can be represented using the familiar momentum

eigenstate Ta εµ eik·X , where k2 = 0, Ta is a generator of the gauge group and εµ is an

on-shell polarization. Since the momentum kµ is null, it defines the light cone direction

x− = k · X. The on-shell polarization of a gluon in d-dimensions has d − 2 degrees of

freedom, labelled with index a = 1, . . . , d− 2. Finally requiring the colour vector Ta to be

aligned with the Cartan of the gauge group, it is clear that a superposition of such free

gluons does indeed take the form (2.2).

The gauge-invariant field strength of the plane wave is

F = Ȧa(x
−) dxa ∧ dx− , (2.5)

where Ȧa = ∂−Aa. A simple gauge transformation of (2.2) enables the gauge potential to be

put into a form which encodes the field strength algebraically. By taking A→ A+d(xaAa),

we obtain

A = xa Ȧa(x
−) dx− . (2.6)

This gauge has the advantage that there is only one non-trivial component of the gauge

potential, namely the piece in the x−-direction. For these reasons, we always work with the

background in the gauge (2.6), which can be thought of as a ‘Brinkmann’ gauge, analogous

to the Brinkmann coordinates of a gravitational plane wave (which are global, encode the

curvature algebraically and have only one non-trivial metric component) [26].

To obtain a well-defined scattering problem, we restrict our attention to sandwich

plane waves [27], for which the field strength Fa = Ȧa is compactly supported in some

range x−1 ≤ x− ≤ x−2 (see figure 1). This leads to a memory effect [28, 29], whereby the

gauge potential for the in-region (x− < x−1 ) and the out-region (x− > x−2 ) do not match,
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despite the fact that both describe a flat field strength:

Aa|out −Aa|in =

∫ x−2

x−1

Fa(x
−) dx− . (2.7)

It can be shown that the S-matrix for gluons on a sandwich plane wave background is

well-defined, in the sense that evolution from the in-region to the out-region is unitary and

there is no particle creation (in the quadratic theory) [17].

2.2 Feynman rules

Perturbative Yang-Mills theory on a background is described by evaluating the interaction

terms in the classical Yang-Mills action on a gauge field A = A + a, where A is the

background gauge field and a is the fluctuating field appearing in the path integral measure

(cf., [30–33] or chapter 16.6 of [34]). The resulting action has the form

S[a;A] = Skin[a;A] + Sint[a;A] , (2.8)

where Skin is quadratic in the fluctuation a while Sint is O(a3). After gauge fixing, position-

space Feynman rules are obtained from this action in the usual way: free fields and prop-

agators are determined by Skin while the interaction vertices are read off from Sint. It will

be convenient to work in Feynman-’t Hooft gauge, for which the gauge-fixing term added

to the space-time action is

SGF[a;A] = − 1

2 g2

∫
ddX tr (Dµaµ)2 , (2.9)

for g the Yang-Mills coupling and Dµ = ∂µ − i[Aµ, ·] the covariant derivative with respect

to the background field.

2.2.1 Free fields

Solutions to the free equations of motion in the background serve as on-shell external

states for insertion on external lines in Feynman diagrams via the LSZ-reduction formula.

In Feynman-’t Hooft gauge, the kinetic part of the action (2.8) reads

Skin[a;A] = − 1

g2

∫
ddX tr

(
D[µaν]D

[µaν] +
1

2
Fµν [aµ, aν ] +

1

2
(Dµaµ)2

)
, (2.10)

where Fµν is the field strength of the background field and D[µaν] = 1
2(Dµaν−Dνaµ). From

this, the linearised equation of motion for the gauge field fluctuation aµ is easily deduced

to be

DνD
ν aµ + 2i [Fµν , a

ν ] = 0 . (2.11)

For the case where the background is a plane wave valued in the Cartan of the gauge group,

this equation is relatively simple.

As A is valued in the Cartan, all commutators involving A can be written in terms of

the charge e of the fluctuation with respect to the background. In general, this charge takes

values in a root space, although in the special case where A is valued in a U(1) subalgebra
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it reduces to a numerical colour charge. Let Ta be generators of the gauge group, and ti

be generators of the Cartan subalgebra; the charge is defined as (ea)ib := [ti,Tb]. Since

A = tiAi, it follows that [Aµ, aν ] = eAµaν , where contractions in the root space are implicit.

Inserting the explict form of the plane wave background into (2.11), the free equation

of motion becomes:(
2 ∂+∂− − ∂a∂a − 2i e xaȦa∂+

)
aµ + 2i e

(
δaµȦa a+ + δ−µ Ȧ

a aa

)
= 0 . (2.12)

The first set of bracketed terms in this equation is simply the charged scalar wave operator,

and solutions to the charged scalar wave equation in a plane wave background are given

by [17]

Φ = Ta eiφ , (2.13)

where φ is a solution to the (gauge-covariant) Hamilton-Jacobi equations:1

φ := k+ x
+ + (ka + eAa)x

a +
f(x−)

2 k+
, f(x−) :=

∫ x−

(k + eA(s))2 ds . (2.14)

The constant momentum components {k+, ka} are the degrees of freedom of a null d-vector;

indeed, in the flat background limit (Aa → const.) it is easy to see that φ→ k ·X, where

kµ = (k+, ka,
k2

2k+
) is an on-shell momentum in light cone coordinates.

It is worth noting that solutions to the charged scalar wave equation in an abelian

plane wave background have been intensively studied in the context of strong field QED

for decades, and are often known in the laser physics literature as ‘Volkov solutions’

(e.g., [20–23]). The only difference between (2.13) and these Volkov solutions is a gauge

transformation and the proviso that e is root-valued.

Armed with the charged scalar solution (2.13), it is straightforward to solve the free

gluon equation of motion (2.12) using the ansatz aµ(X) = Pµ(x−) Φ(X). This gives a

system of coupled ODEs for the components of the unspecified vector Pµ(x−):

Ṗ+ = 0 , Ṗa =
e

k+
Ȧa P+ , Ṗ− =

e

k+
Ȧa Pa . (2.15)

These are solved by taking

P+(x−) = c+ , Pa(x
−) = ca +

c+e

k+
Aa(x

−) ,

P−(x−) = c− +
cae

k+
Aa(x−) +

c+e
2

2k2
+

A2(x−) , (2.16)

for (c+, ca, c−) constants of integration. This allows us to write

Pµ(x−) = Pµ
ν(x−) cν =

 1 0 0
eAa
k+

δba 0
e2A2

2k2+

eAb

k+
1


 c+

cb
c−

 , (2.17)

with the matrix Pµ
ν encoding all of the dependence on the background field.

1Tensors in the (d − 2)-dimensional transverse directions are denoted using boldface for index-free ex-

pressions (e.g., ka ↔ k).
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This appears to lead to solutions which depend on d free parameters, which is two

greater than the number of on-shell polarizations for a gluon in d-dimensions. This over-

counting is remedied by ensuring that the gauge condition Dµaµ = 0 is satisfied by (2.17).

