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Plane-wave scattering by a perfectly conducting
circular cylinder near a plane

surface: cylindrical-wave approach
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A new method for the analysis of the diffraction of a plane wave impinging on a perfectly conducting circular
cylinder in front of a generally reflecting surface is presented. The surface is characterized by its complex
reflection coefficient, enabling us to treat a wide class of reflecting surfaces. The presence of the surface is
taken into account by means of a suitable expansion of the reflected field in terms of cylindrical functions.
The method gives the solution of the scattering problem in both the near and the far field regardless of
the polarization state of the incident field. Numerical examples for dielectric interfaces are presented, and
comparisons are made with results presented in the literature.  1996 Optical Society of America
1. INTRODUCTION
Plane-wave scattering by a perfectly conducting circular
cylinder in an isotropic and homogeneous medium is a
classical problem, whose solution can be found in sev-
eral books of fundamental electromagnetism.1,2 More-
over, the case of an arbitrary-cross-section cylinder has
been treated by numerical methods.3 – 7

If the cylinder is placed near a plane of discontinuity
for the electromagnetic constants, the scattering problem
assumes a more complicated form. If the surface of dis-
continuity is a perfectly conducting mirror, it is possible
to use image methods,8 – 11 and the problem is reduced to
that of several cylinders in a homogeneous medium.12 – 14

The case of a conducting surface of finite extent has also
been treated.15 – 17 For the case in which the surface is
a dielectric interface or a real conducting substrate, so-
lutions have been presented for the far field18,19 and also
for noncylindrical objects.20 – 27

In the limit of very small (with respect to the wave-
length) radii, the cylinders reduce to wires and the
problem can be solved by use of effective-impedance
methods.28,29 For circular conducting cylinders of ar-
bitrary size in the presence of interfaces with arbitrary
reflection properties, the problem has not yet been solved
in a general and rigorous way.

The method presented here gives the determination
of the field diffracted by a perfectly conducting cylinder
placed near a plane surface with a given reflection coef-
ficient G, which is an arbitrary function of the incidence
angle, when the structure is illuminated by a plane wave.
The formulation allows us to treat both the far and the
near field for both TM and TE polarization and can be
applied also to interfaces between an isotropic and an
anisotropic medium, such as a thermonuclear plasma.30

The study of this class of problems is useful in a
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wide variety of applications. For instance, we may recall
the propagation and diffraction of microwave beams by
arrays of scattering elements,31 the radar detection of
objects near the ground,18 the design of diffractive opti-
cal gratings,32 and the study of quasi-optical launchers
of lower-hybrid plasma waves,30 for which a highly ac-
curate evaluation of the near field is necessary. These
techniques are of interest also for the study of surface
contamination in the semiconductor industry.33

The theoretical analysis of the problem is presented in
Section 2, where procedures for the evaluation of the elec-
tromagnetic field are developed. In Section 3 some nu-
merical results regarding the case of a dielectric interface
are reported for the near-field distribution for both po-
larization states. Furthermore, comparisons are made
in some particular cases with different approaches for
the far-field patterns, with very good agreement. Pos-
sible extensions of the present theory are discussed in
Section 4.

2. THEORETICAL ANALYSIS
The method described here gives a rigorous analysis of
plane-wave scattering by a perfectly conducting circular
cylinder close to a nonideal mirror, i.e., a plane interface
characterized by an angle-dependent reflection coefficient.

To obtain the solution without any mirror, i.e., in an
isotropic and homogeneous medium, it is customary to
express the total field as the sum of two terms: the inci-
dent plane wave and a diffracted field. The latter can be
expanded in terms of cylindrical functions, which are de-
fined as the product of a Hankel function of the first kind
of integer order H s1d

n times a sinusoidal angular factor
expsinq d. The time dependence of the field is assumed
to be exps2ivtd, where v is the angular frequency. One
can determine the complex expansion coefficients by im-
1996 Optical Society of America
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posing the electromagnetic boundary conditions on the
surface of the conducting cylinder.1

In the case of an ideal mirror the total field can be
expressed as the sum of the incident plane wave, a dif-
fracted field, and two further terms that are produced by
the reflection of the incident plane wave and the diffracted
wave, respectively. The last term will be denoted the
diffracted–reflected field. This is equivalent to the use
of the image method.8 – 11

