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PLANE-WAVE DIFFRACTION BY A WEDGE— A SPECTRAL DOMAIN APPROACH

A. Ciarkowski and R. Mittra



ABSTRACT

In this paper we investigate the canonical problem of plane wave 

diffraction by a wedge in the context of the spectral domain approach 

which exploits the relationship between the induced current on a scatterer 

and its far field. We show how the Sommerfeld solution to the wedge 

diffraction problem can be manipulated in a form which enables one to 

interpret the far scattered field as the Fourier transform of the 

physical optics current on the two faces of the wedge, augmented by the 

fringe current near the tip of the wedge. We also show that the uniform 

asymptotic expansion derived by Lee and Deschamps on the basis of the 

Lewis, Ahluwalia and Boersma ansatz can be rigorously obtained using the 

approach presented in this paper.

Keywords : electromagnetic scattering, wedge diffraction, spectral domain

approach, uniform asymptotic expansion.
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I. INTRODUCTION

The Spectral Theory of Diffraction (STD), which was introduced recently 

by Mittra, Rahmat-Samii and Ko [1], has been found to be a useful tool for 

solving high-frequency diffraction problems. The concepts of STD together 

with its scope, advantages and disadvantages can be found in a number of 

publications [1], [2] which have appeared recently in the literature. This 

theory is founded on the concept that the scattered field is related to 

the Fourier transform of the induced current on the scatterer and that 

the ray description of the scattered field is derivable from the spectral 

representation via an asymptotic evaluation of the integral form of this 

representation.

The canonical geometries of the semi-infinite half-plane and the wedge 

play important roles in the development of the various theories for high- 

frequency scattering. The Sommerfeld half-plane solution has been extensively 

studied [2] in the context of STD, and the STD formalism for the half-plane 

diffraction has been applied to planar and curved strips. In this paper, 

we extend the STD concepts to the geometry of the wedge. We show how the 

contour integral a la Sommerfeld for the wedge problem can be manipulated 

to yield a transform representation for the scattered field in terms of 

the currents flowing on the two faces of the wedge. We also show that it 

is possible to derive a uniform asymptotic solution for the total field, 

one which is valid for all observation angles. The uniform solution so 

derived is found to be identical to that conjectured by Lee and Deschamps 

16].



2

II. SOMMERFELD SOLUTION TO THE WEDGE PROBLEM

The starting point of our analysis is the Sommerfeld solution to the

problem of plane-wave diffraction by a wedge. Let a perfectly conducting

wedge, with the faces defined by the angles <p = 0 and <i> = $, be illuminated 

*
by a plane wave

= e-ikpcos(<J>-<|>1 )

incident from the <j>T direction. (See Fig. 1.)

Figure 1. Geometry of the wedge-diffraction problem.

The angles involved have the following ranges: 

3
0 _< <j> <_ $; 0 < <pr < n.

The total field u is subject to the boundary condition

u = 0 on the wedge surface, for u = (E-wave), or

= 0 on the wedge surface, for u = H (H-wave). 
dn z

(2a)

(2b)

* -io)t 
e time convention is implicit throughout.
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This field, as derived by Sommerfeld, can be represented in the form [3]

u(p,(|>) = w(p,<i>;cf)f) + w<p ,<>5—4>f) ,

where

z  , , N f t  r - i k p c o s ( a - d > )  d a  
w(p ,<M) I e y  -----

1-eift (a-ip)

(3)

(4)

is the Sommerfeld integral defined on the contour A in the complex a 

plane (Fig. 2), and ft = j. The upper (lower) sign in (3) applies to the 

case of the E-wave (H-wave).