For the plane wave background, this condition can be expressed as KµPµ = 0, where Kµ

is the natural on-shell momentum associated with the solution:

Kµ := −i e−iφDµ eiφ =

(
k+, ka + eAa,

(k + eA)2

2 k+

)
, (2.18)

which obeys K2 = 0. This gauge constraint forces

c+ = 0 , ca = εa , c− =
ε · k
k+

, (2.19)

so Feynman gauge imposes Lorenz and lightcone gauge on the free fields simultaneously as

a result of the highly symmetric nature of the background [17].

Thus, free gluon solutions in Feynman gauge on the plane wave background are

given by:

aµ = Ta εµ eiφ , εµ = Pµ
ν cν , (2.20)

with the values of cµ fixed by (2.19). Although both the polarization and the momentum

are non-trivial functions of the light cone coordinate x− through their dependence on the

background field, they remain on-shell in the usual sense: K2 = 0 = Kµεµ. Furthermore,

there are (d − 2) degrees of freedom in the polarization, given by the constants εa; these

match the (d− 2) on-shell polarizations of a gluon in d-dimensions.

The memory effect (2.7) introduces a subtlety associated with these free fields on the

sandwich plane wave background which does not exist in a flat background. This is a

functional distinction between ‘in-states’ and ‘out-states’ (cf., [17, 35, 36]). In particular,

a free gluon aµ can be chosen to have boundary conditions aµ = εµei k·X on the in-region

(x− < x−1 ) or the out-region (x− > x−2 ), but not both. For simplicity, we insert all in-state

gluons on external legs of Feynman diagrams, although the formalism makes it clear how

to insert any combination of external in- or out-states.

2.2.2 Propagator

The kinetic portion of the action also defines the position space propagator; on the plane

wave background this is a Green’s function(
DλD

λδµσ + 2i eFσ
µ
)

Gµν(X,Y ) = δab ησν δ
d(X − Y ) , (2.21)

where X,Y are any two points in Minkowski space (and the trivial colour structure of the

propagator is suppressed). Our aim will be to construct the Feynman propagator solution

to this equation in Feynman-’t Hooft gauge; this can be done by taking a sum

G F
µν(X,Y ) = i Θ(x− − y−)

∑
i

piµ(X) p̄iν(Y )− i Θ(y− − x−)
∑
i

niµ(X) n̄iν(Y ) , (2.22)

where {piµ} and {niµ} are a basis of positive and negative frequency states, respectively.

The free fields (2.20) provide such a basis, and since the Feynman propagator is invariant

– 7 –
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under any change of basis which is a non-mixing Bogoliubov transformation [35], we are

free to use either in-states or out-states to construct the propagator.

To realize this construction explicitly, one can introduce an off-shell version of the

function φ(X), given by

φk := k+ x
+ + (ka + eAa)x

a + k− x
− +

1

2 k+

∫ x−(
2ek ·A(s) + e2 A2(s)

)
ds . (2.23)

The scalar function eiφk solves an off-shell charged wave equation

DµD
µeiφk = k2 − 2k+k− , (2.24)

which becomes on-shell only when k− = k2

2k+
. The Feynman propagator is then built from

a superposition of these off-shell modes:

G F
µν(X,Y ) =

N(d) δ
ab

2π i

∮
ddk

k2 + i ε
Dµν(x−, y−) exp [iφk(X)− iφk(Y )] , (2.25)

where integration is over the d degrees of freedom {k+, ka, k−} of an off-shell momen-

tum, evaluated on the usual Feynman contour in the complex (k−)-plane. The matrix

Dµν(x−, y−) is defined by

Dµν(x−, y−) := Pµ
σ(x−)Pνσ(y−) =

 0 0 1

0 −δab e∆Aa
k+

1 − e∆Ab
k+

e2∆A2

2k2+

 , (2.26)

for Pµν given by (2.17), ∆Aa = Aa(x
−) − Aa(y

−), and N(d) is a dimension-dependent

normalisation constant

N(d) := − π i

(2π)d
. (2.27)

From now on, the trivial colour structure δab will be left implicit.

Performing the contour integration in dk− leaves:

G F
µν(X,Y ) = N(d) Θ(x− − y−)

∫
dk+ dd−2k

k+
Dµν(x−, y−) exp [iφ(X)− iφ(Y )]

−N(d) Θ(y− − x−)

∫
dk+ dd−2k

k+
Dµν(x−, y−) exp [iφ(Y )− iφ(X)] , (2.28)

where φ(X) is the (on-shell) function (2.14). The integrals over dd−2k are Gaussian, and
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can be done explicitly with the result

G F
µν(X,Y ) =N(d) (2πi)

d−2
2 Θ(∆x−)

∞∫
0

dk+

k+

(
k+

∆x−

) d−2
2

Dµν(x−,y−)

×exp

[
i

(
k+ ∆x+− k+

2∆x−
(∆x̃)2+e∆(A·x)+

e2

2k+

∫ x−

y−
dsA2(s)

)]

−N(d) (2πi)
d−2
2 Θ(−∆x−)

∞∫
0

dk+

k+

(
k+

∆x−

) d−2
2

Dµν(x−,y−)

×exp

[
−i

(
k+ ∆x+− k+

2∆x−
(∆x̃)2+e∆(A·x)+

e2

2k+

∫ x−

y−
dsA2(s)

)]
, (2.29)

adopting the shorthand ∆Xµ = Xµ − Y µ for differences in position and denoting

∆x̃a := ∆xa +
e

k+

∫ x−

y−
dsAa(s) , ∆(A · x) := Aa(x

−)xa −Aa(y−)ya . (2.30)

For a general plane wave background, the remaining dk+ integration cannot be performed

analytically due to the wave profile; this is a common feature in perturbative QFT on plane

wave backgrounds. However, in the flat background limit, it is easy to see that

lim
A→const.

G F
µν(X,Y ) = −

Γ
(
d−2

2

)
id−1

4π
d
2

ηµν

(∆X2)
d−2
2

, (2.31)

which is the familiar expression for the position space gluon propagator on a flat back-

ground.

G F
µν is in Feynman-’t Hooft gauge by construction, so it remains to show that it obeys

the equation (2.21) for a gluon propagator. Since G F
µν is built from a superposition of

solutions to the free equation of motion, it follows that the only non-trivial contributions

to the left-hand side of equation (2.21) come from the term 2∂+∂− in the wave operator,

where ∂− acts on the Θ-functions appearing due to the Feynman contour integration.