Dealing with a nonideal mirror, we preserve the ideal-
mirror scheme, using the four terms just indicated. The
main difficulties arise from the diffracted–reflected field.
In fact, as we said above, the diffracted field is easily
expressed in terms of cylindrical outgoing waves, but the
reflection properties of a plane of discontinuity are known
only for plane incident waves.1

The key to solving this problem is the use of the ana-
lytical plane-wave spectrum of the cylindrical waves.34

In this way we may characterize the surface by means
of only its plane-wave reflection coefficient, which can be
an arbitrary function of the generally complex wave vec-
tor. As a consequence, we can deal with rather general
interfaces, such as those with anisotropic media, multilay-
ered media, and lossy media. A quite similar approach
has been adopted with reference to spherical waves.20

In Fig. 1 the geometrical layout of the problem is
shown. The axis of the cylinder is parallel to the y axis
and is at a distance h from the interface. The structure
is assumed to be infinite along the y direction, so that
the problem is reduced to a two-dimensional form. The
wave vector of the incident field, ki, lies in the x–z plane.
The polarization is said to be TM (with respect to the axis
of the cylinder) or E when the electric field is directed
along the y axis, and TE or H when the magnetic field
is axially directed. w is the angle between ki and the
x axis, and c specifies the propagation direction of a typi-
cal plane wave building up the angular spectrum of the
field diffracted by the cylinder. For the sake of brevity
the following dimensionless notation is used: j ­ kx,
z ­ kz, and x ­ kh, where k is the wave number. A
polar coordinate system s r, q d, with r ­ kr, centered on
the cylinder axis has been introduced. In the following,
V sj, z d stands for the component of the electromagnetic
field parallel to the y axis; i.e., V ­ Ey for TM polarization
and V ­ Hy for TE polarization.

The incident field wave vector ki is related to the angle
w through the following expressions:

ki
k ­ k sin w ,

ki
' ­ k cos w , (1)

where the symbols ' and k refer to the orthogonal and
the parallel components, respectively, of a vector with
respect to the interface. The presence of the interface
is described by the complex reflection coefficient Gsnkd,
where n ­ kyk is the unit vector parallel to k.

According to the above-outlined procedure, the total
field is expressed as the superposition of the following
four fields:

≤ Vi, field of the incident plane wave;
≤ Vr , field due to the reflection of Vi by the plane

surface;
≤ Vd, field diffracted by the cylinder;
≤ Vdr , field due to the reflection of Vd by the plane

surface.

In applying the boundary conditions on the circular
cylinder it is useful to express the aforementioned fields
in terms of functions that have cylindrical symmetry,
centered on the axis of the cylinder itself. By use of the
expansion of a plane wave in terms of Bessel functions
Jlsxd, the incident field Vi may be expressed as

Visj, z d ­ V0 expsini
'j 1 ini

kz d

­ V0

1P̀
l­2`

il exps2ilwdJls rdexpsilq d . (2)

The field Vd is expressed as the sum of the following
cylindrical functions CWl, defined as

CWlsj, z d ­ H s1d
l s rdexpsilq d , (3)

with unknown coefficients cl; of course, the sj, z d depen-
dence is implicit in r and q . Hence we have

Vdsj, z d ­ V0

1P̀
l­2`

il exps2ilwdclCWlsj, z d , (4)

where the term il exps2ilwd has been added to make the
comparison with Eq. (2) easier. The reflected field Vr is
given by

Vrsj, z d ­ V0Gsni
kdexpsini

'2x 2 ini
'j 1 ini

kz d

­ V0Gsni
kdexpsini

'2xd
1P̀

l­2`

ilJls rdexpfilsq 2 w0 dg ,

(5)

where w0 ­ p 2 w denotes the angle of propagation of the
reflected wave.

As discussed in Appendix A, the Vdr field is given by

Vdrsj, z d ­ Vds2x 2 j, z d p Ĝsz d , (6)

where the asterisk denotes convolution with respect to

Fig. 1. Geometry of the problem and notation used throughout
the paper.
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the z variable, and Ĝsz d represents the inverse Fourier
transform of the reflection coefficient; i.e.,

Ĝsz d ­
1

2p

Z 1`

2`

Gsnkdexpsinkz ddnk . (7)