Figure 2. Contour A = in the complex a

plane. The shadowed areas indicate the 

convergence regions for the Sommerfeld 

integral w(p ,<£;$) .

m . ALTERNATE FORM OF THE SOMMERFELD INTEGRAL w

In this section we derive an alternate form of the Sommerfeld integral 

w, one which would allow us to express the scattered field in terms of the 

transform of the induced current on the two faces of the wedge.
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We begin with the integrand for w given in (4) and note that the poles 

are located on the real axis in the a plane at the points

<*p = rp + 2p$, p = 0, ± 1, ± 2, ...

Since $ > ir, only one of these poles can appear in the region (—tt + <j>, 

n + $). This implies that only the incident and one reflected wave can reach 

the given observation point (p,<{>). The next step is to replace the contour 

A by a sum of the contours K and L (= 1^ + L ^ ) , as shown in Fig. 3.

Figure 3. Contours K and L (= + L«) in the a plane.

Because the contours and are separated by 2 t t , and traverse in opposite 

directions, we can write

/f(a)da = -Jf (a+2îr)da.
L
1

Consequently, the integral along L can be replaced by one along either 

or • Next, let us turn to the integral along the contour K. The contri

bution to w from the integral along K may be found by evaluating the residue 

at the pole a^. Incorporating these manipulations in the expression for w 

given in (4), we get
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w(p,(j>;̂ ) = En(TT-[ap-<j>])e lkPcos âp ^  + X (p, (p ;ip) , (5)

where

r __ i_ r ^-ikpcos(a-ci>) ft sinftTT da
2 I T  ^  r n c O  f  rv  —  —cosft(a-i/H-7r)-cosftTT *

or

i (p = <

V. 271 L

i_ j ^-ikpcos (cx—<j>) ft sinftTT da
cosft (a-i|>-7r)cosftir *

(6a)

(6b)

and r)(x) is the Heaviside step function. The sum in (5) is extended over

all p Ts for which the inequality tt— [ot̂ —4>]>0 holds at least for some value

of <f> lying in the range 0 < (p < $.

Simple asymptotic considerations reveal that the sum over p in the

r.h.s. in (5) is of the order of (kp)° as kp-*», whereas the integral I is

- 1/2
of the order of (kp) . Hence the representation (5) can be useful for 

high-frequency asymptotic analysis. Also, it will be seen from the following 

that the integral I can be easily converted into Fourier integral form.

Both of these features will be taken advantage of in subsequent sections.

IV. RAY-OPTICAL REPRESENTATION OF U

When <f>T and $ lie in the range 0 < <|>f < i t ,  0 <_■ <J> <_ $, only one pole

i IT X*
a = oiq of w(p ,<p; <f> ’) and two poles a = a^, and a = of w(p ,<J> ;-<j>') can

satisfy the inequality -ir+<i><a<Tr+<J>. These are 

(*q = <f)', due to the incident wave,

£
cXq = due to the wave reflected from the wall <f> = 0, and

= 2$ - <f>* , due to the wave reflected from the wall <J> = $.
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Thus, we find from (5)

w(p 1)

w(p, + ;*') = n(ir+*'-+)e t )  +  Kp^;*'), and (7)

- n[1r-(1(1'+4,)]e_ikpcos(*’+i) + n[2t-(4»'+*)-T]e'ikpcos(2^ ' - + )

Substituting (7) and (8) into (3), we obtain the representation for u

which is amenable to ray-optical interpretation. Indeed, the first term

in (7) and first two terms in (8) are of the order of (kp)° as kp-*», and

represent the GO approximation to the total field. The remainders in (7)

and (8), represented by I(<f>?) and I(-<f>T), respectively, are of the order 

- 1/2
of (kp) and represent the field diffracted at the edge of the wedge (for

details see [4], [5]).

V. CONVENTIONAL REPRESENTATION OF U

The representation for the total field u, given in (3), (7) and (8),

contains terms which are discontinuous functions of the observation angle

(P though the total field is continuous. It is useful to seek an alternate

representation in the context of STD, which consists of continuous functions

only. This is accomplished by deforming the contour L such that the poles 

i r r
a0’ a0 anc* al T10t cross new contour as <J> and <J>' are varied. We 

choose this deformed contour to be L< for <p < v  and L> for <f> > tt. Both of 

these contours are shown in Fig. 4.
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• 7

With such a choice for the contours, the pole is always located inside

the region bounded either by and L^, or by and L^» and the poles a^

•£
and always appear outside of the regions.