One finds:(
DλD

λδµσ + 2i eFσ
µ
)

G F
µν(X,Y ) =

2iN(d) (2πi)
d−2
2 δ(∆x−)

∞∫
0

dk+

k+

(
k+

∆x−

) d−2
2

Dσν(x−, y−)

× exp

[
i

(
k+ ∆x+ − k+

2∆x−
(∆x̃)2 + e∆(A · x) +

e2

2 k+

∫ x−

y−
dsA2(s)

)]

+ 2iN(d) (2πi)
d−2
2 δ(∆x−)

0∫
−∞

dk+

k+

(
k+

∆x−

) d−2
2

Dσν(x−, y−)

× exp

[
i

(
k+ ∆x+ − k+

2∆x−
(∆x̃)2 + e∆(A · x) +

e2

2 k+

∫ x−

y−
dsA2(s)

)]
. (2.32)
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It may be tempting to set ∆x− = 0 everywhere on the support of the overall δ(∆x−), but

this requires some care as the naive ∆x− → 0 limit of the integrands is undefined. Focusing

on the set of terms which originated from those proportional to Θ(∆x−) (the second and

third lines in the above expression), these contributions can be written on the support of

δ(∆x−) as:

2iN(d) ησν δ(∆x
−) lim

∆x−→0

∞∫
0

dk+

(
2πi k+

∆x−

) d−2
2

× exp

[
i

(
k+ ∆x+ − k+

2∆x−
(∆x)2 + eAa(x

−) ∆xa
)]

, (2.33)

where ∆x− can be set to zero in all terms which are clearly non-singular.

Now observe that

lim
∆x−→0

(
2πi k+

∆x−

) d−2
2

exp

[
−i

k+

2∆x−
(∆x)2

]
= (2π)d−2 lim

∆x−→0
η

(d−2)
∆x− (∆x) = (2π)d−2 δd−2(∆x) , (2.34)

where ηdε is the d-dimensional nascent delta function. Combined with the analogous ob-

servation for terms originally proportional to Θ(−∆x−), it follows that the left-hand-side

of (2.32) is equal to:

ησν
2π

δ(∆x−) δd−2(∆x)

+∞∫
−∞

dk+ exp
(
i k+ ∆x+

)
, (2.35)

after using the support of the delta functions to set ∆x = 0 everywhere in the remaining

integrand. The final integral yeilds one additional delta function, δ(∆x+), along with a

factor of 2π for the result:(
DλD

λδµσ + 2i eFσ
µ
)

G F
µν(X,Y ) = ησν δ

d(∆X) . (2.36)

This proves that our expression for G F
µν is indeed the gluon propagator in Feynman-’t Hooft

gauge.

The object Dµν(x−, y−), which reduces to ηµν in the flat background limit, plays an im-

portant role in perturbative calculations, as it captures the tensor structure associated with

gluon propagation on the plane wave background. It obeys the following useful relation: if

Kµ is the momentum exchanged by the propagator, then

Dµν(x−, y−)Kν(y−) = Kµ(x−) . (2.37)

In other words, Dµν acts to propagate the position dependence of the exchanged mo-

mentum from one end of the propagator to the other. This identity will prove useful in

subsequent calculations.
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a1 µ

ν

a2

σ

a3

a1

µ ν
a2

a3

ρ σ

a4

Figure 2. The three- and four-point gluon vertices.

2.2.3 Vertices

The interacting portion of the Yang-Mills action with a background field is

Sint[a;A] = − 1

4 g2

∫
ddX tr

(
4 [aµ, aν ]D[µaν] + [aµ, aν ] [aµ, aν ]

)
. (2.38)

As usual, this defines the 3- and 4-point interaction vertices of the theory, which are given

in position space by (see figure 2):

V µνσ = g fa1a2a3
∫

ddX (ηµν (D1 −D2)σ + ηνσ (D2 −D3)µ + ησµ (D3 −D1)ν) , (2.39)

V µνρσ = g2

∫
ddX

[
fa1a2bfa3a4b (ηµρηνσ − ηµσηνρ)

+fa1a3bfa2a4b (ηµνηρσ − ηµσηνρ) + fa1a4bfa2a3b (ηµνηρσ − ηµρηνσ)
]
, (2.40)

where fabc are the structure constants of the gauge group. Implicit at each vertex is a delta

function conserving the total charge with respect to the background gauge field. It is easy

to see that in the flat background limit, acting on momentum eigenstates these vertices

reproduce the usual momentum space vertices of Yang-Mills theory.

2.2.4 Ghosts

Of course, proper treatment of the gauge-fixing procedure in non-abelian gauge theory

necessitates the introduction of Fadeev-Popov ghosts. Although our primary concern in

this paper will be a tree-level, we include the Feynman rules for ghosts on the plane wave

background to give a complete description of the perturbative theory. The Fadeev-Popov

procedure leads to a ghost action on the background

Sghost[c, c̄, a;A] =
1

4 g2

∫
ddX tr (c̄ DµD

µ c+ c̄ Dµ[aµ, c]) , (2.41)

where ca, c̄a are the anti-commuting scalar ghosts, valued in the adjoint of the gauge group.

The ghosts do not appear on external legs of Feynman diagrams, and the c− c̄ prop-

agator and ghost-gluon-ghost vertex are easily expressed using the ingredients already

developed. In particular, the ghost propagator is given by〈
ca(X) c̄b(Y )

〉
=
N(d) δ

ab

2π i

∮
ddk

k2 + i ε
exp [iφk(X)− iφk(Y )] , (2.42)
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a2 µ

a1 a3

Figure 3. The ghost vertex.

while the cubic vertex involving two ghosts and one gluon is (see figure 3)

V µ = g fa1a2a3
∫

ddXDµ
1 . (2.43)

These complete the full set of Feynman rules for gauge theory on the plane wave back-

ground.

3 Tree amplitudes

Using the Feynman rules, any perturbative calculation on the plane wave background can

now be done (at least in principle). To demonstrate this, we consider the examples of the

tree-level 3-point and 4-point gluon amplitudes.

3.1 3-points

The tree-level 3-point amplitude is given simply by evaluating the cubic vertex (2.39)

on three on-shell states, whose charges obey e1 + e2 + e3 = 0 (the amplitude vanishes

otherwise) [17]. This results in:

ig fa1a2a3
∫

ddX (ε1 · ε2 ε3 · (K1 −K2) + ε2 · ε3 ε1 · (K2 −K3) + ε1 · ε3 ε2 · (K3 −K1))

× exp

[
i

3∑
r=1

φr

]
. (3.1)

The position space integrals over dx+ and dd−2x can be performed explicitly, resulting in

momentum conserving delta functions. The final integration, over dx− cannot be performed

analytically due to the (arbitrary) wave profile Aa(x
−).

