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S U M M A R Y
Properties of homogeneous and inhomogeneous plane waves propagating in an unbounded
viscoelastic anisotropic medium in an arbitrarily specified direction N are studied analytically.
The method used for their calculation is based on the so-called mixed specification of the
slowness vector. It is quite universal and can be applied to homogeneous and inhomogeneous
plane waves propagating in perfectly elastic or viscoelastic, isotropic or anisotropic media.
The method leads to the solution of a complex-valued algebraic equation of the sixth degree.
Standard methods can be used to solve the algebraic equation. Once the solution has been
found, the phase velocities, exponential decays of amplitudes, attenuation angles, polarization
vectors, etc., of P, S1 and S2 plane waves, propagating along and against N, can be easily
determined.

Although the method can be used for an unrestricted anisotropy, a special case of P, SV
and SH plane waves, propagating in a plane of symmetry of a monoclinic (orthorhombic,
hexagonal) viscoelastic medium is discussed in greater detail. In this plane the waves can
be studied as functions of propagation direction N and of the real-valued inhomogeneity
parameter D. For inhomogeneous plane waves, D �= 0, and for homogeneous plane waves,
D = 0. The use of the inhomogeneity parameter D offers many advantages in comparison
with the conventionally used attenuation angle γ . In the N, D domain, any combination of
N and D is physically acceptable. This is, however, not the case in the N, γ domain, where
certain combinations of N and γ yield non-physical solutions. Another advantage of the use
of inhomogeneity parameter D is the simplicity and universality of the algorithms in the N, D
domain.

Combined effects of attenuation and anisotropy, not known in viscoelastic isotropic media
or purely elastic anisotropic media, are studied. It is shown that, in anisotropic viscoelastic
media, the slowness vector and the related quantities are not symmetrical with respect to
D = 0 as in isotropic viscoelastic media. The phase velocity of an inhomogeneous plane wave
may be higher than the phase velocity of the relevant homogeneous plane wave, propagating
in the same direction N. Similarly, the modulus of the attenuation vector of an inhomogeneous
plane wave may be lower than that for the relevant homogeneous plane wave. The amplitudes
of inhomogeneous plane waves in anisotropic viscoelastic media may increase exponentially
in the direction of propagation N for certain D. The attenuation angle γ cannot exceed its
boundary value, γ ∗. The boundary attenuation angle γ ∗ is, in general, different from 90◦, and
depends both on the direction of propagation N and on the sign of the inhomogeneity parameter
D. The polarization of P and SV plane waves is, in general, elliptical, both for homogeneous
and inhomogeneous waves. Simple quantitative expressions or estimates for all these effects
(and for many others) are presented. The results of the numerical treatment are presented in a
companion paper (Paper II, this issue).
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1 I N T RO D U C T I O N

In this paper, we study the properties of homogeneous and inhomogeneous plane waves propagating in an unbounded viscoelastic anisotropic
medium in an arbitrarily specified direction. The complex-valued slowness vectors of such plane waves and their polarization vectors may be
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determined in several ways. Individual approaches to the solution of this problem differ in the way in which the slowness vector of the plane
wave under consideration is specified. We consider a time-harmonic plane wave

u j (xk, t) = U j exp[−iω(t − pn xn)], (1)

where uj, pj and Uj are Cartesian components of the complex-valued displacement vector u, slowness vector p and polarization vector U,
respectively. Moreover, t is time and ω is a fixed, positive circular frequency. Eq. (1) represents a plane wave if, and only if, Uj and pj are
chosen in such a way that (1) satisfies the elastodynamic equation. This requirement yields the relations

�ik(pn)Uk = Ui , i = 1, 2, 3. (2)

The condition of solvability of the system of linear eqs (2) for U 1, U 2, U 3 reads

det[�ik(pn) − δik] = 0. (3)

The 3 × 3 complex-valued matrix � ik(pn) is given by the relation

�ik(pn) = ai jkl p j pl , (4)

where aijkl are complex-valued, frequency-dependent, density-normalized viscoelastic moduli. The matrix � ik(pn) is here referred to as the
generalized Christoffel matrix, in contrast to the well-known Christoffel matrix, given by the relation

�ik(Nn) = ai jkl N j Nl , (5)

where Ni are the Cartesian components of real-valued unit vector N (Musgrave 1970; Helbig 1994). Note that the generalized Christoffel
matrix has been broadly used in the seismic ray method, where it is simply called the Christoffel matrix (see Červený 2001). Here, however,
we shall strictly distinguish between (4) and (5).

