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Abstract

Spherical and cylindrical microphone arrays offer a number of attractive properties such as direction-independent

acoustic behavior and ability to reconstruct the sound field in the vicinity of the array. Beamforming and scene

analysis for such arrays is typically done using sound field representation in terms of orthogonal basis functions

(spherical/cylindrical harmonics). In this paper, an alternative sound field representation in terms of plane waves is

described, and a method for estimating it directly from measurements at microphones is proposed. It is shown that

representing a field as a collection of plane waves arriving from various directions simplifies source localization,

beamforming, and spatial audio playback. A comparison of the new method with the well-known spherical har-

monics based beamforming algorithm is done, and it is shown that both algorithms can be expressed in the same

framework but with weights computed differently. It is also shown that the proposed method can be extended to

cylindrical arrays. A number of features important for the design and operation of spherical microphone arrays in

real applications are revealed. Results indicate that it is possible to reconstruct the sound scene up to order p with

p2 microphones spherical array.

Index Terms

EDICS Categories: AUD-SMCA, AUD-LMAP.

This paper is an extended version of our work [1], [2], and [3].
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I. INTRODUCTION

Particular configurations of microphones in a microphone array allow for elegant mathematical formu-

lation of relevant signal processing algorithms. One such configuration is to place the microphones on

the surface of a virtual sphere [4]; the spherical configuration leads naturally to an elegant mathematical

framework based on elementary solutions of Helmholtz equation in spherical coordinates (i.e., spherical

harmonics) and developed recently in a number of publications. Due to the 3-D symmetry of such a

configuration, the array beampattern is independent of the steering direction and the spatial structure

of the acoustic field can be captured without distortion. However, the free-field configuration is subject

to numerical problems at certain frequencies [5]. An alternative configuration that does not have these

problems is to place the microphones on the surface of a real, usually sound-hard sphere [6]; an additional

benefit in this case is that the presence of a scattering object widens the useful frequency band of the

array [7]. An overview of the practical design principles for spherical arrays was presented in [8]. A

configuration mathematically quite similar to the spherical array is a cylindrical array; here, microphones

are placed on the surface of a virtual or a real cylinder in a plane parallel to the base, and the scene

analysis is done in terms of circular harmonics [9].

A desired operation on the acoustic field captured by a microphone array is to decompose it into

components arriving from various directions. This decomposition is used in many practical applications

such as sound source localization, signal enhancement for a direction of interest (beamforming), and spatial

playback of captured auditory scenes [10]. The acoustic field in the vicinity of the array can be represented

in various functional bases. The traditional representation, and the one in which source localization and

beamforming is usually done, is based on spherical/circular harmonics. A modal spherical beamformer

is proposed in [6]; the idea is to decompose both the sound field and the desired beamforming pattern

into spherical harmonics; then, the beamforming weights can be found simply by dividing one by the

other. An alternative and equally complete basis is a collection of plane waves [1], which is the basis

used in the work presented here. An intuitive motivation for the work is to note that when a sound scene

is represented in a plane wave basis, it, by the very nature of the representation, consists of components

that arrive from various directions; hence, source localization and beamforming can be done by the mere

act of converting the sound scene into a plane-wave representation.

An excellent review of signal processing with spherical/cylindrical arrays is done in the book [11],

where various waveform estimation and parameter estimation problems are addressed in terms of spheri-

cal/cylindrical harmonic representations (“eigenbeams”, or modes). In the current paper, the same estima-

tion problems are considered in terms of the plane wave representation. A somewhat similar approach is

taken in [12], where a framework for performing plane-wave decomposition using spherical convolution
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is presented. The framework in that paper uses a two-step decomposition process based on computation of

spherical Fourier coefficients and assumes a continuous pressure-sensitive microphone array surface, which

is not realizable in practice. An extension to practical arrays is done in [13], where simulations and an

experimental evaluation of the ability of a spherical microphone array to analyze reverberant sound fields

are presented. It is noted in [13] that the modal beamformer [6] is actually performing a decomposition

into plane waves if the desired beampattern is a (truncated) Dirac delta function; hence, [13] is essentially a

re-formulation and a very thorough analysis of [6] for the case of a special beampattern. In particular, both

[6] and [13] replace integration over sphere surface by a quadrature over microphone positions, and those

quadrature points must satisfy the discrete orthonormality equation for spherical harmonics. The number

of microphones necessary for implementing the quadrature is a concern for practical implementation; in

[8], it is shown that exact quadrature of order p requires 2p2 microphones arranged quite inconveniently

(so-called Gaussian quadrature) or 4p2 microphones in more or less general arrangement. Manufacturing of

an array that would use the Gaussian quadrature points is quite difficult because of the dense microphone

arrangement near poles, and experiments in [13] use one microphone on the surface of a sound-hard

sphere moved sequentially to all positions in Gaussian quadrature in order to capture a sound scene that

is artificially repeated many times. Another weakness of [6] and [13] is the numerical instability of the

beamforming weights, which are inversely proportional to the fast-decaying spherical mode strength.

In this paper, several contributions are made. First, an alternative derivation of the spherical beamforming

algorithm of [6] and [13] is presented using Gegenbauer plane wave expansion, and it is shown that the

algorithm can be implemented in one step as a product of a weight matrix and a vector of measured

microphone potentials. Second, it is shown experimentally that a set of so-called Fliege points [14]

provides a very good quadrature approximation with only p2 points that are well-distributed over the

sphere surface [15]. Third, a novel method for obtaining the plane-wave decomposition directly from the

signals measured at microphones is presented. It is based on computing the decomposition coefficients via

minimum least-squares fitting and can also be implemented as a matrix-vector product. The performance

of the method is evaluated and compared with the performance of beamforming-based decomposition

under realistic operating conditions such as in the case of an array with a finite number of microphones,

in the existence of environmental noise, and in the presence of aliasing effects using both real and synthetic

data. Finally, it is shown that the proposed method can be applied to a cylindrical array as well with minor

notational changes in the equations. Simulated and experimental results with spherical, hemispherical, and

cylindrical microphone arrays are presented.
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II. BACKGROUND

Basis Functions: In a three-dimensional space with no acoustic sources enclosed, acoustic wave

propagation at a wavenumber k is governed by the Helmholtz equation

∇2ψ(k, r) + k2ψ(k, r) = 0, (1)

where ψ(k, r) is the Fourier transform of the pressure, which is proportional to the velocity potential

and will be loosely referred to as a potential in this paper. Solutions of the Helmholtz equation can be

expanded as a series of spherical basis functions – the regular Rmn (k, r) in finite regions and the singular

Smn (k, r) in infinite regions:

Rmn (k, r) = jn(kr)Y
m
n (θ,ϕ); S

m
n (k, r) = hn(kr)Y

m
n (θ,ϕ), (2)

where (r, θ,ϕ) are spherical coordinates of the radius vector r, jn(kr) and hn(kr) are the spherical Bessel

and spherical Hankel functions, respectively, and Y mn (θ,ϕ) are the orthonormal spherical harmonics. For

later use, define also Jn(kr) and Hn(kr) to be the regular Bessel and Hankel functions, respectively. Note

that the complex conjugation of Y mn (θ,ϕ) is equivalent to Y −mn (θ,ϕ) and that

nX

m=−n
Y mn (θ1,ϕ1)Y

−m
n (θ2,ϕ2) =

2n+ 1

4π
Pn(r1 · r2) (3)

(addition theorem for spherical harmonics), where Pn(µ) is the Legendre polynomial of degree n.