The total field u can now be expressed as

i , s 
u = u + u , (9)

i s
where u and u are, respectively, the incident and scattered fields. The 

scattered field is defined by the formula

us _ iA. f “ikpcos(a-<f>) 
2 t t  L

W(a) da, (10)

where

X = sgn y, P,

L1 A = 1

L2 X - !

(10a)

and W(a) is defined as

W(a) = fisin̂ iri [coŝ (a-ii)+XTT)-cosfiir] ^ + [cosi2(a+T|H-Xir)-cosi2iT] ^}; (11)

the upper (lower) sign corresponds to the case of the E-wave (H-wave).
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Our choice of and for the contour P^ is arbitrary in that we 

are free to use either or for P_ and or for P+ , with appro

priate choice for the corresponding integrals.

In the literature, the expression given in (9) is referred to as the 

conventional representation. (See reference [1].) We proceed next to 

find the Fourier transform representation of the scattered field. This 

is described in the following section.

VI. FOURIER TRANSFORM REPRESENTATION OF THE SCATTERED FIELD u®

Let us introduce the following change of variables:

i l  2
w=kcosa; v=/k -w =-Aksina; x=pcos<j); y=psin<i>;

kx=-kcos<j) ’ ; ky=-ksin(f>1.
(12)

For v, the branch of the square root is chosen such that Im v>0. 

Since the transformation w a is a multiple-valued function, the two 

contours L^ and L^ in the a-plane transform into a single contour C in 

the w-plane. The resulting contour in the w-plane is shown in Fig. 5.

r \

-k w.
/7\
W 2

k

V I /

c
Rew

Figure 5. Contour C in the complex w-plane (image of

L^ and L^ in a-plane).

w, = -k , w_ = -(cos2$k + sin2$k ) 
1 x 2 x y

g

Thus the scattered field u , as defined by (10) and (11), becomes
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us = i  J d  w
-iwx e

iv|y|

2iv
2V(w) (13)

where

V (w) = W(a). (14)

If we define the direct and inverse Fourier transforms for the functions 

u(x) and U(w) as

oo+iA

U(w) = / eiwx u(x) dx; u(x) = / e“iwx U(w) dw, A>0, (15)
-oo+iA

then a comparison of (13) and (15) reveals that uS in (13) has the form

ivlyl
of an inverse Fourier transform for the function

„ivly|
that

2iv 2V. We observe

2iv is the Fourier transform of the free-space Green's function

 ̂(kR) and that the scattered field has been expressed in the form of 

a convolution integral involving the Green's function g and the surface 

current j . These integrals take the form

uSCr) = -imp / gCr-r') j (_r ' )dr ' for E-wave, and (16a)
s

s 9
U (-^ = 3n J Str-r.'Jj (r’Jdr' for H-wave. (16b)

s

Returning now to (13) we deduce that the function V(w) is proportional to 

the Fourier transform of the current flowing on the surface of the wedge.

This conjecture will now be verified.

VII. ALTERNATE FORMS FOR THE SCATTERED FIELD

In this section we derive alternate forms for the scattered field which 

can be interpreted in the context of the spectral domain. We consider the 

E-wave and H-wave cases separately.
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7.1. E-Wave

From (16) it follows that the scattered field uS can be represented as 

a summation of two terms, viz.,

s s , s 
u “ u0 + U1 (17)

where

u®(r) = -leap / dx Hp1hk|r-&!t|)j0(x), (18a)

and

u®(r) = -iuip / dx1 Hg1hk|r-*1x1|)j1(x1). (18b)

The two terms in the r.h.s. of (17) may be associated with the two currents,

j0(x) = 1 9u(x,y=0)
iojy 3y

and

W iojy 3y^

(19a)

(19b)

which flow on the two surfaces of the wedge defined by <f> = 0 and <j> = 

respectively (Fig. 6).

