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Classical finite-element and boundary-element formulations for the Helmholtz equa-
tion are presented, and their limitations with respect to the number of variables
needed to model a wavelength are explained. A new type of approximation for the
potential is described in which the usual finite-element and boundary-element shape
functions are modified by the inclusion of a set of plane waves, propagating in a range
of directions evenly distributed on the unit sphere. Compared with standard piece-
wise polynomial approximation, the plane-wave basis is shown to give considerable
reduction in computational complexity. In practical terms, it is concluded that the
frequency for which accurate results can be obtained, using these new techniques,
can be up to 60 times higher than that of the conventional finite-element method,
and 10 to 15 times higher than that of the conventional boundary-element method.
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1. Introduction and statement of the problem

There is considerable interest in many application fields in the solution of the Helm-
holtz equation when the wavelength is short. There are important applications in elec-
tromagnetic scattering (radar cross-sections, electromagnetic compatibility, mobile
telephones, etc.), in high-frequency acoustics (aircraft and road-vehicle noise), and
geophysics (hydrocarbon exploration), to name but a few. The economic importance
of a reliable and computationally efficient solution to such problems is difficult to
overstate.

Current finite and boundary-element solutions both suffer from the well-known
‘10 degrees of freedom per wavelength’ requirement if reliable solutions are sought.
In many applications, this leads to very large problems and intolerable complexity,
so that, even on the largest computers either built or in prospect, there is a limit to
the upper frequency that can be considered, which is well below the range of high
frequencies of practical interest. There is therefore a significant theoretical impetus
to extend finite and boundary-element methods to attack short-wave problems. In
the last decade, numerous numerical methods were devised for this purpose (Bett-
ess 2004). Mainly developed for domain-based methods, one direction of particular
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interest to us is the reduction of the complexity by considering a more elaborate
basis to approximate the unknown field. In this regard, Trefftz-type methods involve
looking for an approximate solution of a boundary-value problem, from among the
sets of functions that satisfy exactly the differential equation, but do not necessar-
ily satisfy the prescribed boundary conditions. Many researchers applied this idea
to the Helmholtz problem (Cheung et al . 1991; Stojek 1998; Monk & Wang 1999;
Farhat et al . 2001). In the same vein, the ultraweak variational formulation (UWVF)
introduced by Després (1994) and Cessenat & Després (1998) benefits from more
solid theoretical foundations and has been recently extended for the inhomogeneous
wave equation (Huttunen et al . 2002). All these techniques share the same feature
that ‘inter-element continuity’ is not automatically satisfied, and this needs to be
enforced by means of appropriate treatments (except maybe for the UWVF, where
conformity is ensured in the formulation itself). In the same period, Babuška &
Melenk (1997) introduced the partition-of-unity finite-element method (PUFEM).
The PUFEM offers an easy way to include analytical information about the prob-
lem being solved in a conventional finite-element space. This has the advantage of
preserving both a priori knowledge about the local behaviour of the solution and
conformity. Compared with standard finite elements, the use of the plane-wave basis
in the PUFEM has been shown to give significant reduction in computational com-
plexity when solving the Helmholtz equation in two-dimensional domains (Melenk &
Babuška 1996; Mayer & Mandel 1997; Laghrouche & Bettess 2000; Ortiz & Sanchez
2001; Laghrouche et al . 2002).

By using geometrical optics arguments, the plane-wave basis as introduced in
the PUFEM has been investigated theoretically by de La Bourdonnaye (1994a, b)
under the title of ‘microlocal discretization’ (MD) for solving scattering problems
with integral equations. The method was developed further by Perrey-Debain et
al . (2003a, b) for bi-dimensional obstacles. In practical terms, the results of their
work show that the plane-wave basis enables the supported frequency range to be
extended by a factor of 3–4 over conventional boundary elements even for non-convex
complex geometries. A particular use of the MD where only the incident plane wave
is included in the basis can be found in Abboud et al . (1995) and Darrigrand (2002).
However, this asymptotic method is restricted to convex obstacles and sufficiently
high frequency.