Any regular acoustic field Φ(k, r) in a region that does not contain sources can be represented as an

infinite sum of regular functions with some complex coefficients Cmn (k) as

Φ(k, r) =
∞X

n=0

nX

m=−n
Cmn (k)R

m
n (k, r). (4)

In practice, the outer summation is truncated:

Φ(k, r) =

p−1X

n=0

nX

m=−n
Cmn (k)R

m
n (k, r). (5)

The truncation number p depends on k and on the radius D of the region in which the approximation (5) is

used to represent the field [16]. The truncated series (5) is called the (spatially) bandlimited representation,

as spatial modes of order higher than p are not used. However, the spatial and temporal frequencies are

interrelated; the upper limit on temporal frequency provides a lower limit on the wavelength and thus on

spatial acoustic potential variations; therefore p is tied to k. It is shown in [16] that p∗ determined as

p∗ =
ekD − 1

2
(6)

provides approximation consistent with typical signal quantization error due to series being truncated at

p∗ terms rather than at infinity. A more elaborate error analysis, which allows determination of p∗ for

given desired truncation error, is also available in [16].
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Sphere Scattering: The solution for the problem of sound scattering by a sound-hard sphere was first

given in [17]. Many authors list the solution for the case of finite-distance source [18] and for arbitrary

regular acoustic field [16]. Assume that the plane wave eiks·r is propagating in the direction s = (1, θ,ϕ)

and is scattered by a rigid sphere of radius a placed at the origin. The potential ψ(s, s0) created at an

arbitrary observation point s0 = (r0, θ0,ϕ0) is given by

ψ(k, s, s0) = 4π
∞X

n=0

inbn(ka, kr
0)

nX

m=−n
Y mn (s)Y

−m
n (s0) (7)

(r0 >= a). The coefficient bn(ka, kr
0) is known as the spherical mode strength [6]:

bn(ka, kr
0) = jn(kr

0)− h
0

n(ka)

j0n(ka)
hn(kr

0). (8)

Note that if the observation point is located on the surface of the sphere, one can use the Wronskian for

Bessel functions [16] to simplify equations (7) and (8) to equivalent forms that are easier to compute

bn(ka, ka) =
i

(ka)2
1

h0n(ka)
, (9)

ψ(k, s, s0) =
i

(ka)2

∞X

n=0

in(2n+ 1)Pn(s · s
0)

h0n(ka)
. (10)

Note that s in these equations is the direction of wave propagation (not direction of arrival) and ψ(k, s, s0)

is largest when s and s0 are opposing and the wave impinges on the sphere at the location of microphone

(i.e., θ0 = π − θ and ϕ0 = π + ϕ). Some authors (e.g., [18]) use s as the direction towards the source, in

which case equations become slightly different.

If an incident field is arbitrary and is described by equation (4), the potential for the microphone at s0

on the surface of the sound-hard sphere is [16]

ψ(k, s0) =
i

(ka)2

∞X

n=0

nX

m=−n

Cmn (k)Y
m
n (s

0)

h0n(ka)
. (11)

Plane-Wave Expansion: Any regular acoustic field Φ(k, r) in a region can also be represented as a

superposition of plane waves with each plane wave weighted by µ(k, s):

Φ(k, r) =
1

4π

Z

Su

µ(k, s)eiks·rdS(s). (12)

Note here that this representation requires quadrature over the sphere, i.e. over all possible directions s;

µ(k, s) is known as the signature function [16] and fully specifies the field in the region. The multipole

and the plane-wave representations can be converted to each other via the Gegenbauer expansion [21]:

eikr·s = 4π
∞X

n=0

nX

m=−n
inY −mn (s)Rmn (k, r), (13)

Rmn (k, r) =
1

4π
i−n

Z

Su

eikr·sY mn (s)dS(s).
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The signature function and the expansion coefficients are related as follows:

µ(k, s) =
∞X

n=0

nX

m=−n
i−nCmn (k)Y

m
n (s), (14)

Cmn (k) = in
Z

Su

µ(k, s)Y −mn (s)dS(s).

In practice, integration is replaced with summation over L quadrature points with quadrature weights v(sl).

The grid should be chosen appropriately to preserve the orthonormality of spherical harmonics when the

integration over the surface is replaced by the summation over the grid [22]. The Gaussian quadrature was

used in [13]. The procedure for supplying an alternate set of points proposed by Fliege [14] turns out to

generate orthonormality-preserving grids [1] with equal quadrature weights. As such, in this paper Fliege

grids are used for simulation (and the physical microphone arrays built for the experiments described

below follow Fliege grids). Thus, in the discrete case equation (13) becomes

eikr·s = 4π

p−1X

n=0

nX

m=−n
inY −mn (s)Rmn (k, r), (15)

Rmn (k, r) =
i−n

4π

LX

l=1

v(sl)Y
m
n (sl)e

ikr·sl.

These equations stipulate how the plane wave can be represented in the form (4) and correspondingly

how a spherical mode can be represented in the form (12). Representation (15) is spatially bandlimited

to O(p2), and p should be properly chosen to make the truncation error small.

Acoustic Image Principle: On a physical spherical microphone array, part of the sphere area is lost for

cabling output. As such, microphones that would be positioned in that area are missing, which disrupts

orthonormality of spherical harmonics. However, microphones on a hemispherical surface can easily be

arranged in accordance with some regular (e.g. Fliege) grid. If a hemispherical array is then placed on

an infinite reflective surface (such as a sufficiently large table), the resulting configuration can be treated

as a spherical array with twice as many microphones [19] as follows.

Assume that an acoustic source is placed on one side of an infinite sound-hard plane. The acoustic

image principle [20] states that at any point on the same side of the plane the acoustic potential is the

sum of the potentials created by the source and by its reflection in the plane. Accordingly, in the case of

the hemispherical microphone array mounted on an infinite rigid plane the potential ψh(k, s, s
0) created

at point s0 by a plane wave propagating in direction s is given by summing up potentials due to two

(original and reflected) plane waves given by equation (10):

ψh(k, s, s
0) = ψ(k, s, s0) + ψ(k, s̃, s0), (16)



7

where s̃ is s reflected in the array base plane; specifically, if s = (θ,ϕ), then s̃ = (π − θ,ϕ). Because of

the same image principle, the potential at each image microphone created by reflecting the corresponding

real array microphone in the base plane is equal to the potential at the real one. Thus, the number of

microphones is essentially doubled. Of course, with a hemispherical array any measured set of potentials

is symmetric around the horizontal plane and the solved acoustic scene is consequentially symmetric as

well. Care should be taken to disregard the reflected part of the scene (θ > π/2).