Figure 6. The currents jQ (x) and j^(x^) flowing on the 

wedge surfaces defined by (p = 0 and <p =  $, 

respectively. Both currents flow along the z-axis.
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Replacing the Hankel function in (18) by its integral representation [4]

i (1) i , -iw(x-x')+iv|y-y'| , ,
4 H0 ' (•*) “ - 4̂  / -------------- dw; v = k -w ; Im v>0;

c

R =/Cx-x’) ̂  + (y-y1)^

and changing the order of integration leads to the following expressions for 

Uq and u^:

s, v icoy r , -iwx e
uo (̂  = - 1 7  l  dw e

iv|y

2iv 0
Jrt(w) , and (20a)

. . ivn y.
s , N iwy r j “iw,x- e 11J1

ul<£> = “ 1 7  l  dwl e 11 2iv V  1
JL (w ) , where (20b)

J0 (w) = / dxeiwXjQ (x), and (21a)

J-. (w,) = / dx eiwlXlj (x ) 
0

(21b)

s s
We observe from (20) that the component fields and u^ comprising the

3
scattered field u have the form of inverse Fourier transforms of functions 

related to the Fourier transforms of currents and j flowing along the 

faces of the wedge. This is one of the results we had been seeking.

Next, we show that the scattered field u can be written as a Fourier 

transform of a single quantity which is related to a suitable combination 

of the two currents. We begin by introducing an additional change of 

variables, defined by

-XjV^ = k sin(a-$)> where \^ = sgn y^.w^ = k cos(a-$) ( 22)
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Such a change of variables is equivalent to the enforcement of the condition

"wlxl + vi I I  = -wx + v|y|.

This may be verified by using the relationship

x^ = xcos$ + ysin$, y^ = -xsin$ + ycos$.

When these changes of variables given in (22) are inserted into (20a) we get

s Amy r j -ikpcos(a-d)) T /t s 
u0 = - -47- / da e J0(kcosa), (23)

where P is defined in (10a), and

A-my

r
1 , X—1 ,

U1 -----¿br~" / e ikpcos â J^[kcos(a-<j>) ], where L = / A^=-l, X=l,

X^— 1 , X— 1 ,

The contours L^, and are shown in Fig. 7

Figure 7. Contours L^> and in the a plane.
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The contour can be deformed into the contour (see Fig. 4), the

contour into the contour which coincides with but is orientated

along the opposite direction, and the contour into the contour L^.

s
With these changes, u^ can be rewritten as

u„
Imp
2ir / da e"ikpcos(a_<1’)J1[kcos(a-4')]. (24)

Using (14) and (23) in (24), we finally obtain

uS = - / da e ikpcos â ^ { -  [J^(kcosa) + J^kcos (a-$) ] ] }. (25)

Comparison of this result and (10) gives

W(a) = - {J (kcosa) + J^kcosia-#) ] } (26)

This formula is useful for providing a physical interpretation of the 

function W(a) in that the scattered field uS is a Fourier transform of W(a) 

which is related to the transforms of JQ and as shown in (26). Note 

that equating the integrands of (10) and (25) is permissible because the 

two integral representations for u are valid for any contour resulting 

from the deformation of P in Fig. 5.