In the present paper, we are dealing with the numerical implementation and
efficiency assessment of the plane-wave basis in both finite-element and boundary-
element contexts for three-dimensional Helmholtz problems. The delicate question
of numerical stability due to conditioning problems of the resulting algebraic system
is briefly mentioned and it is believed that these issues merit a separate paper.

The problem under consideration is an exterior acoustic scattering problem. To be
precise, we wish to find the field distribution Φ = Φ(r) in a domain Ω in R

3 exterior
to a closed bounded regular surface Γ . For a perfectly reflecting surface, the scalar
field Φ satisfies the following problem:

∆Φ + κ2Φ = 0 in Ω, (1.1)

∂Φ

∂n
= 0 on Γ, (1.2)

lim
r→∞

r

(

∂ΦS

∂r
− iκΦS

)

= 0, (1.3)
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Figure 1. Problem statement and notation. Typical triangular and
rectangular patches on the scattering surface are also shown.

Figure 2. Rectangular- and triangular-type finite elements.

where κ is the wavenumber (so that λ = 2π/κ is the wavelength), r = |r| is the
distance between the origin and the position r = (x, y, z), n denotes the outward
normal unit vector on the surface Γ , ΦS = Φ − ΦI is the scattered field, and ΦI is a
prescribed incident plane wave. Variables ϕ and θ stand for the classical spherical
angular coordinates as illustrated in figure 1.

2. Plane-wave basis finite elements

(a) Mathematical Formulation

The finite-element discretization of the exterior scattering problem can be achieved
if the Sommerfeld condition (1.3) is replaced by its approximation on an artificial
boundary that delimits a finite computational domain Ω′ ⊂ Ω. At this boundary,
the scattered potential behaves as eiκr/r and therefore a simple local form of such
an artificial absorbing condition is given by the approximation

∂ΦS

∂r
+

ΦS

r
− iκΦS = 0 on Γ∞, (2.1)

where the spherical surface Γ∞ is the outer part of the boundary of Ω′. Whereas
more sophisticated boundary conditions can be found in Bayliss et al . (1992), the
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approximate condition (2.1) has the advantage of being easier to implement and
performs well as long as the external boundary is located sufficiently far from the
scatterer. A standard weighted residual scheme is applied to the Helmholtz equa-
tion, so the inner product (we took the scattered potential as the unknown for pure
convenience)

∫

Ω′

W (∆ΦS + κ2ΦS) dΩ′ = 0, (2.2)

where W is a properly chosen weighting function, gives the governing integral equa-
tion for the problem. Applying Green’s first theorem with (1.2) and (2.1), the problem
is formulated in a weak form as

B(W, ΦS) =

∫

Γ

W
∂ΦI

∂n
dΓ, (2.3)

where B denotes the bilinear form

B(W, ΦS) =

∫

Ω′

(∇W · ∇ΦS − κ2WΦS) dΩ′ +

∫

Γ∞

W

(

1

r
− iκ

)

ΦS dΓ∞. (2.4)

Let the domain Ω′ be partitioned into K non-overlapping subdomains Ωk, k =
1, . . . , K. Each subdomain, or finite element in the engineering terminology, is given
through a coordinate transformation r = Lk(η) between the real space and the local
system η = (η1, η2, η3) ∈ L. As illustrated in figure 2, they can be either of rectan-
gular type with L = [−1, 1]3 or of triangular type with L = T × [−1, 1], where T
denotes the triangular domain

T = {η1 � 0, η2 � 0, η1 + η2 � 1}. (2.5)