Cylinder scattering: The decomposition framework described herein is also applicable to the cylindrical

array. In this case, the wave propagation direction s is determined by single angle ϕ and observation point

s
0 is defined by (r0,ϕ0) in cylindrical coordinates. The potential ψc(k, s, s

0) at s0 due to that plane wave

(“c” stands for cylinder) is

ψc(k, s, s
0) =

∞X

n=−∞
inBn(ka, kr

0)e−in(ϕ−ϕ
0), (17)

where a is the array radius. Bn(ka, kr
0) is a cylindrical mode strength and is given by

Bn(ka, kr
0) = Jn(kr

0)− H
0

n(ka)

J 0n(ka)
H(kr0). (18)

When r0 = a (i.e., the point is located on the cylinder surface), Bn(ka, ka) simplifies to

Bn(ka, ka) =
2i

πka

1

H 0

n(ka)
(19)

and ψc(k, s, s
0) becomes dependent only on angles ϕ and ϕ0:

ψc(k, s, s
0) = ψc(k,ϕ,ϕ

0) =
2i

πka

∞X

n=−∞

in

H 0

n(ka)
e−in(ϕ−ϕ

0). (20)

Note the great similarity in the equations between the spherical and cylindrical cases. In practice, the

summation is truncated to 2p − 1 terms. Numerical simulations show a behavior of the truncation error

similar to the spherical array case.

III. ACOUSTIC SCENE DECOMPOSITION

Common framework: The goal of scene analysis is to decompose the scene into pieces arriving from

various directions. A beamformer allows one to pick up the signal arriving from a given direction; hence,

the traditional way of performing such a decomposition is to perform a number of beamforming operations

with a (truncated) Dirac delta function as a desired beampattern [6]. The decomposition obtained in this

way is referred to as the beamforming decomposition. An alternative method, and the one that is explored

in this paper, is to find, through solving a system of linear equations, the set of plane waves that “best

explains” the observed potential distribution at the microphones. The decomposition obtained is this way

is referred to as the least-squares decomposition. Once the decomposition is obtained by either method, it
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can be used for various purposes, including source localization using steered response power, auralization

of a component coming from a specific direction (i.e., beamforming), visualization of acoustic energy

distribution in space, and further analysis of specific scene components.

Assume that microphones in the array are arranged on an “M-grid” (“microphone”) over Lq directions

s
0

q. The goal is to measure the potentials Ψ(k, s0q) at those microphones and to recover the (complex)

magnitudes of scene components λ(k, sj) over Lj directions sj comprising an “S-grid” (“source”). Here

and later, index q iterates over microphone positions and index j iterates over a set of plane wave directions.

Also, for simplicity of derivations, it is assumed that M-grid has uniform quadrature weights. Denote by

Λ the Lj × 1 vector of unknown λ(k, sj), by W the Lj × Lq matrix of weights, and by Ψ the Lq × 1

vector of measured potentials Ψ(k, s0q). In these terms, the goal is to form matrix W consisting of weights

w(k, sj , s
0

q) and to compute Λ = WΨ in one step. Note that everything is done here in the frequency

domain. In practice, time-domain signals are recorded at microphones, and directional scene components

should be produced as waveforms in time domain; conversion between real time-domain signals and

frequency domain is covered in Section IV.

Beamforming (BF) Decomposition [6]: A beamformer allows one to pick up the signal arriving from

a given direction, and a number of such independent beamformers can be used to look simultaneously in

Lj directions. In this case, the weight w(k, sj , s
0

q) is expressed as

w(k, sj, s
0

q) =

p−1X

n=0

1

inbn(ka, ka)

nX

m=−n
Y −mn (θj ,ϕj)Y

m
n (θ

0

q,ϕ
0

q), (21)

Using equation (3) and equation (9), this can be simplified to

w(k, sj, s
0

q) = −i
(ka)2

4π

p−1X

n=0

i−nh0n(ka)(2n+ 1)Pn(sj · sq). (22)

Alternative Derivation ([1] equation (22)): The weight matrix W relating Ψ to Λ can be computed

directly using Gegenbauer expansion of a plane wave. First, note that by definition of plane-wave field

representation the signature function µ(k, s) represents weights assigned to individual plane waves that

compose the scene; hence, the desired λ(k, s) is identical to the signature function µ(k, s). It follows from

equation (11) that

Cmn (k) = −i(ka)2h0n(ka)
Z

Su

ψ(k, s0)Y −mn (s0)dS(s0). (23)

The expression for µ(k, s) from equation (14) then becomes

µ(k, s) = −i(ka)2
∞X

n=0

i−nh0n(ka)× (24)

×

Z

Su

ψ(k, s0)
nX

m=−n
Y mn (s)Y

−m
n (s0)dS(s0)



9

and is further reduced to

µ(k, s) = −i(ka)
2

4π

∞X

n=0

(2n+ 1)i−nh0n(ka)

Z

Su

ψ(k, s0)Pn(s · s
0)dS(s0) (25)

using the addition theorem for spherical harmonics. In the discrete case, the summation is truncated to p

terms and the integral is replaced by quadrature over points s0q with µ(k, sj) becoming

µ(k, sj) = −i
(ka)2

4π

p−1X

n=0

(2n+ 1)i−nh0n(ka)

LqX

q=1

Ψ(k, s0q)Pn(sj · s
0

q). (26)

Regrouping gives the W matrix as

w(k, sj, s
0

q) = −i
(ka)2

4π

p−1X

n=0

(2n+ 1)i−nh0n(ka)Pn(sj · s
0

q), (27)

which in fact is exactly equivalent to the weights of Meyer-Elko beamformer except that the use of

the Wronskian has simplified the expression for bn(ka, kr
0). This derivation, in fact, shows that the BF

decomposition can be viewed as an act of sampling the plane-wave representation signature function

corresponding to a specific direction.

Least-squares (LS) Decomposition ([1] equation (19)): This method is essentially based on computing

Λ that best explains the observed Ψ. The potential at each microphone is just the sum of the potentials

created by all oncoming plane waves; thus, given Λ, one can compute Ψ as

Ψ = FΛ, (28)

where F is Lq × Lj matrix with entries F (k, s0q, sj):

F (k, s0q, sj) =
i

(ka)2

p−1X

n=0

in(2n+ 1)Pn(sj · s
0

q)

h0n(ka)
, (29)

which is just equation (10) truncated to p terms. This linear system can be solved for Λ. If Lj = Lq, then

W = F−1, and if Lj < Lq, then the system is overdetermined and is solved in the least squares sense so

that W = (F TF )−1F T . The LS method can be thought of as a way to perform simultaneous separation

of a scene into a collection of directional components for pre-determined set of directions, much in the

same way as a number of sequential beamforming operations covering the same set of directions, but in

parallel and with different formulation of the separation matrix.