Then, recalling Eqs. (4) and (6), we have

Vdrsj, z d ­ V0

1P̀
l­2`

il exps2ilwdclCWls2x 2 j, z d p Ĝsz d

­ V0

1P̀
l­2`

il exps2ilwdclRWls2x 2 j, z d , (8)

where the functions RWlsj, z d ­ CWlsj, z d p Ĝsz d take on
an explicit form if we introduce the angular spectrum of
cylindrical functions with respect to the variable z . Such
a spectrum, denoted by Flsj, nkd, is related to the CWl

functions by

CWlsj, z d ­
1

2p

Z 1`

2`

Flsj, nkdexpsinkz ddnk . (9)

With use of this equation, the RWlsj, z d functions become

RWlsj, z d ­
1

2p

Z 1`

2`

GsnkdFlsj, nkdexpsinkz ddnk . (10)

The explicit expression of the functions Flsj, nkd is given
in Ref. 34 and after some algebra can be rewritten,
for both homogeneous and evanescent waves, as (see
Appendix B)

Flsj, nkd ­
2 expsin'jd

n'

exps2il arccos nkd , (11)

where n' ­
q

1 2 n2
k and the function arccos is meant to

be defined over the whole real axis.
From Eqs. (8) and (10), taking into account that a shift

in the j variable corresponds to a multiplication by an
exponential factor [see Eq. (11)], we have the following
expression:

Vdrsj, z d ­ V0

1X̀
l­2`

il exps2ilwdcl
1

2p

Z 1`

2`

GsnkdFls2x, nkd

3 exps2in'j 1 inkz ddnk . (12)

By expressing the plane wave in the integral in Eq. (12)
through a series as in Eq. (2), we have

Vdrsj, z d ­ V0

1X̀
l­2`

il exps2ilwdcl

1X̀
m­2`

imJms rd

3 expfimsq 2 c 0 dg

3
1

2p

Z 1`

2`

GsnkdFls2x, nkddnk , (13)
where (see Fig. 1) c 0 ­ p 2 c, the angle c being defined
as c ­ arcsin nk. Rearranging Eq. (13), we have

Vdrsj, z d

­ V0

1X̀
l­2`

il exps2ilwdcl

1X̀
m­2`

imJms rds21dm expsimq d

3
1

2p

Z 1`

2`

Gsnkd
2 expsin'2xd

n'

exps2il arccos nkd

3 expsim arcsin nkddnk

­ V0

1X̀
l­2`

il exps2ilwdcl

1X̀
m­2`

Jms rdexpsimq d

3
1

2p

Z 1`

2`

Gsnkd
2 expsin'2xd

n'

3 expf2isl 1 mdarccos nkgdnk , (14)

where the trigonometric relation

expsim arcsin nkd ­ im exps2im arccos nkd (15)

is used. Thus we obtain

Vdrsj, z d ­ V0

1X̀
l­2`

il exps2ilwdcl

1X̀
m­2`

Jms rdexpsimq d

3
1

2p

Z 1`

2`

GsnkdFl1ms2x, nkddnk

­ V0

1X̀
l­2`

il exps2ilwdcl

1X̀
m­2`

Jms rd

3 expsimq dRWl1ms2x, 0d . (16)

Once the expressions of all fields in the frame centered
on the cylinder axis are given, we have to impose the
boundary conditions on the surface of the cylinder, namely

fVi 1 Vr 1 Vd 1 Vdrgr­ka ­ 0 for TM polarization,

fVi 1 Vr 1 Vd 1 Vdrg0
r­ka ­ 0 for TE polarization,

(17)

where the prime denotes derivation with respect to the
variable r. By using Eqs. (2), (4), (5), (16), and (17), after
some algebra we obtain the following linear system for
the unknown coefficients cl:

1P̀
l­2`

Amlcl ­ bm , (18)

where

Aml ­ exps2ilwdfdml 1 il2mGmskadRWl1ms2x, 0dg , (19)

bm ­ 2Gmskadhexps2imwd 1 Gsni
kdexpsi2ni

'xd
3 expf2imsp 2 wdgj , (20)

and the symbol dml denotes the Kronecker delta. The
function Gm, which contains the information regarding
the boundary conditions, is defined as follows:
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Gmsxd ­

8>>>><>>>>:
Jmsxd

H s1d
m sxd

for TM polarization

J 0
msxd

H s1d0
m sxd

for TE polarization

. (21)

It is useful to note that, if G is constant with respect to
nk, the integral in Eq. (16) can be performed analytically
and the Vdr field reduces to the field diffracted by an
image cylinder, placed in j ­ 2x, under the action of Vr

as the incident field. Moreover if G ­ 0, i.e., in absence
of the interface, Eqs. (5) and (6) show that Vr ­ 0 and
Vdr ­ 0, so that linear system (18) yields the classical
solution for scattering in an isotropic and homogeneous
medium.1

Once system (18) has been solved, it is possible to evalu-
ate the electric (magnetic) field for TM (TE) polarization
by means of Eqs. (2), (4), (5), and (16). For complete in-
formation on the electromagnetic field to be obtained, the
magnetic (electric) field for TM (TE) polarization remains
to be evaluated.