Using a conventional piecewise linear finite-element space, the quantity ΦS on Ωk

is approximated as

ΦS =

#vert
∑

p=1

Np(η)Φp, #vert = 6 or 8, (2.6)

where Np denotes the (P1) Lagrangian polynomial on L and Φp are the nodal values
corresponding to the vertices of L (#vert = 6 for the triangular type and #vert = 8
for the rectangular type). The linear approximation (2.6) requires the mesh size to be
of order λ/10 and suffers from the so-called ‘dispersion and pollution effects’ for high
wavenumbers (Ihlenburg & Babuška 1995, 1997). These limitations can be alleviated
if a set of plane waves travelling in multiple directions is also included. Following
Babuška & Melenk (1997), the new plane-wave approximation reads

ΦS =

#vert
∑

p=1

Np(η)

Qp
∑

q=1

exp(iκξq
p · r)Φq

p, (2.7)

where the point r describes the subdomain Ωk. Coefficients Φq
p no longer represent

the nodal values, but are now the amplitudes of the set of Qp plane waves associated
with each vertex p. If two subdomains share a common vertex, then the associated
set of directions and amplitudes are identical. This guarantees the continuity of the
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potential all over the computational domain Ω′. The plane-wave directions may be
distributed evenly on the unit sphere, but may also be irregularly distributed if, for
example, some knowledge about a prevailing wave direction is available. We leave this
last point for further studies and, in this paper, directions ξq

p are built by discretizing
uniformly the surface of the cube [−1, 1]3 by points uq, q = 1, . . . , Qp; unit vectors
are then simply obtained by ξq

p = uq/|uq|.

(b) Implementation and results

In this work, a Galerkin scheme is used so that the test function W is chosen from
the plane-wave basis functions (2.7). This choice leaves us with the numerical evalu-
ation of oscillatory functions to be integrated over multi-wavelength sized elements.
They are of the form

∫

Ωk

f(η) exp(iκ(ξq
p + ξ

q′

p′) · r) dΩk, (2.8)

where f(η) is a ‘slow’ varying function and a prime refers to the test function. Spe-
cial integration rules were developed to integrate such forms in two dimensions for
some simple geometry finite elements (Ortiz & Sanchez 2001; Bettess et al . 2003).
In this paper, high-order Gauss–Legendre integration schemes are used. Integrals
over rectangular subdomains are computed in a straightforward manner using one-
dimensional integration formulae over the interval [−1, 1]. Integration over the tri-
angular domain T is carried out by general Cartesian product rules (Krommer &
Ueberhuber 1998) as

∫ 1

0

∫ η0

0

F (η1, η0) dη1 dη0 ≈
n0
∑

i=1

c
(n0)
i t

(n0)
i

n1,i
∑

j=1

c
(n1,i)
j F (t

(n0)
i t

(n1,i)
j , t

(n0)
i ), (2.9)

where η0 = η1 + η2 and F is the quantity to be integrated. The set

{c
(n)
i ; t

(n)
i ; i = 1, . . . , n}

stands for the classical quadrature weights and abscissae of the n-point Gauss–
Legendre formula on the interval [0, 1]. In order to get a homogeneous distribution of
the integration points, n1,i is taken to be linearly varying with the η0-coordinate as
n1,i = ⌊αn0t

(n0)
i ⌋ + β. In practice, α = 1 and β = 10 have been found to be adequate,

though other choices are possible.
To assess the accuracy of the method, we consider the case of an incident plane

wave impinging on a rigid sphere of unit radius. This problem has an analytical solu-
tion that can be found in standard textbooks such as Morse & Feshbach (1953). Now,
let R be the radius of the outer surface Γ∞ and Ω′ = {r such that 1 � |r| � R} be
the computational domain. Numerical errors due to some geometrical approximation
can be avoided if subdomains are built so that they exactly describe the scattering
and outer surfaces. This can be performed by first partitioning the unit sphere with
I longitude lines and J latitude lines as illustrated in figure 1. Rectangular patches
are given by the spherical angles (θ, ϕ) via linear interpolation

θ = 1
2(1 + η2)