Thus the final expression for the tree-level 3-gluon amplitude is

A3 = 2ig fa1a2a3 δd−1

(
3∑
r=1

kr

) ∫
dx− (ε1 · ε2K1 · ε3 + cyclic) exp

[
i

3∑
s=1

fs
2 k+ s

]
, (3.2)
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where

δd−1

(
3∑
r=1

kr

)
:= δ

(
3∑
r=1

er

)
δ

(
3∑
r=1

k+ r

)
δd−2

(
3∑
r=1

kr

)
, (3.3)

and the functions fs(x
−) are defined by (2.14). In arriving at (3.2) from (3.1), we have

used the identities

Kr · εs =

{
0 if r = s

εas
k+ s

(k+ r ka s − k+ s ka r +Aa(k+ r es − k+ s er)) otherwise
, (3.4)

εr · εs =

{
0 if r = s

−εa r εas otherwise
. (3.5)

In particular, the integrand has non-trivial functional dependence on x− through the ‘kine-

matics’ as well as the overall exponential factor. In a flat background, it is easy to see that

x−-dependence drops out of the kinematics, and the dx− integration against the exponen-

tial factor results in a momentum conserving delta function in the remaining light cone

direction. Further, for the special case of the impulsive plane wave (where Aa(x−) has

delta function support), this 3-point amplitude has been evaluated analytically [17].

3.2 4-points

The tree-level 4-point amplitude receives contributions from three exchange diagrams as

well as the 4-point contact interaction. In a flat background, the norm of the exchanged

momenta are proportional to the Mandelstam invariants s = k1 · k2, t = k1 · k3, u = k1 · k4.

On the plane wave background, these ‘invariants’ are no longer well-defined, since norms

of exchanged momenta are now complicated functions of the light cone variable x−. How-

ever, we can still use the Mandelstam labels to distinguish between the distinct exchange

diagram contributions to the amplitude; this means that the 4-point gluon amplitude can

be written as

A4 = Acont
4 +Aexch

4,s +Aexch
4,t +Aexch

4,u , (3.6)

where Acont
4 is the contribution from the 4-point contact interaction and the Aexch

4 are the

exchange diagrams.

For simplicity, we normalise the amplitude by an overall factor of N−1
(d) . The contact

contribution is given by evaluating the 4-point vertex (2.40) on four on-shell states:

Acont
4 =

g2

N(d)
δd−1

(
4∑
r=1

kr

)[
fa1a2bfa3a4b (ε1 · ε3 ε2 · ε4 − ε1 · ε4 ε2 · ε3)

+fa1a3bfa2a4b (ε1 · ε2 ε3 · ε4 − ε1 · ε4 ε2 · ε3) + fa1a4bfa2a3b (ε1 · ε2 ε3 · ε4 − ε1 · ε3 ε2 · ε4)
]

×
∫

dx− exp

[
i

4∑
s=1

fs
2 k+ s

]
, (3.7)

where the position space integrals over dx+ and dd−2x have been performed to give the

delta functions. The exchange diagrams require an insertion of the Feynman propagator

G F
µν , resulting in an integration over two space-time points, X and Y .
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As is typical in the plane wave background, all integrals except those in the light cone

directions dx−, dy− can be performed explicitly. In the s-channel, the result is

Aexch
4,s = g2 δd−1

(
4∑
r=1

kr

)
fa1a2bfa3a4b

∫
d2µ[s] [ε1 · ε2 (K1 −K2)µ

+2ε1 ·K2 ε
µ
2 − 2ε2 ·K1 ε

µ
1 ] (x−) Ds

µν(x−, y−)

× [ε3 · ε4 (K4 −K3)ν − 2ε3 ·K4 ε
ν
4 + 2ε4 ·K3 ε

ν
3 ] (y−) + (x− ↔ y−) , (3.8)

where the integral is taken with respect to a measure associated with the s-channel:

d2µ[s] = Θ(x−−y−)
dx−dy−

(k1+k2)+
exp

[
i

(
f1(x−)

2k+1
+
f2(x−)

2k+2
+
f3(y−)

2k+3
+
f4(y−)

2k+4
(3.9)

− 1

2(k1+k2)+

∫ x−

y−
ds ((k1+k2)+(e1+e2)A(s))2

)]
.

This measure arises from the integrations dx+, dd−2x, dy+ and dd−2y in the exchange

diagram. The object Ds
µν(x−, y−) is defined by (2.26), with the superscript denoting the

exchanged momentum. In particular,

Ds
µν(x−, y−) :=


0 0 1

0 −δab (e1+e2)∆Aa

(k1+k2)+

1 − (e1+e2)∆Ac

(k1+k2)+

(e1+e2)2∆A2

2(k1+k2)2+

 . (3.10)

Finally, the integrand is symmetrized with respect to x− ↔ y− due to the Feynman

propagator, which includes both advanced and retarded contributions.

Contributions from the other two exchange diagrams have a similar structure:

Aexch
4,t = g2 δd−1

(
4∑
r=1

kr

)
fa1a3bfa2a4b

∫
d2µ[t] [ε1 · ε3 (K1 −K3)µ

+2ε1 ·K3 ε
µ
3 − 2ε3 ·K1 ε

µ
1 ] (x−) Dt

µν(x−, y−)

× [ε2 · ε4 (K4 −K2)ν − 2ε2 ·K4 ε
ν
4 + 2ε4 ·K2 ε

ν
2 ] (y−) + (x− ↔ y−) , (3.11)

Aexch
4,u = g2 δd−1

(
4∑
r=1

kr

)
fa1a4bfa2a3b

∫
d2µ[u] [ε1 · ε4 (K1 −K4)µ

+2ε1 ·K4 ε
µ
4 − 2ε4 ·K1 ε

µ
1 ] (x−) Du

µν(x−, y−)

× [ε2 · ε3 (K3 −K2)ν − 2ε2 ·K3 ε
ν
3 + 2ε3 ·K2 ε

ν
2 ] (y−) + (x− ↔ y−) , (3.12)

with the respective integral measures given by

d2µ[t] = Θ(x− − y−)
dx− dy−

(k1 + k3)+
exp

[
i

(
f1(x−)

2k+ 1
+
f2(y−)

2k+ 2
+
f3(x−)

2k+ 3
+
f4(y−)

2k+ 4

− 1

2(k1 + k3)+

∫ x−

y−
ds ((k1 + k3) + (e1 + e3)A(s))2

)]
, (3.13)
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and

d2µ[u] = Θ(x− − y−)
dx− dy−

(k1 + k4)+
exp

[
i

(
f1(x−)

2k+ 1
+
f2(y−)

2k+ 2
+
f3(y−)

2k+ 3
+
f4(x−)

2k+ 4

− 1

2(k1 + k4)+

∫ x−

y−
ds ((k1 + k4) + (e1 + e4)A(s))2

)]
. (3.14)

This indicates that the entire 4-point tree amplitude is supported on (d−1)-dimensional mo-

mentum conservation as well as overall charge conservation (i.e.,
∑4

r=1 er = 0), as expected.

It is straightforward to show that in a flat background the remaining light cone integrations

can be performed analytically, resulting in the well-known 4-point gluon expression.