Next we proceed to separate the physical optics (PO) and the fringe 

currents in the transform domain. We begin by introducing the function 

/(a) which is to be interpreted later as the transform of the fringe current

Wf (a) = W(a) - WP0(a), (27)

where W^° (a) is obtained from (26) by replacing JQ and with J^0 and

rP0
, respectively, the latter being the transforms of the physical optics
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POcomponents of the currents jQ and The physical optics currents

.PO
and are obtained in the usual way from the knowledge of the incident 

H-field and are given by

jP°(x) _ Iks M ’ e-ikxcos4>' an(J jP0 (̂ ) _ _ 2ksin(<i> '-$) ^ikXjCos(*'-*)

Transforming these using (21), we get

TP 0 n  x 2J (kcosa) = - -—
0 laiy cosa-coscj)

sintj) *
r , Im(cosa-cosif) ' )>0, and (28a)

j f W . f a - * ) ]  = X , J»[co.(«-*)-co«(*'-*)]>0, (28b)

where

X =

1 if the incident wave illuminates the wedge face <j> =

0 if the wedge face <J> = $ lies in the shadow region 
of the incident wave.

Note that both W(a) given in (11) and W ^ a )  found from (26) and (28) have 

simple poles at a = ±4>T and a = 2$-<J>f. However, by considering the limits

sincj)T
cosa-cos<i> r 1 as oh-<{>1,

(ot—4> ' ) fts inibir
cosi2(a-<j> * "Hr ) —c o s^tt -i as cH-cf) ’,

(a+(j) ' )
sin<f) *

cosa-cos<j>1 — ) 1 as oh— <J> ’,

(a+tj) ' )
-^sin^ir

c o s ^ ( a + < | )  ’ + i r ) - - c o s f ì i T

— )  1 as oh— <J) ’,

(a" 2 $ +i,)  c o s(a - i ) - c ó l ( J ' - $ )  ~ > -1 a s and

(a-2$+cf> ’ ) -Qsin^Tr
cosft (a+<j>1 -7r)-cosfbr — ) -1 as oH“2$-<|>
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one can show that the singularities in (27) cancel each other out and,

consequently, W^ct), the transform of the fringe current, is a regular

function. If we replace W(a) in (10) with (a) and apply the method of

stationary phase to the resulting integral, we obtain a field of the order 

- 1/2
of (kp) which is regular away from the wedge, and includes the shadow 

boundaries of the incident and both reflected waves. This field can be 

attributed to the fringe current, which is the excess over the PO current 

on the surface of the wedge.

7.2 H-wave.

The scattered field for the H-polarization case can be again expressed

s s
by (17), but the function u^ and u^ now becomes

00

u q Ol) = J dx f  Ho < k k-ra|) jQ oo

and

ui<^ = ■ a?- ]  dxl 4 V X1>

where

jQ (x) = u(x,y = 0) and j ^ x ^  = = 0) .

The current 3q (x) flows along the x-axis and the current j-^(x^) along the 

negative x^ - axis. (Fig. 8)

By applying a procedure similar to the one for the E-wave case, we find 

uS = - / da e ^kpcos(a <f>) {JL [sj_na (kcosa) - sin(a-$) J^[kcos(a-$)]]}. (29)
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Figure 8. The currents jQ (x) and j^ix^) flowing on 

the surfaces <j> = 0 and <J> = $.

Then from (10) and (29) we obtain

W(a) = —  {sinaJ^ (kcosa) - sin(a-$)J^[kcos(a-$)]}.

The function W(a) can again be interpreted as a combination of terms related 

to the Fourier transform of the currents on the faces of the wedge. All 

further observations regarding Wf (a) continue to remain valid, except that 

the expressions for and are now given by

PO 2i 1
Jn (kcosa) = ----------- 77* , lm(cosa-coscj),)>0 , and
0 k cosa-cos(J) Y *

PO 2i 1
J1 [kcos(a_$)1 = T cos"(a-$)-cos(((i' -<})' ’ I®[cos(a-»)-cos(4.'-4)]>0.

The main result of this section is that we represented the scattered field

5
u in terms of Fourier transforms of currents flowing along the faces of the 

wedge. Even though the transforms are discontinuous functions in the 

spectral domain (compare (26) and (11)), the integral representation for the 

scattered field (25) remains a uniformly continuous function of the observa-
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tion angle <p in its range of variation. Of course, the total field is also 

a continuous function of this angle.

