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Plane-wave theory of nondegenerate oscillation in the linear
photorefractive passive phase-conjugate mirror
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We present a plane-wave theory of nondegenerate oscillation in the linear passive (self-pumped) phase-conjugate
mirror (PPCM). The circumstances under which the plane-wave theory permits spontaneous nondegenerate
oscillation in this and other PPCM's are discussed.

The observation of frequency-shifted phase-conjugate
reflection in photorefractive passive (self-pumped)
phase-conjugate mirrors1' 2 (PPCM's) has given rise to
considerable efforts for its theoretical explanation. In
this Letter we give a plane-wave theory of oscillation
in the linear PPCM,3 compare it with the previously
developed theory of detuning in the ring PPCM,2 and
discuss the circumstances in which the plane-wave
theory indicates the possibility of nondegenerate os-
cillation in these devices and in the cat PPCM.4

The linear PPCM consists of a photorefractive crys-
tal enclosed by a linear oscillation cavity (Fig. 1). The
signal beam, beam 4, passes through this crystal and
pumps oscillation beams 1 and 2 between the cavity
mirrors Ml and M2. These self-induced oscillation
beams then pump the crystal as a phase-conjugate
mirror (PCM) for beam 4 and produce beam 3, the
phase-conjugate reflection. To examine the possibili-
ty of nondegenerate oscillation, we analyze the round-
trip phase sum requirements of oscillation in a linear
resonator.

The coupled-wave equations describing photore-
fractive four-wave mixing in the slowly varying field
approximation for the transmission grating without
linear absorption are

dA,/dz = -ygA4, (la)

dA2*/dz = -ygA 3*, (lb)

dA3/dz = -ygA 2, (Ic)

dA4 */dz = -,ygA 1 *, (Id)

where y is the photorefractive coupling constant, g =
(AIA4 * + A2 *A3 ), and Aj is the amplitude of beam j
normalized by the square root of the conserved total
average intensity Io = Ii(z) + I2(z) + I 3(z) + I4 (z).
The intensities are defined as Ij = IA; 12. To examine
the phases more effectively, we separate the ampli-
tudes into magnitude and phase: Ai = 1j1/2 exp(ispj).
We write the round-trip phase-sum rule for the
M1 -M2 cavity as

0(1) - t(0) + 2kL = 27rm, (2)

where m is an integer, L is the cavity length, and 4(z) =
(Z) - IP2(Z)- Since the frequency detunings ob-

served in photorefractive processes are very small (-1
Hz for 1-W/cm 2 beams), we have neglected the fre-
quency dependence of the wave number k.

The standard theory of the photorefractive effect5' 6

gives

wreffno Eq(Eo + iEd)

4c cos i[Eo- i-(Ed + E)] + i[Ed + Eq + 6TE 0]

(3)

where t9 is the angle of incidence of the signal beam
and 3 is the oscillation-beam frequency minus the in-
put signal-beam frequency, that is,

6= -: 4 = -3 C2,
where wi is the optical frequency of beam i. Eo is an
externally applied or photovoltaic dc electric field; EM,,
Ed, and Eq are internal electric fields characteristic of
drift, diffusion, and maximum space charge, respec-
tively. The relevant electro-optic coefficient 7 is reff,
no is the crystals refractive index, and T is the charac-
teristic time of grating formation and is approximately
inversely proportional to the total intensity Io. The
fact that this time constant depends on the oscillation
intensity must be taken into account in the following
theory.

To find the relationship between the detuning 6 and

Ml

- , F £ = M24 2/

Fig. 1. The linear passive PCM.

0146-9592/86/040242-03$2.00/0 © 1986, Optical Society of America

(4)



April 1986 / Vol. 11, No. 4 / OPTICS LETTERS 243

O). _

U)a)

a)

.C
0
U(-)

U)

a-en~~~~~~~~~~~~~~~
IC

60'

C:
.C

a)

(LCL

07
U)

U-

Linear Cavity Path Length
Detuning \V

(a)

.5

U

01
C .

_1,0 c IL)

0.5
a) 0~

O )r

U )

01o o
0.5 a) C:

CJ U

0 OL

Linear Cavity Path Length
Detuning T

(c)

0.751-

0.

7Tr/q4 7T,/ 

Linear Cavity Path Length
Detuning 'V

(b)

.5 _ -- _

0.I -~~~~~~~~~~~~~
ir/I 71 37/47
7r/4 7T/2 37r/4

Linear Cavity Path Length
Detuning 'V

(d)

Fig. 2. Phase-conjugate reflectivity R (dashes) and oscillation-beam frequency detuning 6 versus optical path length kL

modulo 27r in empty oscillation cavity. Only the path-length range 0 to -r is shown: the results show natural symmetry about
the origin. In each case, the undetuned coupling constant ylo =-3 and M2 = 0.98. The detuning 6 is normalized by the

constant quantity I4(0)/(Io-). Ml varies as follows: (a) 1.00, (b) 0.125, (c) 0.025, (d) 0.01. Note the change of scale in 8 for (b),
(c), and (d).

the cavity lengthy L as given in Eq. (2), we rewrite Eqs.
(la) and (lb) as

d logA A

dz
(5a)

+ (A + 1)2/M2]1/2. Then we have

I (z) Il(z)
11()=2(Z)

1 T(z)+Q 2

M2 [AT(z) + Q + (1 + A)T(z)/'M 2 ]

(9a)

d logA2 *- 3(1 + /f),

dz

f = A2 *A3 /A1 A4 *-

(Sb)

(6)

(1 + A)2
1 T(z)l 2

13 4 (Z) -M 21AT(z) + Q12

I(Z.) =1- A -1 2(Z)(1 + A)
2[ - 1 2(z)13 4(z)]