4 Colour-kinematics duality

The Jacobi identity for structure constants of the gauge group ensures that there are linear

relations between the colour structures contributing to every gluon amplitude beyond three

points. In a flat perturbative background, colour-kinematics duality is the statement that

kinematic ‘numerators’ of the amplitudes obey the same linear dependence relations as

these colour structures [1]. Around a flat background, it is well-known that the 4-point

tree-level gluon amplitude can be written as

A4|flat = g2 δd

(
4∑
r=1

kr

) (
csNs

s
+
ctNt

t
+
cuNu

u

)
, (4.1)

where the cs are colour factors built from the structure constants,

cs := fa1a2b fba3a4 , ct := fa1a3b fba2a4 , cu := fa1a4b fba2a3 , (4.2)

the Ns are kinematic numerators and s, t, u are the standard Mandelstam invariants. The

only non-trivial step in obtaining this expression is the conversion of the contact contribu-

tion to the amplitude into a sum of exchange contributions, but this is easily accomplished

by simply multiplying and dividing by the appropriate Mandelstam invariants.

The colour factors appearing in this amplitude are not linearly independent, due to

the Jacobi identity

cs − ct + cu = 0 . (4.3)

Colour-kinematics duality for this amplitude is the statement: [1]:

Ns −Nt +Nu = 0 , (4.4)

namely, that the kinematic numerators obey the same Jacobi-like identity. Since the colour

structure of the 4-point gluon amplitude is un-affected by the presence of a background

plane wave gauge field, the colour Jacobi identity is un-changed. It is natural to ask: does

the colour-kinematics duality continue to hold in the presence of the background field?

Obviously, (4.4) cannot be näıvely generalized to the plane wave background: first of

all, the 4-point amplitude cannot be written in the simple form (4.1) as there are integrals

which cannot be performed analytically. In this sense, it is not even clear how to identify

the analogues of ‘kinematic numerators’ or indeed how to combine them in a sensible linear

relation. Furthermore, there is only (d − 1)-dimensional momentum conservation on the
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plane wave background. All these factors make it seem highly un-likely that any remnant

of the duality can survive in the presence of background fields.

However, by identifying the appropriate curved background versions of the kinematic

numerators and finding a suitable linear relation between them, a plane wave analogue of

colour-kinematics duality can indeed be shown to exist. Crucially, this duality reduces in

the flat background limit to (4.4).

4.1 Colour-kinematics representation

A minimal criterion for obtaining a colour-kinematics representation (at 4-points) is the

ability to express A4 so that every contribution is associated with one of the Mandelstam

labels. The contact contribution Acont
4 given by (3.7) appears to present an obstruction,

but this is overcome after some straightforward manipulations. In terms of the colour

factors, Acont
4 can be written as:

g2

N(d)
[cs (ε1 · ε3 ε2 · ε4 − ε1 · ε4 ε2 · ε3) + ct (ε1 · ε2 ε3 · ε4 − ε1 · ε4 ε2 · ε3)

+cu (ε1 · ε2 ε3 · ε4 − ε1 · ε3 ε2 · ε4)]

∫
ddX exp

[
i

4∑
r=1

φr(X)

]
, (4.5)

which suggests that certain sets of terms should naturally be associated with each ex-

change channel.

To do this, the remaining integration must be cast in the form appearing for the

exchange channels. Take the terms in (4.5) proportional to cs:

g2cs
N(d)

(ε1 · ε3 ε2 · ε4 − ε1 · ε4 ε2 · ε3)

×
∫

ddX ddY δd(X − Y ) exp

i
∑
r=1,2

φr(X) + i
∑
s=3,4

φs(Y )

 , (4.6)

where an auxiliary integration over ddY has been inserted to make the position dependence

of the exponential compatible with the s-channel. Now, the charged scalar propagator,

G F (X,Y ) =
N(d)

2π i

∮
ddk

k2 + i ε
exp [iφk(X)− iφk(Y )] , (4.7)

obeys an equation of motion

DµDµ G F (X,Y ) = δd(X − Y ) = D′µD′µ G F (X,Y ) , (4.8)

for Dµ the covariant derivative with respect to X and D′µ the covariant derivative with

respect to Y . This scalar propagator enables a trivial re-writing of (4.6):

g2cs
2N(d)

(ε1 · ε3 ε2 · ε4 − ε1 · ε4 ε2 · ε3)

∫
ddX ddY

(
DµDµ G F (X,Y )

+D′µD′µ G F (X,Y )
)

exp

i
∑
r=1,2

φr(X) + i
∑
s=3,4

φs(Y )

 , (4.9)
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where the conversion into a wave operator acting on the propagator has been done sym-

metrically with respect to X and Y derivatives.

After integrating by parts twice on each term of the integrand and then performing as

many integrations as possible, one finds:

− g2 δd−1

(
4∑
r=1

kr

)
cs (ε1 · ε3 ε2 · ε4 − ε1 · ε4 ε2 · ε3)

×
∫

d2µ[s]
(
K1 ·K2(x−) +K3 ·K4(y−)

)
+ (x− ↔ y−) , (4.10)

which is now manifestly in a form compatible with the s-channel exchange contribu-

tion (3.8). Similar manipulations can be performed on the terms in (4.5) proportional

to ct and cu, with the result that the 4-point amplitude is re-cast in the form:

A4 = g2 δd−1

(
4∑
r=1

kr

)(
cs

∫
d2µ[s]ns + ct

∫
d2µ[t]nt + cu

∫
d2µ[u]nu

)
, (4.11)

where integrands associated to each channel are

ns = [ε1 · ε2 (K1 −K2)µ + 2ε1 ·K2 ε
µ
2 − 2ε2 ·K1 ε

µ
1 ] (x−) Ds

µν(x−, y−)

× [ε3 · ε4 (K4 −K3)ν − 2ε3 ·K4 ε
ν
4 + 2ε4 ·K3 ε

ν
3 ] (y−)

− (ε1 · ε3 ε2 · ε4 − ε1 · ε4 ε2 · ε3)
(
K1 ·K2(x−) +K3 ·K4(y−)

)
+ (x− ↔ y−) , (4.12)

nt = [ε1 · ε3 (K1 −K3)µ + 2ε1 ·K3 ε
µ
3 − 2ε3 ·K1 ε

µ
1 ] (x−) Dt

µν(x−, y−)

× [ε2 · ε4 (K4 −K2)ν − 2ε2 ·K4 ε
ν
4 + 2ε4 ·K2 ε

ν
2 ] (y−)

− (ε1 · ε2 ε3 · ε4 − ε1 · ε4 ε2 · ε3)
(
K1 ·K3(x−) +K2 ·K4(y−)

)
+ (x− ↔ y−) , (4.13)

nu = [ε1 · ε4 (K1 −K4)µ + 2ε1 ·K4 ε
µ
4 − 2ε4 ·K1 ε

µ
1 ] (x−) Du

µν(x−, y−)

× [ε2 · ε3 (K3 −K2)ν − 2ε2 ·K3 ε
ν
3 + 2ε3 ·K2 ε

ν
2 ] (y−)

− (ε1 · ε2 ε3 · ε4 − ε1 · ε3 ε2 · ε4)
(
K1 ·K4(x−) +K2 ·K3(y−)

)
+ (x− ↔ y−) . (4.14)

The representation (4.11) is the closest we can get to the colour-kinematics representa-

tion (4.1) for the 4-point gluon amplitude in a plane wave background. Indeed, in the flat

background limit, it is easy to see that the two representations are equal; in particular∫
d2µ[s]ns

∣∣∣∣
A=const.