In the next section we construct an approximate, uniformly continuous, 

asymptotic representation for the total field - one which is expressed in 

terms of known functions.

VIII. UNIFORM ASYMPTOTIC EXPRESSION FOR THE TOTAL FIELD U

As a first step toward constructing a uniform asymptotic expression 

(UAE), we return to the representation given in (3) for the total field 

u(p,cf>). Next, we manipulate the expressions for the functions wCp,^;^’) 

and w(p, <p ,-<j>1) to derive a representation which remains valid for all 

observation angles. We begin by considering the function w(p ,<f>;<f)1) . For 

the purpose of later manipulation, it is convenient to represent this 

function in the form

w (p ) = n('iT+(j)l-(i))e IkpcosC^ <!>) + l^(p , ; (|)f) + I2(p,<i>;<i>f), where (30)

I ^ P , ^ 1 )

n

-ikpcos (ot—<f> ) 
0_______

-, ii2(a-<j>’)1-e

In order to find its UAE we will employ a technique, described in [4], 

which is suitable for an asymptotic analysis of integrals which contain a 

simple pole in the neighborhood of the saddle point. According to this 

technique, the integral

1(A) = / f(a)eXg(a)da ,
SDP



18

with a simple pole at a = and nearby saddle point at a = ag) has the 

asymptotic expression:

I(A)^e^^as^{±i2a/rT~e ^  Q(±ib/À) + / y -T(0)} , lmb>0, as A -*■ «> , where

a = lim[ (a-a )f (a) ] ; b = /g(a )-g(a ) ; T(0) = hf (a ) + ;
a + aQ 0 s Q s b

= P=̂/ e" (a( a s )

00 2
Q(y) = / e X dx,

y

and the sign of H is defined such that arg h = (arg da) , where da is an
a
s

element along the steepest descent path SDP, while arg b is defined such

that

b +
an-a 
0 s

as a^ a .
s

In our case we have

g(a) = -icos(a-<j>) ; f(a)
Q 1

; â  = <j>1, and on :
2 tt - i^(a-^) 

1-e

a = -Tr+à; a = - 
s

1

ì2tt 9

* *
h = e 4/2 ; b = /2 e 4 cos ;

- - f -

T(0) = e 4/2 J L

2 t t

1-e
iii (-ir+(J>-<{> ’ ) i2ir

JÌ  e ^ cos ì l z É L
2

Now w(p , cf>; T ) can be rewritten in the form

wCp,^;^’) = n(lmb)ekp8 â0  ̂ + I1(p ,<p;<p’) + I2(p,<J>;<J>’) .
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Let us assume that the pole a — <f>’ lies near the contour L^. We observe that

, 7T
i—  “It  00 . 2

Q(y) = v^rF(e 4y), where F(z) = ----  / e1  ̂ dp is the Fresnel integral, and
t/~ 0 ~  z

that F(z) = 1 F(-z). Consequently,

n(Imb)e^p®(otO ) ± i2a/TTe^P8(ct0)Q(+ibv/kp) = ekpg(a0)F( f e f  b) , 

and the sum of the first two terms in (30) have the following UAE: 

n(Tr+<t>’-<t>)e_ikpcos(*'-(*') + I1(p.*;*')'<*lkp{«-lkp[1'1<:08(*,"*)1F(-^i5‘cos ^  +

(31)

±1 .±JL
e 4_________  + fie 4 1_______

2/2nkp cos -  /2rrkp" ^

Since the pole a = aQ is away from the contour the contribution to

w(p, <j>; <j> ’) from can be calculated by applying the standard saddle-

point method, with the result

ikp-i£

^ 2  (p »^»$ *) ^ j  q  /TTT a  »\
2  v/ 2 ^  }

(32)

Upon adding (31) and (32) together, we obtain the needed UAE for the function 

w(p,<|>;<f>T):

w , , , ,\ ikpr -ikp [1+cos(<f)* —cb) —  (jj’-ik . e 4
(p,<f>;<J> ) {e KL Y JF(-/2kpcos -y) + -E—1

2/2irkp cos — --■<̂

i—
e 4 fis infill

/2-rrkp cosfi (<{)-<{>1) - cosfiir
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If the pole aQ lies near the contour L2, then the above reasoning can be 

repeated with the contours 1^ and interchanged. It can be shown that 

the final result is the same.