π

J + 1
+ θ0, ϕ = (1 + η1)

π

I
+ ϕ0, (2.10)
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Figure 3. Scattered potential around the sphere, κ = 2π: (a) real part, (b) imaginary part.
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Figure 4. Scattered potential around the sphere, κ = 5π: (a) real part, (b) imaginary part.

where θ0 and ϕ0 are constants depending on the patch location. However, around
the poles, triangular-type patches must be used and spherical angles are given by
the following transformation (this example refers to the north pole):

θ = (η1 + η2)
π

J + 1
and ϕ =

(

η1

η1 + η2

)

2π

I
+ ϕ0. (2.11)

The partitioning of Ω′ is finally achieved by subdividing the interval [1, R] into L
equal sized intervals over each of which the radius is obtained via linear interpolation.
This operation leads to I ×(J +1)×L subdomains with (I ×J +2)×(L+1) vertices.

In the following applications, Ω′ is partitioned with a constant number of subdo-
mains with I = 8 longitude lines, J = 4 latitude lines and L = 4 layers. Thus, a total
of 160 finite elements with 170 vertices form the mesh. The outer surface is taken
four wavelengths distant from the scatterer (previous numerical tests show that this
is a sufficient distance for applying the radiation condition (2.1)). The number of
plane waves attached to each vertex is constant and is therefore referred to by a
single number, Q. The total number of variables needed to represent the scattered
field in the computational domain is then simply given by N = 170Q and we can
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Table 1. Plane-wave scattering by a unit sphere

test κ Q N ε2 τ

1 π 58 9 860 0.1% 2.95

2 2π 58 9 860 0.8% 2.66

3 3π 58 9 860 2.1% 2.43

4 4π 98 16 660 0.9% 2.67

5 5π 98 16 660 2.7% 2.48

define the number of degrees of freedom per wavelength τ by

τ = λ

(

N

vol(Ω′)

)1/3

, (2.12)

where vol(Ω′) is the volume of Ω′. The accuracy of the model is measured by the
relative L2(Γ )-norm error defined by

ε2 =
‖ΦS − Φ̃S‖L2(Γ )

‖Φ̃S‖L2(Γ )

, (2.13)

where ΦS and Φ̃S denote the computed and exact scattered fields, respectively.
Performances of the method are conveniently summarized in table 1. As is clearly

shown, a discretization level of about 2.5 variables per wavelength is sufficient to
achieve ca. 1% of error. Results can even improve by an order of magnitude by sim-
ply taking around three variables per wavelength. This is in agreement with the
approximation properties of the plane-wave basis when solving the Helmholtz equa-
tion (Babuška & Melenk 1997). However, it has been observed that results can quickly
deteriorate if τ is taken below 2.5. This suggests that the asymptotic complexity is
still behaving as O(κ3) as for the conventional FEM. In practical terms, this new
finite-element basis enables the compression of the information by a factor of 33 ≈ 30
to 43 ≈ 60 over conventional finite elements. These estimations are obviously sub-
ject to variations depending on the problem. Figures 3 and 4 show the scattered
potential on the surface of the sphere for κ = 2π and κ = 5π. Numerical results
are reported on the meshed half sphere and analytical solutions are reported on the
other half. Both figures show very good agreement and discrepancies are too small
to be seen. At this stage, it is believed that significant storage improvements can
still be achieved if more sophisticated non-reflecting conditions are incorporated to
reduce the size of the computational domain. Speeding up the numerical evaluation
of element matrices is another challenging issue which needs to be considered in the
near future.