Eqs (2) and (3) are the constraint relations imposed on slowness vector p and polarization vector U, which must be satisfied by any
time-harmonic plane wave. Eq. (3) plays a basic role in determining slowness vector p, and eq. (2) in determining polarization vector U.

As an alternative to aijkl, we also use the complex-valued density-normalized viscoelastic moduli in the Voigt notation, Aαβ (α, β =
1, 2, . . . , 6). Throughout the paper, we assume that the 6 × 6 matrix ReAαβ is positive definite and the 6 × 6 matrix ImAαβ is negative definite
or zero.

We now introduce certain notations used for slowness vector p. It is complex-valued:

p = P + iA. (6)

Here P is the real-valued propagation vector (perpendicular to the plane of constant phase) oriented in the direction of the propagation of the
wave front (briefly the direction of propagation), A is the real-valued attenuation vector (perpendicular to the plane of constant amplitude),
oriented in the direction of the maximum decay of amplitude. We also introduce the real-valued unit vectors N and M in the directions of P
and A, phase velocity C, attenuation–propagation ratio δ and attenuation (or inhomogeneity) angle γ as

N = P/|P|, M = A/|A|, (7)

C = 1/|P|, δ = |A|/|P|, cos γ = N · M. (8)

The plane waves are called homogeneous for γ = 0 and inhomogeneous for γ �= 0. For inhomogeneous plane waves, the plane specified by
unit vectors N and M is called the propagation–attenuation plane, and is denoted by �‖.

Note that a notation analogous to (6) has often been used in the seismological literature for wave vector k = ωp, k = P + iA (see, for
example Auld (1973), Aki & Richards (1980, p. 183), Borcherdt (1973, 1977), Krebes (1983), Krebes & Le (1994), Carcione & Cavallini
(1995) and Carcione (2001)). The constraint relation (3) for wave vector k reads det[ai jkl k j kl − ω2δik] = 0, and is usually referred to as the
dispersion relation. As k = ωp, the differences between k and p are only formal, if we consider time-harmonic plane waves with ω > 0 and
fixed. In this paper, we use slowness vector p and eqs (3) and (6) systematically, and avoid wave vector k completely.

Now we introduce the three specifications of slowness vector p, discussed in this paper.
In the directional specification of slowness vector p, we express the slowness vector in terms of known real-valued unit vectors N

and M,

p = C−1(N + iδM). (9)

The unknown quantities C and δ must be determined by inserting (9) into (3). Note that attenuation angle γ is assumed to be known, as
cos γ = N · M (see eq. 8). For more details see Section 2.1.

The directional specification (9) has been used extensively in the seismological literature to study inhomogeneous plane waves propagating
in viscoelastic isotropic media (see, for example, Buchen (1971), Borcherdt (1973, 1977), Aki & Richards (1980), Krebes (1983), Borcherdt &
Wennerberg (1985), Borcherdt et al. (1986), Caviglia & Morro (1992), Brokešová & Červený (1998) and Carcione (2001)). For inhomogeneous
plane waves in viscoelastic anisotropic media see Romeo (1994), Krebes & Le (1994), Carcione & Cavallini (1995), Carcione (2001) and
Červený (2004).
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In the componental specification, slowness vector p is expressed in terms of a known real-valued unit vector n and a complex-valued
vector p� as follows:

p = σn + p�, with p� · n = 0. (10)

In fact, p� represents a known vectorial component of slowness vector p in the plane � perpendicular to n. The unknown complex-valued
quantity σ must be determined by inserting (10) into (3). For more details see Section 2.2.