To find the UAE for the function w(p ,cf><f> *) , let us represent it in 

the form:

w<P.*;-*') - n(ir-*’-*)e_lkpCOs(*'+*) + n(Tr-2W '+*)e-ikpcos(2*-*,-*>

I - i_Cp *<(>;—<*» ’ ) + I 2 ( p »<i>; —<i> *)

where In (p ,<f> ;-<j> *)

n

e~ikpcos (ot— ) 

l - g i ^ C 0^  ’ )

da

(33)

In this case the pole a = -<j>' appears near the contour and another 

pole a = 2$-$’ lies near the contour L^. Therefore, now we employ the same 

technique to the first and the third and to the second and the fourth terms 

in (33), respectively, as was used to find (32). The result is

w(p,i;-*')^eikp{e"ikp[1+cos(,|,+i,)IF(-/2kicos
2i/2iTkp cos ^

+ e~lkP[1+C°8(2^ ' ^ )]F ( - ^ o s  I f c p )  + 04)

i —  . JT

e 4 1______  fle X4 ______ 1______  ,

2/27rkp cos 2it±̂1_eii2(Tr+<f>-<f> ’ )

'The sum of (33) and (34) yields the UAE for the total field u. It will be 

rewritten in a compact form below. Let us first introduce the notations
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s = p = —pcos(4>—<f>' ) ; s 1 = -pcos (<H-<f> ’) ; j r 2  =  - pcos (2 -̂cf) ' -c{>) .

In the context of ray optics, these quantities are the eiconals of the

diffracted, incident, and the two reflected waves, respectively. We also

i r r
introduce the functions e , and which are equal to -1 in the lit 

region and +1 in the shadow region of the respective fields. Next we 

use the notation

i(x2+r)
» ( x )  =  6 4

2 v / t T

which is the first term of the asymptotic expansion of F(x), according to

F(x) = n(-x) + F(x) + 0  (x 2) .

Then the UAE for the total field u takes the form:

u ^ u^fFCe^v^cCs-s^) ) - F (ê X:(s-ŝ ) )] + {i -> r^} + {i r2> + u , (35)

where

r .

u1 = exp(is1), u 1 = exp(is i), r 2 = exp(is 2) (36a)

d
u

ikp+iy-
e 4 —1 — i
" " . . . . . —  i2 s in Q iT { [ c o s G ( ( f > - < j > f ) - c o s f t 7 r ]  +  [ c o s f i( < j> + < j> f ) - c o s i 2 T r ]  } .

/ 2 - rrk p

(36b)

We note that the expression for the total field u contains u , given in 

(36) which is the diffracted field h  la Keller. This diffracted field is 

non—uniform in nature as it is singular both at the shadow boundary and in 

the neighborhood of p = 0. However, the total field given by (35) is uniform 

at the shadow boundaries because the singularies in ft's appearing in the
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first three terms exactly cancel out the singularity in u . However, such 

a cancellation does not occur at p = 0. Hence the expression for u in (35) 

is still non-uniform at the tip of the wedge; nonetheless, the uniform 

nature is maintained at asymptotic distances away from the tip, i.e., for 

kp large.

Finally, we point out that the expression in (35) is identical to the 

one based on the Lee and Deschamps ansatz [6] which is a generalization of 

tne uniform formula for the half-plane derived by Ahluwalia, Boersma and 

Lewis [7].
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