From the imaginary parts of Eqs. (5), we can derive

dA//dz = -Im[YI 4 (1 + 134 + f + 134/f)], (7)
= _ (\A + 1)T(z) 1

T(z) +Q 
+M [T(z) +|J)

M2[AT(z) + Q]|
where I34 = I3(z)/I4(z). The quantities I4, f, and I34
may be readily obtained from the existing theory of
the linear PPCM.3 First, the intensity flux A = I2(1) -
Il(0) - I4(0) is found from the solutions of the equa-
tion T|() + Q2

MA=
AT(O + Q + (1 + A) T(0)1M 2

(8)

where Ml and M 2 are the intensity reflectivities of the
cavity mirrors, T(z) = tanh[-y(l - z)Q/2], and Q = [A2

* = A4(1) - At(0) may then be found by numerical
integration of Eq. (7)

Note that if -y is real, then f is real, which implies [see
Eq. (7)] that dA/'dz = 0. In this case, the phases of the
oscillation beams are unaffected by the nonlinear in-
teraction and no compensation for cavity length de-
tuning is possible.

Some typical plots of frequency shift 6 and phase-
conjugate reflectivity R versus cavity optical path
length kL are given in Fig. 2. With M2 = 0.98, we have
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shown what happens as Ml is made smaller, approach-
ing the limit of the semilinear PPCM. As this limit is
approached, the amount of frequency detuning al-
lowed becomes smaller because the oscillation condi-
tion begins not to allow the coupling constant to be
complex. Eventually, when Ml = 0, we reach the case
of the semilinear PPCM whose solution requires

T(O) + Q = 0, (12)

which can be satisfied only if T(0) is real, which im-
plies that -y is real, which in the absence of a uniform
dc field E0 implies that 6 = 0 [see Eq. (4)] Ml is no
longer present, and the round-trip phase-sum rule no
longer needs to be satisfied. In the semilinear mirror,
beam 2 is supplied by retroreflection of beam 1 so that
Wl = W2. Equation (4) implies then that W3 = 4,
meaning that no frequency detuning is possible.

We now turn to a discussion of experimental obser-
vations of spontaneous nondegenerate oscillation in
the linear, ring, and cat PPCM's. Nondegeneracy has
been observed in both the ring PPCM2 and the cat
PPCM.' Fischer and Sternklar 2 showed that the
plane-wave theory of the ring PPCM indicated that it
should exhibit nondegenerate oscillation only if the
clockwise path length around the oscillation ring dif-
fered from the counterclockwise path length, as would
occur if the device were rotating in the case of ring-
laser gyroscope or if nonreciprocity in the ring were
induced by the Faraday effect in the ring-cavity medi-
um (in their case, an optical fiber). In its conventional
interpretation, the cat PPCM is a special case of the
ring PPCM,7 that is, a ring PPCM containing a double
PCM7 in its feedback loop. That the amplitude trans-
missivity of the double PCM is the same for both
beams incident upon it can be shown by the following
argument. The quantity c = AlA2 + A3A4 is indepen-
dent of z, as can be verified by calculating dc/dz from
Eqs. (1). Since A3(l) = Al(0) = 0, we have c =
Al(l)A2(l) = A3(0)A4(0). Dividing throughout by
AA0)AA(, we have

c _ Al(l)

A4(0)A 2(l) A4 (0)

A 3(0)
= t 14 = = t32'

A 2 (l) 32

where t14 is the left-to-right transmissivity and t32 is
the right-to-left transmissivity. This device is part of
the semilinear PPCM, and, like the semilinear PPCM,
requires 8 = 0. In contrast to the case of the semilin-
ear PPCM, the boundary conditions for a double PCM
do not require that wl = '2. The counterpropagating
beams in the ring can be detuned from each other,
resulting in co, = W4, Co3 = C02, Coil F- C02, and still 6 = 0.
The cat mirror should thus behave in its detuning
characteristics exactly like a ring mirror whose feed-
back is multiplied by the effective transmission due to
the double PCM.

Macdonald and Feinberg have pointed out that
standard plane-wave theory indicates that the reflec-
tivity of an externally pumped photorefractive PCM
can be enhanced by detuning the signal beam from the
pumping beams.8 They conclude that this enhance-
ment explains spontaneous detuning in the cat

PPCM. We disagree with this conclusion because the
same plane-wave theory applied to the conventionally
interpreted cat PPCM predicts zero detuning if the
ring path lengths are reciprocal and the phase shift
between the interference pattern and the refractive-
index grating is 7r/2 for stationary gratings.

Some possible resolutions of the problem of sponta-
neous detuning in the cat and ring PPCM's are the
following:

(1) A non-plane-wave theory may be required to
explain the frequency detuning.

(2) The cat PPCM may actually be a linear
PPCM, as suggested by existing experimental evi-
dence.9 In this case, the plane-wave theory does show
that the reflectivity may be enhanced with frequency
detuning [see Fig. 2(a)]. However, this possibility
does not help to explain spontaneous detuning in the
ring PPCM.

(3) The phase shift between the interference pat-
tern and the refractive-index grating may differ from
7r/2 for stationary gratings. Recent experiments indi-
cate that there may in fact be such a departure.1 0

(4) Stimulated scattering processes might be in-
volved. Nondegeneracy, while indeed possible in this
case, was not observed in a recent experimental inves-
tigation." 1

In summary, we have presented a plane-wave theory
of detuning in the linear PPCM and have related it to
previous experimental observations of spontaneous
frequency detuning in photorefractive PPCM's.

We would like to acknowledge some helpful discus-
sions with Baruch Fischer. This research was sup-
ported by the U.S. Army Research Office, Durham,
North Carolina.
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