From Maxwell’s equations we obtain

E ­
i

ve
= 3 H ,

H ­ 2
i

vm
= 3 E . (22)

By using dimensionless coordinates, we have

= ­ k=̃ , (23)

where the symbol =̃ denotes the gradient with respect to
the dimensionless coordinates. By substituting Eq. (23)
into Eq. (22), we obtain

Es rd ­
ik
ve

=̃ 3 Hs rd ­ iZ=̃ 3 Hs rd ,

Hs rd ­ 2
ik

vm
=̃ 3 Es rd ­

1
iZ

=̃ 3 Es rd , (24)

where Z ­
p

mye.
Regardless of the polarization state of the incident field,

one has to evaluate the curl of V sj, z dŷ , where the symbol
ˆ denotes a unit vector, i.e.,

=̃ 3 V sj, z dŷ ­ 2≠z V sj, z dx̂ 1 ≠jV sj, z dẑ . (25)

Thus we can write, for TM polarization,

Esj, z d ­ V sj, z dŷ ,

Hsj, z d ­ 2
1

iZ
≠z V sj, z dx̂ 1

1
iZ

≠jV sj, z dẑ , (26)

and, for TE polarization,

Esj, z d ­ 2iZ≠z V sj, z dx̂ 1 iZ≠jV sj, z dẑ ,

Hsj, z d ­ V sj, z dŷ . (27)

As a consequence, to evaluate the total field, one has to
use the partial derivatives of V sj, z d, and in particular
the partial derivatives of CWlsj, z d and RWlsj, z d [see
Eqs. (4) and (8)]. The detailed analysis, carried out in
Appendix C, yields
≠jCWlsj, z d ­ 1/2fCWl21sj, z d 2 CWl11sj, z dg , (28)

≠z CWlsj, z d ­ i/2fCWl21sj, z d 1 CWl11sj, z dg , (29)

≠jRWlsj, z d ­ 1/2fRWl21sj, z d 2 RWl11sj, z dg , (30)

≠z RWlsj, z d ­ i/2fRWl21sj, z d 1 RWl11sj, z dg . (31)

Through the knowledge of these functions, the evalu-
ation of the transverse component of the electromagnetic
field may be carried out in a straightforward way.

Once system (18) has been solved, it is possible to
evaluate the total electromagnetic field for both polar-
ization states, through only the knowledge of the scalar
function V sj, z d. In particular, the total diffracted field
V tot

d ­ Vd 1 Vdr is given by

V tot
d sj, z d ­ V0

24 1P̀
l­2`

ĉlCWlsj, z d 1
1P̀

l­2`

ĉlRWls2x 2 j, z d

35
­ V0

1P̀
l­2`

ĉlfCWlsj, z d 1 RWls2x 2 j, z dg , (32)

where, for the sake of simplicity, we put ĉl ­ il

exps2ilwdcl. The diffracted field in the far zone is eas-
ily calculated by use of the asymptotic expansion of the
Hankel function35:

H s1d
l s rd .

q
22iypr i2l expsird . (33)

In fact, for the CWl, we obtain the following far-field
expression:

CWlsj, z d .
q

22iypr i2l expsir 1 ilq d , (34)

of which the coordinates s r, q d are shown in Fig. 2.
With respect to the functions RWl, the following expres-
sion is obtainable36,37:

RWlsj, z d .
q

22iypr Gssin q di2l expsir 1 ilq d , (35)

corresponding to the well-known interpretation of the far
field by means of plane waves. Therefore

RWls2x 2 j, z d .
q

22iypr Gssin q di2l expsir 1 ilq d ,

(36)

where s r, q d are also shown in Fig. 2.