= δ

(
4∑
r=1

k− r

)
Ns

s
, (4.15)

and likewise for the other channels.

4.2 Kinematic Jacobi identity

In searching for a notion of colour-kinematics duality on a plane wave background, the

key question is: what is a reasonable analogue of the kinematic Jacobi identity (4.4) in the

background field? In a flat background, isolating the kinematic numerators entails stripping

off overall momentum conserving delta functions and scalar propagators. In the plane wave
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background, there are (d− 1) such delta functions which can be trivially stripped off, but

the ingredients which would have led to the dth-momentum conserving delta function as

well as propagator factors in a flat background are now encoded in the complicated integral

measures d2µ[s], etc.

This suggests that the appropriate analogues of the kinematic numerators {Ns, Nt, Nu}
in a plane wave are in fact the ‘tree-level integrands’ {ns, nt, nu} defined by (4.12)–(4.14).

Of course, these objects are highly gauge dependent (indeed, the gauge invariant ampli-

tude is only obtained after summing their integrals), but then again so are the kinematic

numerators in the flat background. Furthermore, (4.15) demonstrates that isolating (for

instance) ns is equivalent to isolating Ns in the flat background limit. This notion of work-

ing with ‘tree-level integrands’ was already seen to be useful when considering the double

copy between 3-point gluon and graviton amplitudes on plane wave background [17].

However, the {ns, nt, nu} are still not suitable to be combined in a linear relation akin

to (4.4) due to the presence of Dµν(x−, y−) insertions. For example, isolating all terms

proportional to ε1 · ε2 ε3 · ε4 in the tree-level integrands and combining them in a relation

analogous to (4.3) leads to

(ns − nt + nu) |ε1·ε2 ε3·ε4 = (K1 −K2)µ(x−) Ds
µν (K4 −K3)ν(y−) +K1 ·K3(x−) (4.16)

+K2 ·K4(y−)−K1 ·K4(x−) +K2 ·K3(y−) + (x− ↔ y−) .

Not only is this expression non-vanishing, it also seems to have no interesting structure —

other than vanishing in the flat background limit.

The problem lies with the insertions of Dµν . These encode the tensor structure of the

propagator (which we certainly want to include in any plane wave analogue of a kinematic

numerator), but they also carry information akin to a scalar propagator. This is because

Dµν ‘knows’ about the exchanged momenta and charges associated to the channel in which

it appears. For example, in the s-channel, Ds
µν contains terms proportional to

e1 + e2

(k1 + k2)+
. (4.17)

Although such terms vanish in the flat background limit (they are always accompanied by

factors of ∆A), their inclusion on a plane wave background is akin to including denomina-

tors associated with a scalar propagator. Indeed, it is precisely these terms which obstruct

the combination ns − nt + nu from giving something nice, as demonstrated by (4.16).

Resolving this problem boils down to setting all exchanged momenta/charge factors

in Dµν equal across all channels before forming any linear relation between the integrands.

Intuitively, this can be thought of as ‘putting everything over a common denominator’; the

flat background analogue would be to consider a kinematic Jacobi identity

Ns

s
− Nt

s
+
Nu

s
= 0 , (4.18)

which is, of course, identical to (4.4). To operationalize this procedure, select a reference

channel: this can be any one of s, t or u. Without loss of generality, we choose the s-channel.

Define a map σ which acts on the Dµν insertions as:

σ
(
Ds
µν

)
= Ds

µν , σ
(
Dt
µν

)
= Ds

µν , σ
(
Du
µν

)
= Ds

µν , (4.19)

– 18 –



J
H
E
P
0
2
(
2
0
1
9
)
1
9
8

setting all factors appearing in the integrands which are associated to exchanged momenta

equal to (4.17). In the flat background limit, σ reduces to the identity map.

This enables us to consider a linear combination of the tree-level integrands with

relative signs chosen to mimic the colour Jacobi relation (4.3), namely:

σ (ns − nt + nu) . (4.20)

The various terms which enter this can be classified by their dependence on the particle

polarizations; in particular, terms either go like (ε · ε)2 or (ε · ε)1. Overall covariance of

the integrands ensures that considering particular representatives of each class captures

the general behaviour. To this end, we can look explicitly at terms proportional to ε1 ·
ε2 ε3 · ε4 as representatives of (ε · ε)2, and terms proportional to a single power of ε1 · ε2 as

representatives of (ε · ε)1.

Adopting the notation

Kµ
i (x−) Ds

µν(x−, y−)Kν
j (y−) := (i|s|j) ,

εµi (x−) Ds
µν(x−, y−)Kν

j (y−) := (εi|s|j) ,
(4.21)

for contractions between momenta or polarizations via the propagator tensor structure, all

terms proportional to ε1 · ε2 ε3 · ε4 in each of the integrands are given by:

ns|ε1·ε2 ε3·ε4 = (1− 2|s|4− 3) , (4.22)

nt|ε1·ε2 ε3·ε4 = −(1|t|1 + 3)− (2|t|2 + 4) , (4.23)

nu|ε1·ε2 ε3·ε4 = −(1|u|1 + 4)− (2|u|2 + 3) , (4.24)

before symmetrizing over x− ↔ y−. In arriving at these expressions, one makes exten-

sive use of the identity (2.37); for instance, the first t-channel contribution (4.23) is ob-

tained from

K1 ·K3(x−) = K1 · (K1 +K3)(x−) = Kµ
1 (x−) Dt

µν(x−, y−) (K1 +K3)ν(y−) = (1|t|1 + 3) .

(4.25)

Symmetrizing over x− ↔ y− and applying the map σ, one immediately discovers that

σ (ns − nt + nu) |ε1·ε2 ε3·ε4 = 0 . (4.26)

So the (ε · ε)2 structures in the linear combination (4.20) obey a Jacobi-like identity.