3. Plane-wave basis boundary elements

(a) Mathematical formulation

The integration by parts (2.3) leads to the need to discretize the propagative medium
Ω and requires truncation of the infinite region. By choosing W as the fundamental
solution of the Helmholtz equation satisfying the radiation condition (1.3), i.e. the
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free-space Green function,

G(r, r′) =
exp(iκ|r − r′|)

4π|r − r′| , (3.1)

and, applying Green’s second identity, we arrive at the well-known Helmholtz integral
equation formulation

Φ(r) − (KΦ)(r) = 2ΦI(r), r ∈ Γ, (3.2)

where

(KΦ)(r) = 2

∫

Γ

∂G(r, r′)

∂n(r′)
Φ(r′) dΓ (r′) (3.3)

denotes the double-layer potential.
To solve (3.2), the strategy is very similar to the finite-element procedure of the

previous section. The distinctive features here are that only the discretization of the
scattering surface is needed and the integration of the singularity of the test function
has to be handled properly. The scattering surface Γ is described by a number,
K, of non-overlapping patches Γ k, k = 1, . . . , K, such that Γ k is the image of the
coordinate set T (2.5) via the regular parametrization

r = T k(η1, η2) with (η1, η2) ∈ T . (3.4)

The unknown field is approximated over the patch Γ k by a ‘surface’ plane-wave-basis
finite element as

Φ =
3

∑

p=1

Np(η1, η2)

Qp
∑

q=1

exp(iκξq
p · r)Φq

p, (3.5)

where the point r describes the surface Γ k and Np denotes the (P1) Lagrangian
polynomial on T . Directions ξq

p are chosen so that they are regularly distributed on
the unit sphere (see § 2 a). If two patches share a common vertex, then the associated
set of directions and amplitudes are identical. Thus, Φ is piecewise C∞ and globally
C0 on Γ .

(b) Element matrices and integration algorithm

The collocation method has been found to produce very accurate results for bi-
dimensional obstacles of smooth boundary line (Perrey-Debain et al . 2003a, b). More-
over, it has the advantage of being easier to implement and leads to faster integration
procedures than a Galerkin scheme. The same technique will be used here. Let M
points ri, i = 1, . . . , M , be evenly distributed over the scattering surface. Writing
(3.2) at those points yields the following system

AΦ = (W − K)Φ = b, (3.6)

where the vector Φ contains the plane-wave coefficients. The sparse matrix W can be
interpreted as a plane-wave interpolation matrix, K is the boundary-element matrix
stemming from the integral of (3.2) and b is the source vector containing the incident
field. The non invertibility of the integral operator (3.2) when κ is an eigenfrequency

Phil. Trans. R. Soc. Lond. A (2004)



Plane-wave basis finite elements and boundary elements 569

η1

η
2

Figure 5. Integration scheme over T with m = 10. The singular integration is performed over a
polygon domain (grey-coloured region) in the vicinity of the collocation point (black circles).

Table 2. Regular integration algorithm

do for k ∈ {1, . . . , K}

Regular integration for ri /∈ Γ k

do for all r
′ ∈ T k{GCPR}

compute geometrical information at r
′

compute and store plane-wave bases at r
′

do for all ri /∈ Γ k

compute kernel g(ri, r
′)

update element matrices
end do

end do

Regular integration for ri ∈ Γ k

do for all r
′ ∈ T k{LJ}

compute geometrical information at r
′

compute and store plane-wave bases at r
′

do for all ri ∈ Γ k

if r
′ /∈ T k{S(ri)}

compute kernel g(ri, r
′)

update element matrices
end if

end do

end do

end do

Phil. Trans. R. Soc. Lond. A (2004)



570 E. Perrey-Debain and others

of the corresponding interior Dirichlet problem is alleviated by completing the system
(3.6) with M0 additional constraints (Schenck 1968)

(KΦ)(r0
i ) = −2ΦI(r0

i ), i = 1, . . . , M0, (3.7)

where the points r0
i are taken to be inside the scattering obstacle.