Hemispherical Array: In case of hemispherical array, the matrix F (k, s0q, sj) used in the LS decom-

position should be replaced with the matrix Fh(k, s
0

q, sj):

Fh(k, s
0

q, sj) = F (k, s
0

q, sj) + F (k, s
0

q, s̃j) (30)

as in equation (16). In addition, the S-grid should cover only the upper hemisphere (the other one contains

image sources). The BF decomposition requires no modifications for use with the hemispherical array

except that the set of look directions covering only the upper hemisphere should be used as well.
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Cylindrical array: In the cylindrical array case and assuming the same notation as before, the matrix

W for the BF decomposition is given by [11]

wc(k,ϕj ,ϕ
0

q) = 2π

p−1X

n=−(p−1)
i−nB−1n (ka)e

−in(ϕj−ϕ0q), (31)

which can be simplified using Equation (19) to

wc(k,ϕj ,ϕ
0

q) = −iπ2ka
p−1X

n=−(p−1)
i−nH 0

n(ka)e
−in(ϕj−ϕ0q). (32)

For LS decomposition, the linear system Ψ = FΛ is formed and is solved Λ =WΨ in the same manner as

for the spherical array case, where F elements are of form Fc(k,ϕ
0

q,ϕj) given by Equation (20) truncated

to 2p− 1 terms:

Fc(k,ϕ
0

q,ϕj) =
2i

πka

p−1X

n=−(p−1)

in

H 0

n(ka)
e−in(ϕj−ϕ

0

q). (33)

IV. PRACTICAL IMPLEMENTATION

Assume that the time-domain signal recorded at a pressure-sensitive microphone located at s0q is xq(t)

and that the sampling frequency is fs; denote ks = 2πfs/c, where c is the sound speed. For the block of

the signal of length N , compute the Fourier transform at each microphone; the result has N/2 complex

Fourier coefficients at wavenumbers ks/N , 2ks/N , ..., ks/2 (assume that the DC offset for the block

is zero). The decomposition is performed separately at each wavenumber k; note that the matrix W

is different for different k. The decomposition coefficients λ(k, sj) are computed by doing the matrix

vector-product Λ = WΨ multiplication as described above; the potential Ψ(k, s0q) is simply the Fourier

coefficient for microphone at s0q at wavenumber k. Then, the output time-domain waveform yj(t) for the

direction sj is obtained by assuming that the computed λ(k, sj) is the Fourier coefficient of the output

signal at wavenumber k and performing inverse Fourier transform of the set of λ(k, sj).

In practice, time-overlapped smoothly fading windows are used to eliminate windowing artifacts such

as clicks occurring on the window boundary. Also, the practical spherical/cylindrical array has a limited

useful frequency band, which is determined from above by spatial aliasing and from below by array size

and the equipment noise floor (if the acoustic wave length is substantially larger than the array size,

the difference in potentials at different microphones is quite small and may be too small to detect in

presence of quantization or in electronic components noise). In this case, the computations are done only

for wavenumbers corresponding to useful frequency band and the rest of the λ(k, sj) coefficients are

zeroed out for the inverse Fourier transform.

Also, note that Equations (10) and (20) assume that s (ϕ, respectively) is the direction of propagation,

not the direction towards the source, and that this notation is kept through the rest of the equations in this
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paper. Accordingly if one wishes to obtain the sound field component arriving from directions ŝj (i.e.,

beamform in the direction ŝj), then he/she should use the opposite direction (θj = π − θ̂j , ϕj = π + ϕ̂j)

in computing the weight matrix W .

V. SIMULATION SETUP

Spherical array: A simulation of source localization using steered response power [23] with both BF

and LS decompositions was performed. The array radius a was set to 0.106 m. The M-grid was set to be

64-point Fliege grid [1] [14], referred to as “64F” from now on. The spatial Nyquist criteria states that

that intermicrophone distance should be less than half the wavelength in order to avoid spatial aliasing;

the Nyquist frequency for the simulated array was about 3.85 kHz.

A legitimate question is how to construct the “best” S-grid for the plane-wave decomposition for a given

array configuration. The S-grid should cover the space well and provide good quadrature. The reasonable

choice is to use the same grid as M-grid; setting Lj = Lq in fact also assures no information will be

lost during decomposition (in other words, the number of degrees of freedom in the scene recording and

in the decomposed scene representation are the same). In this work, two S-grids were tested: first was

identical to the microphone grid (“64F”) and second was a 49-point Fliege grid (“49F”), which also covers

the whole space evenly, provides good quadrature, and has smaller number of points and hence lesser

computational load but decreased accuracy.

Simulations were performed for random source directions at frequencies from 0.5 to 6 kHz with 0.5 kHz

step size. For each frequency, each source direction, and each noise variance, the potentials at microphone

locations were computed using equation (10) with p = pm. Then, each potential was synthetically corrupted

by Gaussian noise with zero mean and given variance, and either BF or LS decomposition was applied to

solve for λ(k, s) over the S-grid using p = ps. In the plots, pm and ps are given in terms of p∗ computed as

prescribed by equation (6) (note that p∗ is different for different k and therefore for different frequencies).

The direction in S-grid corresponding to the largest magnitude of λ(k, s) was taken to be the detected

direction of the source. The error measure was the angular difference, in radians, between the “true”

source direction and the detected direction. Root mean square error (RMSE) was computed over 1024

trials (i.e., 1024 source directions) for each frequency, each noise variance, and each method. In addition,

the noise tolerance of algorithms was tested with three fixed noise variance values of 0, 0.5, and 1.0. Note

that computed potentials typically have magnitude around one, and one can think of the measurements

being corrupted with noise of magnitude of zero, 50%, and 100% of the measurements themselves.

In addition, a simulation experiment was performed for an acoustic scene consisting of two plane waves

arriving from different random directions. The goal of this experiment was to see whether the spatial

resolution of two methods differs. Each direction in the pair was selected randomly and independently
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of the other one; thus, it is possible that in some pairs the directions were too close to each other in

order to be successfully resolved. The potential at each microphone was set to be the sum of potentials

generated by two plane waves (of equal magnitudes) arriving from their respective directions. After

computing the signature function, a simple repeated gradient ascent algorithm was used to find the two

largest isolated peaks in the S-grid, and those two peaks were taken to be the detected directions for the

sources. Localization error was then computed for each source and averaged over two sources. Note that

two detected directions D1 and D2 can be matched to two ground-truth source directions S1 and S2 in

two ways (D1 to S1 and D2 to S2 or vice versa); the matching giving the lower overall localization error

was chosen. The experiment was also repeated 1024 times, and RMSE was computed.

Hemispherical array: Simulations with the hemispherical array show substantially the same findings

as for the spherical array case presumably because the underlying theory is very similar. They are not

reported here for lack of additional information.

Cylindrical array: An infinite sound-hard cylindrical array of radius 0.101 m with 16 equally-spaced

microphones was simulated for localization experiments. The estimated spatial aliasing frequency was 4.3

kHz and simulations were done for frequencies from 0.5 to 8.0 kHz with 0.5 kHz step. Simulated plane

wave was impinging on the array from a random direction and the potentials at the microphones were

computed using Equation (20) truncated at 2p − 1 terms with p = pm. These potentials were fed either

to BF decomposition or to LS decomposition with p = ps to compute the coefficients λ(k, s). The S-grid

was identical to the M-grid. The direction maximizing |λ(k, s)| was selected as simulated localization

direction. The error was defined as an angular distance between the simulated wave direction and the

localization direction. Simulations were repeated 1024 times, and RMSE was computed.

