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PLANE WAVES AND STABILITY OF ELASTIC PLATES*

By J. L. ERICKSEN (The Johns Hopkins University)

1. Introduction. Within the context of the linear theory of thin, homogeneous
elastic plates, we derived [1] a relatively simple condition for the reality of plane wave
frequencies corresponding to real wave vectors. When this condition is satisfied, a plate
of arbitrary size and shape, with edges rigidly clamped, is in stable static equilibrium,
according to a static energy criterion for stability. Our aim is to demonstrate this. An
analogous result for three-dimensional elasticity theory is derived by van Hove [2],
and we use an adaptation of his techniques.

A condition similar to but somewhat weaker than that here employed suffices to
guarantee this stability for plates of sufficiently small size, as follows from the analysis
of van Hove [2, Sec. 3]. It is easily seen that this size restriction is indispensable. It
seems possible that the condition here used is necessary for plates of all sizes and shapes
to be stable, but we do not establish this.

2. Basic equations. Roughly, we consider equations of the theory of Cosserat
plates, linearized about static equilibrium configurations which are homogeneous,
subject to zero loads on their faces, the character of the edge loading being unspecified.
In this configuration they are to have a planar form, and are referred to plane rectangular
Cartesian material coordinates (u1, w2). In fact, this includes the possibility that their
natural states are of the form of right circular cylinders which have been pulled into
planar form by some edge loadings. Formally, we employ the linearized equations used
by Ericksen [1, 3], viz.

2X = V,„-3T% + 2V-3irV,a - V-£V, (2.1)

^ - TCV
\dvj.a dV - XV'

= + £aV,a + £V. (2.3)

wherein x represents the usual quadratic approximation to the stored energy per unit
reference area. Here V is a six-vector, incorporating the displacement of the reference
surface and a measure of deformation in the thickness direction. The £'s, 3TZ's and 3C
are 6X6 constant matrices, with 3C positive definite, such that

X = XT > 0, 31T" = m,liaT £ = £r,

2£al3 = 3IT" + 9Tl?£" - 2£"a = 2£^r, (2.4)

£" = 3irr - 3TI" = —£aT.
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In [1, 3], we examined complex plane wave solutions of (2.3), of the form

V = A exp i(kaua — cd), (2.5)

wherein A, ka and co are constants, ka being assumed real. In [1], we showed that, for
all possible w to be real, it is necessary and sufficient that, for all complex six-vectors ®,
and all real ka ,

«-3C«* ^ 0. (2.6)

Here, asterisks denote complex conjugates and 3C is the Hermetian matrix

3C = £af,kakf, - i£"ka - £. (2.7)

Equivalently, since ka is real, (2.6) can be rewritten as

i<&ka-£a\i<Rkay + <&-£a(i<&ka)'* - ^ 0, (2.8)

hereafter called the hyperellipticity condition. In particular, (2.8) implies the strong
ellipticity condition; for all real b and ka ,

b-£al>kj^b = b-art^b ^ 0, (2.9)

the condition employed by van Hove [2], Obviously, (2.9) does not imply (2.8).

3. Stability. We now consider a plate, in a loading device of the type described
earlier, which rigidly clamps its edges. Then, as is discussed by Ericksen [4], for example,
the energy criterion reads

[ x du du ^ 0, (3.1)
J D

where x> given by (2.1), is evaluated for any virtual displacement V such that

V = 0 on dD. (3.2)

Below, we refer to this type of stability as Hadamard stability. Here D, the domain
occupied by the plate in the reference configuration, is assumed to be bounded and
smooth enough for the divergence theorem to hold. Virtual displacements are to be
continuous on the closure of D, with square-integrable partial derivations. Extension
of ensuing analyses to unbounded domains involves only minor complications. Now,
following van Hove [2], we extend the domain of such V to the entire plane by setting

V = 0 outside D, (3.3)

and introduce the Fourier transforms

V(/c„) = f V exp (ikaua) du1 du'\ — ikpV = f V.p exp (ikaua) du1 du . (3.4)
4TT J D J D

Then, by Parseval's theorem, with V real, we have

[ [ V®V*44= fv®V du du, (3.5)
J — CO J — CO J D

[ / V (x) (-Vikf,)* dki dk2 = J" V®Vif du du, = - J V,„(g)V du' du, (3.6)
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f f (iVJca) <g) (iVkn)* dk, dA:2 = [ V,. (x) V., du1 e?«2 = f V,S®V,„ dw1 <2«2. (3.7)
J-co J-co ^Z) JD

The alternative evaluations occurring on the right follow from symmetries evident on
the left and uniqueness of Fourier transforms. Using them and (2.4), we can rewrite
(3.1) as

f x dti du2 = [ [ [iVka-£a\tVke)* + V-£a(ikaV)* - V-£V]* du du*. (3.8)
«/ £) J — CO V — 00

It is then obvious that (2.8) implies (3.1). Thus, hyperellipticity implies Hadamard
stability. Basically, this is what we set out to demonstrate, but a few comments might
be in order.

First, because of the Galilean invariance normally assumed in mechanics, the in-
equality (2.8) cannot be strict when ka = 0; the plane waves then include among them
rigid translations. The latter correspond to certain non-zero choices of CB for which
equality holds in (2.8). Fortunately, the point ka = 0 in k-space is a set of measure
zero. Also, (3.2) rules out non-trivial rigid translations. It then follows that, if the
inequality (2.8) is strict for ka ?*= 0, then the inequality (3.1) will be strict. The strict
inequality is, of course, what is needed for a classical Kirchoff-type proof of uniqueness
of static solutions, with V specified on the boundary. It also has some importance relative
to the frequencies of normal modes of vibration, corresponding to boundary conditions
of the type (3.2); such frequencies will be real if (3.1) holds, as is discussed by Ericksen
[4], However, the lowest frequency can be zero if (3.1) is not strict, a sign of impending
instability.

If only the strong ellipticity condition (2.9) holds, but in the strict sense, one can
use the Schwarz and Poincare inequalities to show that (3.1) holds, provided that the
dimensions of D are sufficiently small. In essence, this observation is due to van Hove
[2, Sec. 3]. For a specified region of larger size, it would thus appear that some condition
intermediate between (2.8) and (2.9) would suffice. As is now well known, (2.9) is a
necessary condition that (3.1) hold.
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