The computation of the boundary matrix K is expected to be prohibitively long at
high frequency, since we need to integrate oscillatory functions over two-dimensional
patches of many wavelengths in extent with sufficient accuracy. Thus, the use of
the stationary phase to accelerate the calculation was suggested (Abboud et al .
1995). More recently, Darrigrand (2002) applied the fast multipole method for the
same purpose. In our work, classical quadrature rules have been employed. Typical
integrals over Γ k are of the form

∫

T

g(ri, r
′) ·

(

∂r′

∂η1
× ∂r′

∂η2

)

Np(η1, η2) exp(iκξq
p · r′) dη1 dη2, (3.8)

where r′ = T k(η1, η2) and the ri-dependent kernel g(ri, r
′) is given by

g(ri, r
′) =

exp(iκ|ri − r′|)
4π|ri − r′|3 (iκ|ri − r′| − 1)(ri − r′). (3.9)

Regular integrals (ri /∈ Γ k) are computed with general Cartesian product rules
(Krommer & Ueberhuber 1998) such that the distribution of integration points is
homogeneous over T (see (2.9)). In the following ‘GCPR’ denotes the set of those
points. To deal with singular integrals, we split the integration domain into m2 tri-
angles Tn of equal size as illustrated in figure 5,

T =

m2

⋃

n=1

Tn. (3.10)

Given the parametric coordinates of a collocation point ri, a square domain S(ri)
of side-length 3/m surrounding the singular point is defined. The planar polygon
P(ri) = S(ri)∩T is split up into a finite number of triangles with the singular point
as a common vertex. Each of these triangles is mapped onto the reference domain T
with the singularity at the origin. Then, using the nonlinear transformation (Duffy
1982),

η1 = η̄1 and η2 = η̄1η̄2, (3.11)

the singularity is removed and the integration is performed with standard quadrature
rules. For collocation points belonging to more than one patch (i.e. edges or vertices),
the integration is performed in the same manner over each patch involved.

The regular integration over the other triangles is carried out with a 19-point
formula (Lyness & Jespersen 1975) and we call ‘LJ’ the set of all those points in
T (note #LJ = 19m2). To avoid recomputing the same information (geometry and
plane-wave bases) independent of the collocation point, the code has been written
in the spirit of the Reusable Intrinsic Sample Point (RISP) algorithm (Kane 1994).
The regular integration scheme is sketched in table 2. If we fix the number of patches
K whatever the frequency, we arrive at the classical estimation that #GCPR ∼ κ2

and also #LJ ∼ κ2. Therefore, the size of the singular integration domain decreases
as κ−1 and singular integrals are computed using a constant number of integration
points. The RISP algorithm is thus optimized.
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Figure 6. Solution error as a function of (a) the frequency (no internal point); (b) the z0 coor-
dinate of one internal point (κ = 2π). Empty circles, Q = 26 (N = 156); black circles, Q = 58
(N = 348).

(c) Results

We consider scatterers given by the spherical parametrization:

r =

⎛

⎝

R1̺(θ, ϕ) sin θ cos ϕ
R2̺(θ, ϕ) sin θ sin ϕ

R3̺(θ, ϕ) cos θ

⎞

⎠ , θ ∈ [0, π], ϕ ∈ [0, 2π], (3.12)

where ̺(θ, ϕ) is a smooth admissible positive function on [0, π] × [0, 2π]. Eight tri-
angular patches are sufficient to describe the scatterer. For example, the patch cor-
responding to the first octant (θ, ϕ) ∈ [0, π/2]2 is obtained via

θ = (η1 + η2)
1
2π and ϕ =

(

η1

η1 + η2

)

π

2
, (η1, η2) ∈ T . (3.13)

We first compare our results with analytical solutions for the particular case of a
vertical plane wave impinging upon a unit sphere. In all cases, the number of direc-
tions associated with each vertex is the same and is therefore referred to by a single
number Q. Moreover, the incident plane wave is always included in the set. We call
N the total number of variables (here, it is simply given by N = 6Q). The number of
collocation points is chosen such that numerical results have stabilized and in all our
applications we considered M ∼ 1.5N . The exact position of these points is not of
crucial importance as long as they are evenly distributed on the scatterer. In our cur-
rent algorithm, this is done by considering a uniform distribution on T . Obviously, in
case of severe distortions in the mapping (3.4), this distribution might be rearranged
to ensure uniformity in the real space. This is the subject of further investigation,
and such situations will not be considered in the following discussion. Finally, the
over-determined system is solved by a standard QR decomposition algorithm for
double-precision complex data.