VI. EXPERIMENTAL SETUP

Several sets of experiments with real spherical, hemispherical, and cylindrical arrays were performed

in a large (approximately 5.5× 4.9× 2.75 m) office room. Most of the room wall and ceiling area was

covered with acoustic absorbing foam (“egg crate” foam) to reduce reverberation. A typical computer

speaker (Harman/Kardon) was used to produce test signals. Two test signals were used: a continuous

sine wave of a given frequency (ranging from 0.5 to 6 kHz with 0.5 kHz step size) and a 2.46 ms long

upsweep (chirp) signal containing the same frequencies. For the sine wave signal, a CD containing 12 test

signals was made, and the test signals were played via a CD player connected to the speaker and recorded

digitally at 12 bits via two 32-channel NI PCI-6071E data acquisition boards. For the chirp signal, the

signal was output to the speaker via the analog output channel of one of the data acquisition boards. The

analog output and analog input subsystems of both boards were synchronized to run off a hardware clock

common for both boards to ensure repeatability of the experiment and to allow for time averaging.
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Fig. 1. Spherical (left), hemispherical (middle), and cylindrical (right) microphone arrays used. The hemispherical array is mounted on a

circular table.

Spherical array experiment: The 60-microphone spherical array, made out of a hollow plastic lamp-

shade of radius 0.101 m with wall thickness of about 1.5 mm, was placed in the center of the room on

a tripod. The array is shown in Figure 1 on the left. The arrangement of the microphones in the array

followed 64-point Fliege grid [14] with nodes 12, 24, 29, and 37 removed due to the need to accommodate

the cable outlet. The resulting grid constituted an M-grid for the spherical array experiments, referred to

as “60F” later on. The Nyquist frequency for the array was about 3.85 kHz. Four positions in the room,

all at a distance of about 1.5 m from the array, were chosen to place the source. The positions were

selected to roughly encircle the array in azimuth and to represent a variety of elevations. The angular

coordinates of each position were determined by visually projecting them onto the spherical array surface.

The loudspeaker was placed at each of those positions and the test signals were played and recorded.

A 2 s recording was done for each of the sine wave signals. The chirp signal was repeated 10 times

with one-second pauses between chirps to minimize reverberant noise. The recorded signal was then

time-averaged over these 10 trials. The recorded signal (both sine wave and chirp) was then windowed

with 5.0 ms rectangular or Hann window and the potential at each frequency of interest (0.5 to 6 kHz

with 0.5 kHz step size) was computed via Fourier transform. The potentials were used as inputs to the

two solution methods. The direction with the largest λ(k, s) magnitude in the S-grid was taken to be the

detected source direction. Two S-grids were used: “60F” and “49F”.

Hemispherical array experiment: The 64-microphone hemispherical array, made out of a half of a

bowling ball of radius equal to 0.109 m, was mounted in the center of a circular table of radius equal

to 0.457 m. The array is shown in Figure 1 in the middle. The microphone locations for the array were

obtained as described in [15], forming a “64H” grid. The Nyquist frequency for the array is about 4.66

kHz. The table with the array was placed in the center of the room. Four random positions in the upper

hemisphere of the array were chosen for source placement, covering various azimuths and elevations as

well. The rest of the experimental setup is the same as for the spherical array experiment.
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As the S-grid for the hemispherical array shall cover only upper hemisphere, S-grid different from

the spherical array setup had to be used. The first S-grid was “64H” (same as the microphone grid for

the hemispherical array). The second S-grid was the 121-point Fliege grid modified to remove all points

having negative z, resulting in a 62-point “62H” grid.

Cylindrical array: The 16-microphone cylindrical array was made from a large empty stainless steel

canister with the radius of 0.113 m and the height of 0.279 m. The microphones were mounted on half-

height line at regular intervals covering the circumference of the array, forming a ”16C” grid. The array

is shown in Figure 1 on the right. The Nyquist frequency for the array is about 3.9 kHz. The array was

placed in the center of the room on a tripod as shown in the picture. Five random positions were chosen

for source placement, all in horizontal plane in elevation and roughly encircling the array in azimuth. The

test signals used in the setup are the same as for the spherical array case except that they span wider

frequency range (up to 8 kHz). The decomposition grid (S-grid) for the cylindrical array was chosen to

be the same as the microphone grid (i.e., the decomposition is done over the same directions in which

measurements are done).

VII. RESULTS

In the following subsections, the results obtained in the simulations and in the experiments are described.

Those include varying the truncation number, adding regularization, and changing test signal, signal

windowing function, and noise variance.

A. General noise tolerance

Somewhat surprisingly, in experiments it was observed that the performance degradation of both

algorithms at highest noise magnitude is not significant. That means that isotropic noise with magnitude

comparable to the signal (i.e., the SNR is about zero dB) does not substantially interfere with localization.

The reason for that is not clear; the significant redundancy provided by 64 available measurements is likely

playing a role. To avoid clutter in the plots, the results related to noise tolerance are not presented beyond

this paragraph, and all plots are made for zero-noise case. A future work is planned to assess noise and

reverberation tolerance in more details.

B. Simulation results, spherical array

Dependence on the truncation number: In this section, the plots of results for simulated spherical

“64F” microphone array and for “49F” and “64F” S-grids are presented. In each figure, decomposition

method and S-grid used are shown in the plot legend. In all plots presented, pm = 10p∗ to accurately
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Fig. 2. Simulation, pm = 10p∗, ps = p
∗. S-grid used and decomposition method are annotated in the plot (BF: beamforming decomposition,

LS: LS decomposition).

Fig. 3. Simulation, pm = 10p∗, ps = 3p
∗/2. See Figure 2 legend for abbreviations.

reflect the potentials that would be observed in real system (where pm =∞). Figure 2 shows the RMSE

plots obtained with ps = p
∗. The breakdown of error into azimuth and elevation components shows that

they are substantially equal (plots not presented for reasons of space) due to full 3-D symmetry of the

setup. The error lower bound is not zero because of the discrete grid nature. For the 49-point S-grid BF

decomposition shows good behavior for up to 3 kHz, whereas LS decomposition does exactly the opposite

– localization is random up to 2.5 kHz and is perfect above that. When the frequency is increased beyond

the spatial aliasing limit (above approximately 4 kHz), the LS decomposition performance gracefully

degrades. For the 64-point S-grid BF decomposition shows the same behavior (because it computes the

signature function for each direction in S-grid directly from the potential measurements) and the LS

decomposition operating range starts at slightly higher frequency.

The next two plots show the RMSE behavior for two methods when ps is changed. In Figure 3 the case

of pm = 10p
∗ and ps = 3p

∗/2 is plotted, and Figure 4 shows the RMSE plots obtained for pm = 10p
∗
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Fig. 4. Simulation, pm = 10p∗, ps = 3p
∗/4. See Figure 2 legend for abbreviations.

Fig. 5. Simulation, pm = 10p∗, ps = p
∗, regularization ε = 10−2. See Figure 2 legend for abbreviations.

and ps = 3p
∗/4 (in the latter case, care should be taken to ensure ps stays above zero at low frequencies

(e.g., by enforcing ps ≥ 1 constraint)). By comparing these plots with Figure 2, it can be noted that the

higher the ps is, the lower is the frequency at which two events happen: a) BF decomposition breaks down

and b) LS decomposition starts to work. If ps is increased further (to 2p∗) or decreased further (to p∗/2),

the same trends are observed (corresponding plots are not shown here for space reasons). Note that with

ps = 3p
∗/4 BF decomposition is successfully operating up to the spatial frequency limit of the array and

the error increases very gradually above this limit. On the other hand, LS decomposition working range

seems to decrease as ps is decreased.