Fig. 2. Notation used in Section 2.
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To compute the far field, we can substitute from re-
lations (34) and (36) into Eq. (32), making the following
approximations:

1
r

.
1
r

,

q . p 2 q ,

expsird . exps22ix cos q dexpsird . (37)

After some algebra we finally obtain the far-field expres-
sion of the total diffracted field:

V tot
d sj, z d . V0

q
22iypr expsird

1P̀
l­2`

i2lĉl

3 fexpsilq d 1 s21dlGssin q d

3 exps22ix cos q dexps2ilq dg . (38)

The far-field pattern can be thought of as the angular
part of relation (38); i.e.,

gsq d .
1P̀

l­2`

i2l ĉlfexpsilq d 1 s21dlGssin q d

3 exps22ix cos q dexps2ilq dg . (39)

In the particular case of a thin wire above a plane
interface, Eq. (39) reduces to the result given in Ref. 38
for TM polarization, since only the Hankel function of zero
order is significant. On the other hand, in the TE case,
as is well known, the first higher-order terms sl 6 1d must
be taken into account, even for a thin wire.1

3. NUMERICAL RESULTS
Although no approximations have been introduced in the
theoretical basis of this method, when one is dealing with
numerical procedures it is necessary to truncate the series
in Eq. (18) to a finite number 2N 1 1; i.e.,

1NP
l­2N

Amlcl ­ bm sm ­ 2N , . . . , N d . (40)

With respect to the convergence of Eq. (40), a suggested
criterion6 based on the properties of the Hankel functions
sets N ­ ka. Elsherbeni13 and Ragheb and Hamid12 sug-
gest N ­ 3ka. To verify the validity of these conditions
we performed various numerical tests. As an example,
in Fig. 3 we show the behavior of the modulus of the ex-
pansion coefficients cl in Eq. (40) for the case of an ideal
mirror, for (a) TM and (b) TE polarizations and different
values of the truncation index sN ­ 1, 3, 9, 15d. The
other parameters are ka ­ 3, kh ­ 4, w ­ 0±. As is
clearly shown, in both cases the choice N ­ 3ka seems to
be a reasonable compromise between accuracy and com-
putational heaviness.

The second approximation is related to the numerical
evaluation of the RWl functions. Indeed, since in many
practical cases, such as dielectric or vacuum–plasma
interfaces,30 the expression of the reflection coefficient
Gsnkd does not allow an analytic evaluation of the inte-
grals in Eq. (10), they must be solved numerically. The
evaluation of these integrals has previously been carried
out with the use of Gaussian integration techniques.39
The divergences for jnkj ­ 1 were removed by a suitable
change of the integration variable. The results obtained
in this way are quite satisfactory, as we shall see in the
following.

A. Near Field
In Fig. 4 we show two-dimensional (2-D) plots of the
modulus of the total electric field Etot on the x–z plane,
when the reflecting surface (bottom of each plot) is the
interface between the vacuum and an isotropic dielec-
tric medium, and the incident plane wave impinges on
it normally sw ­ 0±d from above. On the right-hand side
of the figure, schematic drawings of the geometrical ar-
rangement are sketched. The values of the field are codi-
fied through a gray scale ranging from black sEtot ­ 0d
to white (maximum of Etot). The plots refer to different
choices of the radius of the cylinder [ka ­ p, Figs. 4(a)
and 4(b); ka ­ py10, Figs. 4(c) and 4(d)], of the cylinder–
interface distance [kh ­ 3p, Figs. 4(a) and 4(c); kh ­
7py2, Figs. 4(b) and 4(d)], and of the refractive index of
the dielectric medium sn ­ 1.1, 2, 50d. The incident wave
is TM polarized, so that the Etot vector is parallel to the
surface of the cylinder and vanishes there.

We chose the two distances in such a way that the cylin-
der axis is located in correspondence to antinodal skh ­
7py2d and nodal skh ­ 3pd positions of the standing-wave
pattern produced by the incident wave impinging on a per-
fect mirror. We did this to highlight the different pertur-
bations induced by the position of the cylinder.