Observing that (εi|`|εj) = εi · εj for any choice of channel ` = s, t, u and polarization

vectors, it follows that all terms proportional to a single power of ε1 · ε2 are given in each

tensor structure by:

ns|ε1·ε2 = 2 [(3 + 4|s|ε3) (2− 1|s|ε4) + (1− 2|s|ε3) (3 + 4|s|ε4)] , (4.27)

nt|ε1·ε2 = −4 (ε3|t|1 + 3) (2 + 4|t|ε4) , (4.28)

nu|ε1·ε2 = −4 (2 + 3|u|ε3) (ε4|u|1 + 4) , (4.29)

before symmetrizing x− ↔ y−. Note that the position dependence of the polarization

vectors differs between the channels: in the s-channel, all polarization vectors are evaluated
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at y− whereas in the t and u channels the dependence is split. It is useful to arrange the

contributions from all channels so that (before symmetrization) the position dependence

of the polarizations is uniform; this leads to a re-expression of the contributions from the

t- and u-channels:

nt|ε1·ε2 = −4 (1 + 3|t|ε3) (2 + 4|t|ε4)− 4 (2 + 4|t|ε4)
ε3 ·∆A

k+ 3
(k+ 1e3 − k+ 3e1) , (4.30)

nu|ε1·ε2 = −4 (2 + 3|u|ε3) (1 + 4|u|ε4)− 4 (2 + 3|u|ε3)
ε4 ·∆A

k+ 4
(k+ 1e4 − k+ 4e1) . (4.31)

Upon symmetrizing with respect to x− ↔ y−, it follows that

ns|ε1·ε2 = (3+4|s|ε3)(2−1|s|ε4)+(1−2|s|ε3)(3+4|s|ε4)

+(ε3|s|3+4)(ε4|s|2−1)+(ε3|s|1−2)(ε4|s|3+4) (4.32)

nt|ε1·ε2 =−2[(1+3|t|ε3)(2+4|t|ε4)+(ε3|t|1+3)(ε4|t|2+4)]+2
ε3 ·∆Aε4 ·∆A

k+3 k+4
pt , (4.33)

nu|ε1·ε2 =−2[(2+3|u|ε3)(1+4|u|ε4)+(ε3|u|2+3)(ε4|u|1+4)]+2
ε3 ·∆Aε4 ·∆A

k+3 k+4
pu , (4.34)

where p` is a polynomial defined for each channel ` = s, t, u as

ps = (k+1e2−k+2e1)(k+3e4−k+4e3) , pt = (k+1e3−k+3e1)(k+2e4−k+4e2) , (4.35)

pu = (k+1e4−k+4e1)(k+2e3−k+3e2) .

It is easy to see that the map σ acts on these polynomials in the fashion

σ(ps) = ps , σ(pt) = ps , σ(pu) = ps , (4.36)

since the polynomials themselves arise from manipulations of terms which are constructed

from Dµν insertions appropriate to each channel. This leaves us with all ingredients nec-

essary to consider the contributions of terms proportional to a single power of ε1 · ε2 in

the linear relation (4.20). In doing so, a rather interesting fact is essential: despite the

fact that the plane wave background results in reduced momentum conservation, momenta

contracted with a polarization (either through the metric or Dµν) act as if they were con-

served. This is because the polarizations project out any components of momentum in

the x− lightcone direction — which is precisely the direction in which momentum is not

conserved. As a result, identities such as

(1 + 2|s|εi) = −(3 + 4|s|εi) , (4.37)

are true for any i = 1, 2, 3, 4.

After some algebraic manipulations (on the support of (d−1)-dimensional momentum

conservation), the final result is:

σ (ns − nt + nu) |ε1·ε2 = (3|s|ε3) (2− 1|s|ε4) + (ε3|s|3) (ε4|s|2− 1)

+ (1− 2|s|ε3) (4|s|ε4) + (ε3|s|1− 2) (ε4|s|4) . (4.38)

– 20 –



J
H
E
P
0
2
(
2
0
1
9
)
1
9
8

Although this is non-zero, it does have a highly constraining structure. In particular, every

term in (4.38) is proportional to (i|s|εi), which reduces to Ki · εi = 0 in a flat background.

Thus, the Jacobi identity is obstructed by what could be refered to as ‘deformed gauge

conditions’: (i|s|εi) is deformed away from being pure gauge by the dependence of Dµν on

the background field.

It is easy to see that the same thing happens for all contributions to (4.20) propor-

tional to a single power of ε · ε. Define a congruence relation ' by ‘equal up to deformed

gauge conditions,’ then the full statement of colour-kinematics duality on a plane wave

background is that the kinematic integrands obey a Jacobi relation:

σ (ns − nt + nu) ' 0 . (4.39)

It should be emphasized that this relationship reduces to the standard kinematic Jacobi

identity (4.4) in the flat background limit.

5 Further directions

By studying tree-level, four-gluon scattering on a sandwich plane wave background, we have

demonstrated that a generalization of colour-kinematics duality persists in the presence of

background curvature. There are many extensions and applications of this result which

should be explored in the future, but we briefly discuss three of them here: double copy,

higher points, and loops.

5.1 Double copy

The great utility of colour-kinematics duality on a flat perturbative background is the abil-

ity to trivially generate gravition scattering amplitudes at a given particle and loop order

once the gauge theory amplitude of the same order is known in a colour-kinematics repre-

sentation [1, 13, 14]. Indeed, in such a representation one only needs to replace the colour

structures of the gauge theory amplitude with another copy of the kinematic numerators

to obtain the gravitational scattering amplitude. This double copy procedure reduces the

computation of scattering amplitudes in perturbative gravity to finding a colour-kinematics

representation for their gauge theory counterparts (at the level of the integrand).

It is a theorem that colour-kinematics representations can always be found at tree-

level [2–6], and there is remarkable evidence in favour of the existence of such represen-

tations at higher loops as well [11, 37–44]. Combined with double copy, this has enabled

remarkably calculations in perturbative supergravity, up to five loops with four external

gluons at the time of writing [12, 15]. However, it is not at all clear how — or if — double

copy should generalize to gauge theory and gravity on non-trivial perturbative backgrounds.

In [17] it was shown that a double copy relationship between gauge theory and gravity

exists at the level of three-point amplitudes on plane wave backgrounds (cf., [45, 46] for

other approaches to double copy on curved backgrounds such as AdS). This relationship is

more intricate than the simple squaring relation on a flat background, and includes certain

replacement rules for converting the background gauge field of the gluon amplitude into

the background metric of the graviton amplitude. The results of this paper suggest a
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natural way to proceed with double copy at four-points: namely, by replacing the colour

factors {cs, ct, cu} appearing in (4.11) with another copy of the (suitably integrated) tree-

level integrands {ns, nt, nu}. After implementing the replacement rules for the background

fields, we conjecture that such a procedure will generate the four-point graviton amplitude

on a plane wave space-time. Of course, to check this one must first compute this graviton

amplitude explicitly; this is the subject of on-going work. It is possible that the deformed

gauge conditions could generate unwanted terms in the gravitational amplitude which

would need to be systematically subtracted, but to ascertain this an explicit formula for

the four-graviton amplitude is needed.

5.2 Higher points

Using integration by parts arguments it is clear that the n-point tree-level gluon amplitudes

on the plane wave background can always be put into the form

An = gn−2 δd−1

(
n∑
r=1

kr

) ∑
Γ∈cubic

cΓ

∫
dµΓ nΓ , (5.1)

where the sum is over the (2n − 5)!! possible cubic diagrams, and cΓ, dµΓ, nΓ are the

associated colour factors, (n− 2)-dimensional measures, and tree-level integrands, respec-

tively. Due to the Jacobi identity, only (n − 2)! of the colour factors are independent, so

the statement of colour-kinematics duality becomes

cα − cβ + cγ = 0 ⇐⇒ σ (nα − nβ + nγ) ' 0 , (5.2)

for any cubic graphs α, β, γ whose colour factors are related by this Jacobi identity.