Regularization: Analysis of the matrix F (equation (29)) shows that it is poorly conditioned (but is

not singular) in the low frequency region where the LS method shows high localization error and that

the conditioning improves when ps is increased, which is consistent with the plots above. Therefore, a

regularization term was added in an attempt to improve algorithm’s performance so that when Lj = Lq,

W = (F + εI)−1 and when Lj < Lq, W = (F TF + εI)−1F T , where I is the identity matrix and ε is the
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Fig. 6. Simulation, pm = 10p∗, ps = p∗, ε = 10
−2, simultaneous localization of two plane wave sources. See Figure 2 legend for

abbreviations.

regularization constant. Figure 5 shows the obtained RMSE plots with pm = 10p
∗, ps = p∗, and ε = 10−2.

It can be seen that inclusion of the regularization terms allows for successful LS method application over

the whole operating range of array (in fact, error plots of BF and LS decompositions are identical up to

about 2.5 kHz). Also, the particular value of ε ranging from 10−7 to 1.0 only marginally influences the

results.

Spatial resolution comparison: In this simulation, two plane waves are presented to the array from

different directions, and successful localization of both sources is sought. After solving for M using either

BF or LS decomposition, two largest peaks in λ(k, sj) magnitude over S-grid were found, localization error

was computed for both sources, and the error absolute value was geometrically averaged. In Figure 6, the

localization RMSE is shown. It is seen that the localization is significantly hampered at low frequencies.

Examination of the actual λ(k, s) values plotted over the S-grid (not shown here for the reasons of space)

for various frequencies reveals that the width of the peak created on the S-grid by a source is large for

low frequencies so that there is more chance of two peaks merging and appearing as one broad peak.

(Alternatively, this can be explained via the well-known fact that the width of the beampattern for the

spherical array is very large at low frequencies). Above approximately 1.5 kHz, two waves are resolved

successfully in most of the trials. For the sake of consistency, in these plots pm = 10p∗, ps = p∗, and

ε = 10−2; if ps is reduced for BF decomposition as described above, the low-error frequency regions of

BF and LS decompositions coincide. The lowest observed error is still higher than for one source case

because directions of two plane waves are chosen randomly and therefore could be closer to each other

than the distance between points in S-grid. A plot of the likelihood of resolving two sources versus the

angular distance between those shows results consistent with the above explanations and is not shown for

the reasons of space.
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Fig. 7. Simulation, cylindrical array, pm = 10p∗, ps = p
∗, regularization ε = 10−2.

Fig. 8. Simulation, cylindrical array, pm = 10p∗, ps = 3p
∗/2, regularization ε = 10−2.

C. Simulation results, cylindrical array

Simulations quite similar to the spherical array case were run for the 16-microphone cylindrical array.

In all plots presented in this section, pm = 10p∗ as well and regularization with ε = 10−2 is used for

LS algorithm. Figure 7 shows the RMSE for both methods when ps = p∗. It can be seen that the BF

algorithm performance starts to degrade at about 4.5 kHz and the LS algorithm works fine up to about

5.5 kHz. The latter number actually exceeds the spatial aliasing limit of 4.3 kHz. Poor BF performance

at higher frequencies is consistent with results on spherical array.

The case of ps = 3p
∗/2 is shown in Figure 8. It can be seen that the BF method breaks down at about

2.5 kHz and the LS results are unchanged. If ps is increased further (plot not shown), the same effect

becomes more pronounced.

Another simulated experiment was done with ps = 3p∗/4. The corresponding error plots are shown

in Figure 9. It can be seen that the operational range of BF method is widened and is in fact the same

now as the operational range for LS method, with error increasing gradually about 5.5 kHz. Overall, the
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Fig. 9. Simulation, cylindrical array, pm = 10p∗, ps = 3p
∗/4, regularization ε = 10−2.

Fig. 10. Spherical microphone array experiment, sine wave signal, data frame includes signal onset.

obtained behavior is quite consistent with the same observed in simulations with the spherical array.

D. Experimental results, spherical array

The experiment with the real “60F” spherical array was designed and carried out as described earlier.

No substantial differences were observed in the results when the signal windowing function (rectangular

or Hann) was changed and when ε was varied within the same range as in simulations, suggesting that

regularization has “binary” effect (unless ε is set to unreasonably high value). Therefore, only the results

obtained with rectangular windowing function are presented below for “49F” and “60F” S-grids. In all

plots below, ps = p
∗ and ε = 10−2.

Sine wave signal: Figure 10 demonstrates the localization performance obtained when the data frame

was selected to include the start of the wave signal so that reverberation effects are minimized. The

operating frequency of the array appears to be from about 1.5 to about 3.5 kHz, and acceptable results

are obtained below 1.5 kHz. The BF decomposition exhibits earlier performance degradation similar to

that observed in simulations. In Figure 11, a data frame is selected in the middle of the sine wave signal
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Fig. 11. Spherical microphone array experiment, sine wave signal, data frame is selected in the middle of the signal.

Fig. 12. Spherical microphone array experiment, chirp signal.

playback so that presumably more reverberation is present. A difference is indeed seen at low frequencies,

where the algorithm is more influenced by noise (and reverberation) due to the signal wavelength being

comparable to the array size.

Chirp signal: Figure 12 shows localization performance for the chirp signal repeated 10 times with 1 s

pauses and time-averaged. In this plot, no significant difference is observed between BF and LS methods.

Note the low error in the low-frequency range; this is consistent with earlier plots showing increase

in localization accuracy in low-frequency range when there is no reverberation mixed in the signal. In

addition, the experiment was repeated 16 times for a total of 160 repetitions of the chirp signal time-

averaged in an attempt to increase signal-to-noise ratio. This produced no difference in results compared

to Figure 12.

E. Experimental results, hemispherical array

The same experiments were repeated with the hemispherical array made of half a bowling ball and

mounted on a circular table. Again, the particular windowing of the signal did not appear to change the
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Fig. 13. Hemispherical microphone array experiment, sine wave signal, data frame includes signal onset.

Fig. 14. Hemispherical microphone array experiment, sine wave signal, data frame is selected in the middle of the signal.

results significantly, so the results obtained with rectangular windowing are reported. In all plots below,

ps = p
∗ and ε = 10−2. Results with “62H” and with “64H” S-grids are presented.

Sine wave signal: Similar to the experiment with the spherical array, localization of the sine wave

signal was performed for two data frames, first for the data frame that included the start of the signal

(Figure 13) and second for the data frame in the middle of the signal (Figure 14). Presumably the acoustic

field in the second case was corrupted by reverberation to some extent. The general structure of the plots

is similar to the ones seen for the spherical array. The range of good localization is extended to higher

frequencies (up to about 4.5 kHz). Unlike the spherical array, localization at low frequencies is always

poor (this is also seen in the RMSE plot for the chirp signal below).

Chirp signal: This experiment was done with the chirp signal time-averaged over 10 repetitions. Figure

15 presents the localization RMSE versus frequency for the chirp signal. The range of good localization

is consistent with the sine wave signal, with high error in the low frequency range. The experiment was

also repeated 16 times for a total of 160 repetitions of the chirp signal time-averaged, which produced
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Fig. 15. Hemispherical microphone array experiment, chirp signal.