The three values of the refractive index correspond to

Fig. 3. Behavior of the modulus of expansion coefficients cl for
a dielectric interface sn ­ 50d, for (a) TM and (b) TE polarization
and different values of the truncation index sN ­ 1, 3, 9, 15d.
The other parameters are ka ­ 3, kh ­ 4, w ­ 0±.
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Fig. 4. 2-D plots of the modulus of the E field, for TM polarization: (a) ka ­ p, kh ­ 3p; n ­ 1.1, 2, 50; (b) ka ­ p, kh ­ 3.5p;
n ­ 1.1, 2, 50; (c) ka ­ py10, kh ­ 3p; n ­ 1.1, 2, 50; (d) ka ­ py10, kh ­ 3.5p; n ­ 1.1, 2, 50. On the right-hand side, schematic
drawings of the geometrical arrangement are sketched. The arrows indicate the direction of the incident plane wave.
a weak sn ­ 1.1d, an appreciable sn ­ 2d, and a strong
sn ­ 50d reflection. The first and the third case may be
useful in a comparison with the results for the cases of the
absence of any interface and of the presence of an ideal
mirror, respectively.1

Figure 5 shows 2-D plots of the moduli of the total elec-
tric [Fig. 5(a)] and magnetic [Fig. 5(b)] fields when the
cylinder is illuminated by a plane TE-polarized wave that
propagates normally to the vacuum–dielectric interface.
On the right-hand side of the figure is a schematic draw-
ing of the geometrical arrangement. The radius of the
cylinder is ka ­ py2, the refractive index is n ­ 2, and
the cylinder–interface distance is kh ­ 3p. The evalu-
ation of the electric field for TE polarization, carried out
by means of Eq. (27), is an important task, especially in
some applications.30
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B. Far Field
As highlighted in Section 2, once the expansion coeffi-
cients cl are known, the present method leads to the
evaluation of the far field in a simple way by means of
relation (38). As an example, in Fig. 6 we show the scat-
tering cross sections1 when the reflecting surface is the
interface between vacuum and a lossless dielectric, for TM
(dashed curves) and TE (solid curves) polarizations. Al-
though ka ­ p and kh ­ 2p are kept fixed in all figures,
Fig. 5. 2-D plot of the modulus of the (a) H and (b) E fields for TE polarization: ka ­ py2, kh ­ 3p, n ­ 2. On the right-hand side,
a schematic drawing of the geometrical arrangement is sketched. The arrow indicates the direction of the incident plane wave.

Fig. 6. Semilogarithmic plots (a.u.) of the scattering cross section sS as a function of the scattering angle q for the case of a dielectric
interface: ka ­ p, kh ­ 2p, w ­ 0±, 30±, and n ­ 1.1, 2, 50, for TE (solid curves) and TM (dashed curves) polarization.
different w and refractive index values have been consid-
ered sw ­ 0±, 30±; n ­ 1.1, 2, 50d.

With a suitable choice of the parameters, the predic-
tions of our procedure can be compared directly with the
results obtained by other authors for particular cases.
For example, in Ref. 15 the scattering of a Gaussian beam
by a perfectly conducting cylinder placed onto a finite
conducting plane is carried out. The authors used the
extinction theorem40 for the evaluation of the far-field
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Fig. 7. Semilogarithmic plot (a.u.) of the scattering cross section
sS as a function of the scattering angle q for an ideal mirror:
ka ­ kh ­ 4, w ­ 0±, for TE (solid curve) and TM (dashed curve)
polarization.

Fig. 8. Semilogarithmic plot (a.u.) of the scattering cross section
sS as a function of the scattering angle q for a dielectric lossy
medium and TM polarization: n ­

p
4.0 1 i0.18, kh ­ 20.94,

w ­ 20±, ka ­ 4.19 (solid curve), ka ­ 10.47 (dashed curve).

pattern. Our results are in perfect agreement with the
ones reported in that reference when the spot size of the
incident Gaussian beam is much larger than the cylinder
size. As an example, in Fig. 7 we show the scattering
cross section sS as a function of the scattering angle q

when ka ­ kh ­ 4 and w ­ 0±, in both TM (dashed curve)
and TE (solid curve) polarization. These curves can be
compared with those in Fig. 10 of Ref. 15. The results
are identical except for the presence, in the latter case, of
a central peak that is due to the reflection of the incident
Gaussian beam by the surface sVrd, which is not reported
in our figures.

Cottis and Kanellopoulos18 studied the scattering of a
TM-polarized plane wave by a perfectly conducting cylin-
der near a lossy dielectric interface, by using an integral
equation technique for the evaluation of the current dis-
tribution on the surface of the cylinder. The results ob-
tained with our method, when kh ­ 20.94, ka ­ 4.19 (solid
curve), ka ­ 10.47 (dashed curve), n ­

p
4.0 1 i0.18, are

reported in Fig. 8, which can be compared with Fig. 2 of
Ref. 18, for which the same parameters have been used.
There is a good qualitative agreement, although the two
figures show some differences.
4. CONCLUSIONS
The method presented here gives the solution of plane-
wave scattering by a circular, perfectly conducting cylin-
der of arbitrary radius at a given distance from an
arbitrary plane interface. Both the near and the far
fields can be accurately determined.