Figure 6a shows the effects of the irregular frequency κ = 2π (note that ε2 is
defined by (2.13)). In the absence of internal points, the solution is masked by the
internal mode and it deteriorates in a certain bandwidth centred at the resonance. As
expected, the bandwidth narrows with the quality of the approximation. The position
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Table 3. Scattering by a unit sphere (calculations performed on a 2 GHz PIV)

CPU time
test κ Q N ε2 τ (QR solver)

1 5 98 588 0.00015% 8.6 18 min 13 s (4 s)

2 10 98 588 0.013% 4.3 4 min 20 s (4 s)

3 15 98 588 1.5% 2.85 5 min 10 s (4 s)

4 20 98 588 12.8% 2.15 5 min 10 s (4 s)

5 20 154 924 0.85% 2.7 13 min 20 s (16 s)

6 30 298 1788 0.95% 2.5 1 h 53 min (2 min)

7 40 490 2940 1.15% 2.4 7 h 18 min (8 min)

of a single internal point located at (0, 0, z0) is crucial, as shown in figure 6b. The
solution deteriorates in the neighbourhood of the nodal surface |r| = 1

2 , for which
the equation (3.7) is trivial and therefore does not provide a linearly independent
constraint. Since internal mode shapes are not known a priori, the use of multiple
internal points is strongly advised. Note that the additional cost is negligible and
does not penalize the method.

Table 3 shows the performance of the method for various configurations. Here τ
denotes the number of degrees of freedom per wavelength,

τ = λ

(

N

ar(Γ )

)1/2

, (3.14)

where ar(Γ ) is the area of Γ . Solution errors are strongly dependent on this variable,
as indicated in the first four rows, since doubling τ improves the quality of the solution
by a factor of 100. As far as the authors are aware, only a p-version boundary-element
method could possibly exhibit similar behaviour (Grannell et al . 1994). The last two
tests show the efficiency of the plane-wave basis since only 2.5 degrees of freedom
are sufficient to get reasonable results. Numerous numerical experiments (not shown
here) clearly show that, below this threshold, solution quality deteriorates quickly and
this behaviour has already been observed in the bi-dimensional case. This confirms
that this method still requires O(κ2) degrees of freedom on the scattering surface as
in the conventional boundary-element method (de La Bourdonnaye 1994a, b) and the
gain lies in the proportionality constant. Assuming that 10 variables per wavelength
are required to get ca. 1% of error if the linear approximation (2.6) is used, the gain
is 42 = 16. This permits the study of relatively high-frequency three-dimensional
problems on a personal computer.

The major drawback is the CPU time consumed for the matrix evaluation (in
brackets are shown computational times for the QR solver). Indeed, if the number
of patches is fixed, our method requires O(κ6) multiplications instead of O(κ4) in
the classical approach. Note that computational times for both regular and singular
integrations are slightly overestimated in order to ensure that errors obtained have
stabilized. In this regard, two important issues need to be mentioned.

(i) The plane-wave basis can produce very accurate results by simply taking more
unknowns per wavelength, for instance τ > 4 is more than sufficient; however,
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Figure 7. Scattering by an ellipsoid. FFP (in dB) computed in the plane ϕ = 0 for three incident
plane waves of direction: (a) (0, 0, 1); (b) (

√
2, 0,

√
2)/2 and (c) (1, 0, 0). Dotted line, N = 930

(τ = 2.25); dashed line, N = 1056 (τ = 2.4); straight line, N = 1308 (τ = 2.65).
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Figure 8. Scattering by a non-convex obstacle at κ = 30. Isovalues of the field amplitude are
shown for two incident plane waves of direction (a) (0,0,1) and (b) (

√
2, 0,

√
2)/2.

the price to pay is a time consuming integration procedure which is penalizing
at high frequency.