Fig. 16. Cylindrical microphone array experiment, sine wave signal, data frame includes signal onset.

no changes in results compared to averaging over 10 repetitions only.

F. Experimental results, cylindrical array

The same experiments were repeated for the 16-microphone cylindrical array placed approximately in

the middle of the room on a tripod. The results obtained with rectangular windowing of the recorded

signals in computation of the potentials are reported. No significant changes in results were observed

when Hann window was used. In the three plots below, ps = p
∗ and ε = 10−2. The decomposition grid

(S-grid) coincides with the microphone grid (M-grid).

Sine wave signal: For the sine wave signal experiment, the data frame for processing was selected

either to include the onset of the signal or to be from the middle of a one-second long signal burst. The

corresponding RMSE plots are shown in Figure 16 and Figure 17, respectively. The trends observed in the

plots are similar to those for the spherical and hemispherical arrays. Note the relatively low error at low

frequencies in both cases. Note also that the algorithms are working well above the Nyquist frequency

and that the working range of the LS method is slightly wider.
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Fig. 17. Cylindrical microphone array experiment, sine wave signal, data frame is selected in the middle of the signal.

Fig. 18. Cylindrical microphone array experiment, chirp signal.

Chirp signal: In the chirp signal experiment, the test signal is repeated 10 times with one-second pause

between the pulses and time-averaged before processing to eliminate reverberation and noise effects. The

error behavior seen is substantially the same as for the sine wave signal (Figure 18). The peaks at about

4.5 kHz visible for both the sine wave and the chirp may be due to internal resonances of the hollow

array structure. No change in the plot was observed when averaging was done over 160 repeats of the

chirp signal instead of 10.

VIII. DISCUSSION

The discussion here is presented in terms of the spherical array, which is more important in practice;

however, substantially the same conclusions can be derived for cylindrical array applications.

Numerical stability: To compare two methods, it may be helpful to repeat here the equations governing

weight computation. Omitting constant factors and some multipliers, it can be schematically written that
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for BF

W =

p−1X

n=0

1

inbn(ka)
Pn(s · s

0), (34)

whereas for LS W = F−1 where F is

F =

p−1X

n=0

inbn(ka)Pn(s · s
0). (35)

(for cylindrical array, Bn(ka) would be used instead of bn(ka)). While these two equations are seemingly

similar, the methods are quite different in behavior. In BF method, the reciprocal of mode strength is

taken for each n independently; this is a significant numerical weakness of the BF decomposition because

mode strength rapidly approaches zero when n > ka; hence, the beamforming weights diverge as p→∞
and one needs to be extremely careful in choosing p so as not to cause amplification of white noise.

In practice, the equipment (microphone/amplified/ADC) noise floor, along with mode strength magnitude

plots such as Figure 1 of [6], are used in determining p for computing weights. Trying to use higher p in

search for larger signal separation results in total loss of desired signal as weights diverge (or, in other

words, the system noise is amplified to the point of losing the desired signal). Note that p varies with k

(i.e., with frequency).

In contrast, in LS the summation over n is done first and only after that is the whole matrix inverted.

Therefore, individual elements in matrix F converge as p → ∞ and p can be set arbitrarily high

without causing numerical problems (in fact, the convergence happens very quickly because of the

same exponential decay of bn(ka) when n > ka). However, the opposite problem exist in LS: at low

frequencies, the matrix F becomes ill-conditioned because a low frequency plane wave creates only

marginal potential differences between microphones. Still, a conclusion can be derived that setting p

too large for LS decomposition causes no harm and actually somewhat improves the conditioning of F

matrix due to inclusion of higher-order modes, whereas doing the same for BF decomposition causes totally

meaningless output due to taking reciprocals of extremely small values. This is confirmed by experimental

results. Furthermore, it can be hypothesized that due to the fact that the truncation number can be set

arbitrarily high in the LS algorithm without affecting its numerical stability, the decomposition achieved

with LS method is more physically correct because the wave scattering is modeled more accurately.

However, simulation results show that BF decomposition and LS decomposition are behaving substantially

equivalently over the useful array frequency range and either method can successfully extract directional

information from the one-source or two-source acoustic field presented to the array. With regard to selection

of a particular S-grid to be used for LS decomposition, it can be said that the error plots presented in the

paper show no substantial differences between all shown S-grids if the array operating range is limited to
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the frequencies below the spatial aliasing frequency. Some differences do occur at the frequencies above

the spatial aliasing limit, where error exhibited by BF decomposition appears to be lower.

Simulations versus experiment comparison: The experimental plots for the spherical array show

narrower range of good localization performance compared to the simulation plots with the same array. In

particular, in simulations good performance is observed up to the Nyquist frequency of the array (about

4 kHz), whereas in real experiments the performance starts to degrade at about 3 or 3.5 kHz. One of the

reasons could be the fact that the array is made of a hollow plastic sphere that could absorb sound whereas

the theoretical framework assumes sound-hard array support. Another observation is that the presence of

reverberation harms the array localization significantly at low frequencies.

The experimental plots for the hemispherical array show higher upper limit due to denser microphone

spacing and to the sound-hard sphere used in the construction. However, the localization performance at

low frequencies is poor due to the array being mounted on a relatively small table (remember that the

theoretical foundation assumes that the array is placed on an infinite, sound-hard plane), which causes

deviations from acoustic image principle for sources of longer wavelength. For reference, the frequency of

the sound for which the wavelength is equivalent to the table radius is 750 Hz. It can be expected that if

the array were mounted directly on a floor or on a wall the localization performance at lower frequencies

would be significantly improved.

Spatial resolution: The achievable sound field order, the number of microphones in the array, and

the spatial resolution of the array are all related. One way to view this relationship is to consider the

implications of representing the arbitrary acoustic scene in a plane-wave basis. If a representation without

loss of information and without redundancy is desired, then the number of directions in S-grid should

be the same as in M-grid. The number of microphones and the number of decomposition directions are

also related to the field order in terms of spherical harmonics; the field of order p has p2 decomposition

coefficients in Equation (5). This gives a rough idea of the relationship between the number of microphones

on the sphere, the sound field order, and the highest frequency supported by the microphone array. For

example, with L = 64 modes of order up to 8 can be resolved, and if D = a = 0.106 m, then k ≈ 70
and f ≈ 4 kHz. Spatial aliasing occurs above that frequency. The same estimation can be obtained by

considering that the beampattern width for a given truncation order is fixed and is approximately equal

to the angular intermicrophone spacing [13]; hence, no additional information about the scene could be

gained by using S-grid finer than M-grid because the beams thrown would overlap substantially.

A perceived limitation of the LS-method is that the number of directions in S-grid cannot be more than

a number of microphones, which seemingly limits the spatial resolution of the method. The BF method

technically does not have that limitation, and BF output can be produced for any direction. However,
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due to the same beam width argument, the information content of the plane-wave decomposition is equal

to that of the original scene even with S-grid being the same as M-grid, and beamforming to a lot of

directions can produce more accurate location information but still cannot resolve two sources that are

close to each other. If accurate localization is desired with LS-method, interpolation between the positions

in S-grid can be performed; this is not done in this paper.