The method seems to be simple and general and can
be applied to any plane surfaces, such as dielectric inter-
faces, multilayered structures, and anisotropic and lossy
media. A further attractive feature is that both polar-
ization states can be treated with essentially the same
procedure.

The problem of scattering by an array of arbitrarily
placed circular cylinders (either conducting or dielectric)
with parallel axes has been treated by several authors us-
ing different techniques13,14 for a homogeneous medium.
Our method may be generalized to treat such a problem
in the presence of a plane interface. Therefore it should
prove useful in a variety of practical applications, both in
optics and in microwaves.

Furthermore, by means of a suitable plane-wave decom-
position, our method can be extended to more complicated
incident fields, such as Gaussian beams.

APPENDIX A
Let us consider a general field distribution Visj, z d (with
j , 0) impinging on a surface coinciding with the j ­ x

plane and characterized by the reflection coefficient Gsnkd.
Our aim is to study the field reflected by the surface. By
means of a plane-wave expansion of the field Visj, z d on
the j ­ 0 plane, we get

Vis0, z d ­
1

2p

Z 1`

2`

Ais0, nkdexpsinkz ddnk , (A1)

where the function Aisj, nkd is the angular spectrum of
the field in a plane j ­ constant.

The field on the surface j ­ x can be expressed in terms
of Ais0, nkdby consideration of the propagation features of
the angular spectrum; i.e.,

Visx, z d ­
1

2p

Z 1`

2`

Aisx, nkdexpsinkz ddnk

­
1

2p

Z 1`

2`

Ais0, nkdexpsin'x 1 inkz ddnk . (A2)

The angular spectrum of the reflected field can be sim-
ply expressed by means of the definition of the reflection
coefficient; i.e.,

Arsx, nkd ­ Aisx, nkdGsnkd ­ Ais0, nkdexpsin'xdGsnkd .

(A3)

Thus we have

Vrsx, z d ­
1

2p

Z 1`

2`

Arsx, nkdexpsinkz ddnk

­
1

2p

Z 1`

2`

Ais0, nkdGsnkdexpsin'x 1 inkz ddnk .

(A4)
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The reflected field on a plane j ­ constant , x is

Vrsj, z d ­
1

2p

Z 1`

2`

Ais0, nkdGsnkdexpsin'xd

3 expfin'sx 2 jd 1 inkz gdnk (A5)

­
1

2p

Z 1`

2`

Ais0, nkdGsnkd

3 expfin's2x 2 jd 1 inkz gdnk , (A6)

where the backward propagation of the reflected plane
waves has been taken into account. Now Eq. (A5) can
be written, using the convolution theorem for Fourier
transform, as

Vrsj, z d ­ Vis2x 2 j, z d p Ĝsz d , (A7)

where the asterisk denotes convolution with respect to
the z variable and Ĝsz d is the inverse Fourier transform
of the reflection coefficient; i.e.,

Ĝsz d ­
1

2p

Z 1`

2`

Gsnkdexpsinkz ddnk . (A8)

Equation (A7), applied to the fields Vd and Vdr , coincides
with Eq. (6) of Section 2.

APPENDIX B
Starting from Eq. (11) of Ref. 34, and referring to Fig. 1
of the same reference, we have

Hls rdexpsilad ­
Z 1`

2`

F 0
l sh, bdexpsibjddb , (B1)

where in this case the prime is used to distinguish the
old notation from the present one. The two sets of func-
tions are different because a new frame of reference is now
employed. Explicit expression of the above-mentioned F 0

l

functions is given in Eq. (12) of Ref. 34. Our purpose is
to obtain the expression of the Fl functions used through-
out the paper, which are defined as

Hls rdexpsilq d ­
1

2p

Z 1`

2`

Flsj, nkdexpsinkz ddnk . (B2)

To this end, it is necessary to change the frame of refer-
ence. This requires the following substitutions:

a ! py2 2 q , j ! z , h ! j, b ! nk . (B3)