(ii) In those configurations (high values for Q and τ), the system matrix is likely to
be highly ill-conditioned and singular-value decomposition with truncation of
the smallest singular values is advised in order to cancel round-off errors that
may mask the high-order accuracy of the method.

Obviously, these matters deserve amelioration. In the following applications, we will
assume that we are not facing those situations and only the QR decomposition will
be used.

The specific feature of this new method, in contrast with iterative algorithms,
is the possibility of storing the QR factorization of A once and for all and using
it as a ‘black box’, whatever the incident field. Even though best performance is
obtained when the incident field is chosen in the plane-wave basis set, spherical
fields can be handled as long as the source is not too close to the scatterer (Perrey-
Debain et al . 2003c). In the following example, we consider a rigid ellipsoid of size
(in wavelengths λ) 3.8 × 3.8 × 19.1 (which corresponds to taking R1 = R2 = 1

5 and
R3 = ̺ = 1 at κ = 60) and three incident plane waves in respective directions (0, 0, 1),
(
√

2, 0,
√

2)/2 and (1, 0, 0). We are concerned with the far-field pattern (FFP) defined
by (up to a multiplicative constant)

FFP(r̂) =

∣

∣

∣

∣

∫

Γ

r̂ · n(r′) exp (−iκr̂ · r′)Φ(r′) dΓ (r′)

∣

∣

∣

∣

, (3.15)

where direction r̂ describes the unit sphere. Figure 7 shows the FFP (in dB) in the
plane ϕ = 0 for three numerical configurations:

(i) Q = 155 directions at all vertices, which corresponds to a discretization level
τ = 2.25;

(ii) Q = 218 directions at the poles and Q = 155 elsewhere (τ = 2.4); and

(iii) Q = 218 directions at all vertices (τ = 2.65).
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In all cases, the three incident plane waves are always included in the plane-wave
basis. As is clearly shown, 930 degrees of freedom are sufficient to get reasonable
results and, with 1056 variables, results have almost reached convergence.

Our final application concerns the scattering of the three previous incident plane
waves at κ = 30 by a non-convex scatterer described by the sinusoidally varying
function

̺(θ, ϕ) = 1 + cos(10θ)/10, (3.16)

with R1 = R2 = R3 = 1. By choosing Q = 491 directions at each vertex (2946 vari-
ables), results have been found to be of ‘engineering accuracy’ (i.e. when changes in
the isovalues plot become hardly noticeable). Isovalues of the field amplitude |Φ| are
shown for two incident waves in figure 8. This test corresponds to a discretization
level τ = 2.9. The efficiency is not as high as for the sphere, which could be con-
sidered as the optimal case. However, the gain is still remarkable here, and the use
of conventional boundary elements would require at least 10 times more variables to
achieve the same accuracy.

4. Conclusion

This paper has demonstrated the applicability of the plane-wave basis in both
finite-element and boundary-element contexts for three-dimensional Helmholtz prob-
lems. In the particular case of the plane-wave scattering by a rigid sphere, errors
obtained are consistent with some theoretical predictions given by de La Bourdon-
naye (1994a, b) and Melenk & Babuška (1996). In practical terms, it has been found
that 2.5–3 degrees of freedom per wavelength are sufficient to get satisfying results
even for non-convex geometries. Since this addresses the most important factor limit-
ing the use of discrete numerical methods in analysis of wave problems, this advance
is expected to have significant impact on a wide variety of engineering simulations.
At this stage, the two major limitations of the method are the time taken for the
calculation of the system matrix and ill-conditioning problems associated with this
new basis. These will be subject to further studies.
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