Truncation number selection: With regard to the truncation number, it should be mentioned that

the truncation number ps = p∗ suggested in [16] and considered optimal in [1] is too high for use in

real spherical and cylindrical beamforming applications as numerical problems arise even in simulations.

Lower truncation number such as ps = ka used by some authors would be more applicable for BF method.

In contrast, with LS method increase of ps does not lead to localization error increase. Also note that the

BF kernel is actually a product of two spherical harmonics of order n (see equation (24)) and therefore

has order 2n. Thus, given 64 microphones in the array, the discrete orthonormality condition is guaranteed

to be satisfied only up to the order of about 4, and it is a lucky coincidence that the Fliege point grid has

low orthonormality errors at higher ps.

An important conclusion can be derived regarding the number of microphones necessary for successful

recovery of the scene spatial structure up to order p with the spherical array. Earlier work [8] suggested that

2p2 is the minimum number necessary for exact integration; however, the experimental results presented

here confirm that p2 microphones arranged over Fliege grid provide adequate quadrature approximation.

When less than p2 microphones are used, spatial aliasing occurs and the scene structure recovery ability

inevitably degrades [1].

Spatial aliasing limit: In some RMSE plots presented, localization accuracy is declining quite gradually

beyond the spatial aliasing limit. The sharpness of error increase depends on the truncation number and

on the particular grid used. This is not surprising since it is known that beamforming pattern degradation

happens rather slowly when the frequency is raised above the Nyquist frequency [24]. Hence, proper

choice of an S-grid may allow the array designer to go slightly beyond the spatial aliasing limit and still

obtain acceptable performance. Note that while points in M-grid shall satisfy the discrete orthonormality

property necessary for bridging the gap between equations (25) and (27), there is no such requirement

for the points in S-grid. Still, it appears that the regularity of the S-grid plays a role in how fast the

localization error increases once the upper frequency limit of the array is reached. From the error plots

presented, it appears that a good answer for the “best” S-grid question is to have S-grid identical to M-grid

(in other words, to decompose the scene into a set of plane waves in the same directions as the directions

of microphone locations on the sphere surface).

Applications: In addition to considered source localization problem, another application of the LS
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decomposition is beamforming. It is especially suitable for the case where all directional components of

the field are to be computed (e.g., for immersive audio rendering application [25]), as opposed to the case

where one is interested primarily in listening selectively in one direction. It is not clear whether BF or LS

decomposition provides better signal separation, either in terms of SNR or perceptually; however, it can be

hypothesized that the beamforming performance would be consistent with the localization performance,

as localization approach described in this work can be thought of as a number of beamforming operations

followed by selecting a component with largest magnitude. Informal listening experiments show that indeed

the signal separation achieved between two speakers in real acoustic recording done with a spherical array

of Figure 1 is about the same for BF and LS methods for ps = 3p
∗/4; when ps is raised to p∗, the separation

appears to be slightly improved for LS method and noise dominates the output signal for BF method.

Detailed simulations and experiments are out of the scope of this paper and are planned for the future.

Finally, note that for efficient implementation both BF and LS methods can be realized as a matrix-

vector multiplication using the same processing engine because the matrix of weights does not depend on

data being processed and can be precomputed for different k and given M-gird and S-grid. A very fast

implementation of the engine was recently done on GPU [26] for performing visualization of distribution

of acoustic energy in the space by beamforming, in real time, in 8192 directions and plotting the component

magnitude as a pixel intensity. The GPU implementation is two orders of magnitude faster than the CPU

implementation because the matrix-vector multiplication is ideally suited for highly-parallelized framework

of GPU programming.

IX. CONCLUSIONS AND FUTURE WORK

The study presented suggests some principles for the array design and development of plane-wave

decomposition algorithms. It was shown that the proposed LS decomposition algorithm can be formu-

lated in the same framework as “classical” spherical harmonics based beamforming algorithm but with

differently computed weight matrix. Some advantages of the LS decomposition is simpler computation of

the weight matrix and ability to employ higher truncation number than in BF decomposition. Simulated

experiments and real experiments were performed with one acoustic source for spherical, hemispherical,

and circular microphone arrays. Simulations with two acoustic sources were also performed. Effective

frequency bands of the arrays were validated in the experiments, and it was shown that within those no

significant performance differences are found between BF and LS decompositions. When the frequency

was raised above the Nyquist frequency for the array, the slowest-growing error was observed with LS

decomposition using an S-grid identical to the M-grid. In a sense, the obtained results are as good as one

can wish for – the effective frequency band is reasonably consistent with theoretical prediction and good

localization is demonstrated in the effective band. Future planned work will further evaluate accuracy
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and robustness of the two methods and will compare them in the task of capture and reconstruction of

arbitrary spatial audio fields for human listeners using spherical microphone arrays.
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XI. LIST OF FIGURE CAPTIONS

Re: Manuscript T-ASL-01922-2008.R2 “Plane-wave decomposition of acoustical scenes via spherical

and cylindrical microphone arrays”, by Dmitry N. Zotkin, Ramani Duraiswami, and Nail A. Gumerov.

Figure 1. Spherical (left), hemispherical (middle), and cylindrical (right) microphone arrays used. The

hemispherical array is mounted on a circular table.

Figure 2. Simulation, pm = 10p
∗, ps = p∗. S-grid used and decomposition method are annotated in the

plot (BF: beamforming decomposition, LS: LS decomposition).

Figure 3. Simulation, pm = 10p
∗, ps = 3p∗/2. See Figure 2 legend for abbreviations.

Figure 4. Simulation, pm = 10p
∗, ps = 3p∗/4. See Figure 2 legend for abbreviations.

Figure 5. Simulation, pm = 10p
∗, ps = p∗, regularization ε = 10−2. See Figure 2 legend for abbrevia-

tions.

Figure 6. Simulation, pm = 10p∗, ps = p∗, ε = 10−2, simultaneous localization of two plane wave

sources. See Figure 2 legend for abbreviations.

Figure 7. Simulation, cylindrical array, pm = 10p
∗, ps = p∗, regularization ε = 10−2.

Figure 8. Simulation, cylindrical array, pm = 10p
∗, ps = 3p∗/2, regularization ε = 10−2.

Figure 9. Simulation, cylindrical array, pm = 10p
∗, ps = 3p∗/4, regularization ε = 10−2.

Figure 10. Spherical microphone array experiment, sine wave signal, data frame includes signal onset.

Figure 11. Spherical microphone array experiment, sine wave signal, data frame is selected in the middle

of the signal.

Figure 12. Spherical microphone array experiment, chirp signal.

Figure 13. Hemispherical microphone array experiment, sine wave signal, data frame includes signal

onset.

Figure 14. Hemispherical microphone array experiment, sine wave signal, data frame is selected in the

middle of the signal.

Figure 15. Hemispherical microphone array experiment, chirp signal.

Figure 16. Cylindrical microphone array experiment, sine wave signal, data frame includes signal onset.

Figure 17. Cylindrical microphone array experiment, sine wave signal, data frame is selected in the

middle of the signal.

Figure 18. Cylindrical microphone array experiment, chirp signal.