After the substitutions we obtain

ilHls rdexps2ilq d ­
Z 1`

2`

F 0
l sj, nkdexpsinkz ddnk . (B4)

By changing l to 2l and using the well-known property
H2ls rd ­ s21dlHls rd, we have
i2ls21dlHls rdexpsilq d ­
Z 1`

2`

F 0
l sj, nkdexpsinkz ddnk ,

(B5)

and therefore

Hls rdexpsilq d ­
Z 1`

2`

s2idlF 0
2lsj, nkdexpsinkz ddnk . (B6)

By comparing Eq. (B2) with Eq. (B6), we obtain the fol-
lowing expression:

Flsj, nkd ­ 2ps2idlF 0
2lsj, nkd . (B7)

By recalling Eq. (12) of Ref. 34 we finally obtain

Flsj, nkd ­

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

s21dl
2 exp

µ
2j

q
n2

k 2 1
∂

i
q

n2
k 2 1

µq
n2

k 2 1 2 nk

∂
2l

for nk [ s2`, 21d

2 exp
µ
ij

q
1 2 n2

k 2 il arccos nk

∂
q

1 2 n2
k

for nk [ s21, 1d

2 exp
µ

2j

q
n2

k 2 1
∂

i
q

n2
k 2 1

µq
n2

k 2 1 1 nk

∂l

for nk [ s1, 1`d

.

(B8)

Taking into account the algebraic relation

s21dl

µq
n2

k 2 1 2 nk

∂
2l

­

µq
n2

k 2 1 1 nk

∂l

, (B9)

we can rewrite Eq. (B8) as

Flsj, nkd ­
2 exp

µ
ij

q
1 2 n2

k

∂
q

1 2 n2
k

glsnkd , (B10)

where glsnkd is defined as

glsnkd ­

8><>:
µq

n2
k 2 1 1 nk

∂l

for jnkj $ 1

exps2il arccos nkd for jnkj # 1
. (B11)

In particular, Eqs. (B11) can be formally rewritten in a
compact form by use of the definition of the arccos function
in the complex domain.41 Finally, after some algebra, we
can write

Flsj, nkd ­
2 exp

µ
ij

q
1 2 n2

k 2 il arccos nk

∂
q

1 2 n2
k

for nk [ s2`, 1`d , (B12)

which coincides with Eq. (11) of Section 2.
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APPENDIX C
We start from the definition of the function RWmsj, z d:

RWmsj, z d ­
1

2p

Z 1`

2`

GsnkdFmsj, nkdexpsinkz ddnk .

(C1)

In particular, for the case Gsnkd ­ 1, we have RWmsj, z d ­
CWmsj, z d. By recalling Eq. (11), we obtain from Eq. (C1)

RWm11sj, z d ­
1

2p

Z 1`

2`

Gsnkd
2 expsijn'd

n'

3 expf2ism 1 1darccos nkgexpsiznkddnk

­
1

2p

Z 1`

2`

GsnkdFmsj, nkdexps2i arccos nkd

3 expsinkz ddnk . (C2)

We take into account the trigonometric relation

exps2i arccos nkd ­ cossarccos nkd 2 i sinsarccos nkd

­ nk 2 in' , (C3)

and Eq. (C2) becomes

RWm11sj, z d

­
1

2p

Z 1`

2`

GsnkdFmsj, nkdsnk 2 in'dexpsinkz ddnk

­
1

2p

Z 1`

2`

nkGsnkdFmsj, nkdexpsinkz ddnk

2
1

2p

Z 1`

2`

in'GsnkdFmsj, nkdexpsinkz ddnk

­ 2i≠z RWmsj, z d 2 ≠jRWmsj, z d . (C4)

Proceeding in the same way for RWm21, we get the follow-
ing linear system:

RWm11sj, z d ­ 2i≠z RWmsj, z d 2 ≠jRWmsj, z d ,

RWm21sj, z d ­ 2i≠z RWmsj, z d 1 ≠jRWmsj, z d , (C5)

and, by inversion, finally we obtain

≠jRWmsj, z d ­ 1/2fRWm21sj, z d 2 RWm11sj, z dg , (C6)

≠z RWmsj, z d ­ i/2fRWm21sj, z d 1 RWm11sj, z dg . (C7)

Equations (C6) and (C7) coincide with Eqs. (30) and (31),
respectively. Equations (28) and (29) can be simply de-
rived by replacement of RW with CW in Eqs. (C6) and
(C7), respectively.
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