In the four-point case studied here, the assignment of contact terms (i.e., the contri-

bution of the 4-point vertex) to each of the three exchange channels was straightforward

as there are only three colour structures and one Jacobi identity between them. However,

at higher points this is not the case: the five-gluon tree amplitude has 15 independent

exchange structures (each with two propagators) but only six independent colour struc-

tures [1]. This makes the assignment of contributions from contact terms to each exchange

structure much more non-trivial.

On a flat background, the crucial guiding structures are the kinematic Jacobi identities

themselves. In particular, the requirement of colour-kinematics duality non-trivially con-

strains the representation of the amplitudes at higher points: every way of breaking apart

the contact terms consistent with the colour structures does not obey colour-kinematics

duality. Explicit solutions for the appropriate kinematic numerators have now been given

using a variety of different methods (e.g., [4, 47]).

On a plane wave background, the colour structures and Jacobi identities relating them

will be the same as in flat space. By virtue of the fact that (5.2) reduces to the identity

Nα −Nβ + Nγ = 0 for kinematic numerators in the flat background limit, it is clear that

the plane wave colour-kinematics duality non-trivially constrains the representations of

amplitudes beyond four-points.
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K K
′

L

L
′

Figure 4. The ghost loop contribution to the gluon self-energy.

It would be interesting to see how this works explicitly, even at five-points. All con-

tributions to the tree-level five-gluon amplitude are proportional to one or two powers of

(ε · ε). At four points, those terms proportional to (ε · ε)2 obeyed the kinematic Jacobi

identity with an exact equality, while those proportional to only a single power of (ε · ε)
obeyed the identity only up to the ' relation. Does the same thing happen at five points?

5.3 Loops

Having determined the complete set of Feynman rules for gauge theory on a plane wave

background, computations at all orders in perturbation theory are, at least in principle,

possible. It would be intriguing to apply these Feynman rules at loop level. In the spirit

of this paper, one interesting question would be the fate of colour-kinematics duality for

the one-loop, four-point gluon amplitude. But on an even more basic level, one could

consider one-loop corrections to the gluon self-energy. As on a flat background, this recieves

contributions from three different Feynman diagrams: the gluon loop, gluon tadpole, and

ghost loop. Of these three, the ghost loop (see figure 4) is the simplest since the scalar

ghosts in the loop produce the simplest tensor structure.

Let us see how far we can get trying to evaluate this particular Feynman diagram

in a plane wave background. The usual subtleties associated with the background mean

that a priori we can make no assumptions about the relationships between the momenta

K,K ′, L, L′ without due care. The most basic expression for the ghost loop is therefore:

g2C2(G) δab
∫

ddX ddY
ddl

l2 + i ε

ddl′

(l′)2 + i ε
L′µ(x−)Lν(y−)

× exp [i (φk(X) + φk′(Y ) + φl(X)− φl(Y ) + φl′(Y )− φl′(X))] , (5.3)

where C2(G) is the quadratic Casimir of the gauge group. Performing all the straightfor-

ward integrations in this expression gives various relations:

e′ = −e , el′ = e+ el , k′+ = −k+ , k′ = −k , (5.4)

l′+ = (k + l)+ , l′ = k + l , l− =
l2

2 l+
, l′− =

(k + l)2

2 (k + l)+
,
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and leaves

g2C2(G)δab
∫

dx−dy−dl+ dd−2l

l+ (k+l)+
L′µ(x−)Lν(y−)Θ(x−−y−)

×exp

[
i

(
k−x

−+k′−y
−+

1

2k+

∫ x−

y−
ds
(
2ek·A(s)+e2 A2(s)

)
+

1

2 l+

∫ x−

y−
ds (l+elA(s))2− 1

2(k+l)+

∫ x−

y−
ds (k+l+(e+el)A(s))2

)]
, (5.5)

plus another contribution with support on y− > x−.

It is easy to see that in the flat background limit, the remaing two light cone position

integrals can be performed analytically, and the result is equal to the usual momentum

space Feynman rules expression for the ghost loop in flat space. As is well-known, the

flat-background contains UV divergences in the loop momentum integral and it seems that

the same divergences underly the plane wave expression (5.5).

In the simpler (but related) context of QED on a plane wave background, the one-

loop correction to the photon self-energy has been computed (for both on- and off-shell

photons) [48–50], and divergences were suitably regularized using ‘transverse dimensional

regularization’ [51]. This scheme regularizes divergences through the number of transverse

dimensions in the light cone coordinates (i.e., dd−2l→ dd−2−εl). It would be interesting to

see how far these techniques from QED can be pushed for Yang-Mills theory, with a view to

fully regularizing (5.5) as well as the other diagrams contributing to the gluon self-energy

at one loop

5.4 Ambitwistor strings

An additional motivation for computing the 4-point gluon amplitude on a plane wave

background is to provide ‘theoretical data’ against which other methods for performing

perturbative calculations in gauge theory can be checked. One example of such a method

are ambitwistor strings [52], a class of worldsheet models which describe field theories.

On flat perturbative backgrounds, ambitwistor strings underpin the remarkable scattering

equations formulae for the tree-level S-matrix of a wide array of massless QFTs [53, 54].

Furthermore, coupling ambitwistor strings to curved (gauge or gravitational) background

fields imposes the non-linear field equations on the background fields exactly, without any

recourse to background perturbation theory [55, 56].

Combined with the form of the worldsheet vertex operators on any such back-

ground [57], this raises the possibility that ambitwistor strings could shed new light on

observables in QFT on curved perturbative backgrounds. Indeed, we already showed that

the 3-point tree-level amplitudes (3.2) can be obtained from a genus zero, three point cor-

relation function in the heterotic ambitwistor string coupled to a background plane wave

gauge field [58]. However, going to n > 3 points in the ambitwistor string requires new

insights: the analogue of the scattering equations on a curved background is not known,

or equivalently, there are moduli integrals on curved backgrounds which cannot be per-

formed trivially.
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Nevertheless, there are hints that the worldsheet may nevertheless reproduce the 4-

point amplitude (4.11) if these moduli integrals are handled appropriately, see [59–61].

On a flat background, ambitwistor strings result in n − 3 moduli integrals for n vertex

insertions at genus zero; these integrals are performed against delta functions which impose

the scattering equations. On a curved background, these n − 3 moduli integrals can no

longer be straightforwardly evaluated against delta functions, and in the specific case of a

plane wave background there will be an additional zero mode integral (corresponding to

the light cone coordinate x−) which cannot be analytically performed. But this leaves n−2

integrals, which matches exactly the counting for a n-point tree-level scattering amplitude

(expanded in cubic graphs) in a plane wave background.
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