The componental specification (10) has been traditionally used in seismology for perfectly elastic media to solve reflection/transmission
problems and to compute the displacement–stress (or velocity–stress) propagator matrices (see, for example, Fedorov (1968), Gajewski &
Pšenčı́k (1987) and Červený (2001, Section 5.4.7) for the solution of the reflection/transmission problem on an interface between two perfectly
elastic anisotropic media and Woodhouse (1974), Kennett (1983, 2001), Frazer & Fryer (1989), Chapman (1994, 2004) and Thomson (1996a,b)
for the computations of the displacement–stress propagator matrices). In the mentioned books and papers many other references can be also
found. In certain papers using the componental specification, complex-valued moduli aijkl are considered (Frazer & Fryer 1989). A fully
analogous approach has been proposed independently by Stroh (1962), and is usually referred to as the Stroh formalism. The most detailed
description of the Stroh formalism can be found in Ting (1996). The Stroh formalism, popular mainly in applied mathematics and mechanics, has
been applied to the study of homogeneous and inhomogeneous plane waves propagating in perfectly elastic, viscoelastic and thermoviscoelastic
anisotropic media (see Shuvalov & Scott 1999, 2000; Shuvalov 2001), and to the reflection/transmission problem of viscoelastic anisotropic
media (see Caviglia & Morro 1999). Let us mention that Caviglia & Morro (1999) also study the time-averaged energy flux of inhomogeneous
plane waves in viscoelastic anisotropic media.

The mixed specification of slowness vector p is a special case of the componental specification (10), with p� purely imaginary,

p� = iDm. (11)

Here m is a real-valued unit vector, perpendicular to n, and D is a scalar, real-valued quantity, here referred to as the inhomogeneity parameter.
Its absolute value, |D|, measures the inhomogeneity strength of the plane wave. For D = 0, the plane wave is homogeneous, and for D �= 0 it
is inhomogeneous. The slowness vector p is then expressed as follows:

p = σn + iDm, with m · n = 0. (12)

The unknown complex-valued quantity σ must be determined by inserting (12) into (3). For more details see Section 2.3.
In the mixed specification, the plane � represents the plane of constant phase (wave front), as Re(p�) = 0 along it. Consequently, N =

±n. It is easy to see that Dm represents the vectorial component of attenuation vector A in the wave front, Dm = n × (A × n). This shows that
unit vectors n and m, which are assumed to be known, define uniquely the propagation–attenuation plane �‖, in which the propagation vector
P and attenuation vector A are also situated. The mixed specification (12) was proposed in Červený (2004) for the study of homogeneous and
inhomogeneous plane waves propagating in viscoelastic anisotropic media.

In this paper we derive and discuss the expressions for complex-valued slowness vector p of plane waves, using all the above three
specifications, (9), (10) and (12), of the slowness vector. In Section 2, we consider plane waves propagating in a general viscoelastic anisotropic
medium (see also Červený 2004). In Section 3, we specify these equations for the SH , P and SV inhomogeneous and homogeneous plane
waves propagating in the symmetry plane of a monoclinic viscoelastic medium, or in any anisotropic medium with higher symmetry than
monoclinic. In both sections, the results obtained under different specifications of the slowness vector are mutually compared and discussed.
The derived equations also offer certain interesting physical conclusions related to the properties of SH , P and SV inhomogeneous plane
waves (see Sections 3.4 and 3.5). For a numerical treatment see Červený & Pšenčı́k (2005).

Throughout this paper, we consider plane waves propagating in homogeneous media. The conclusions of the paper concerning the
behaviour of slowness vectors, polarization vectors and other characteristics of wave propagation, however, also hold for local characteristics
of waves propagating in general inhomogeneous viscoelastic anisotropic media.

2 V I S C O E L A S T I C A N I S O T RO P I C M E D I A

In this section, we apply the three specifications of slowness vector p to the determination of the complex-valued slowness vector p of a plane
wave propagating in an arbitrary unbounded anisotropic viscoelastic medium.

2.1 Directional specification of the slowness vector

Inserting the directional specification of the slowness vector (9) into constraint relations (2) and (3) yields a system of linear equations for the
polarization vector U:

ai jkl (N j + iδM j )(Nl + iδMl )Uk = C2Ui , i = 1, 2, 3, (13)

and the condition of solvability of the system (13):

det
[
ai jkl (N j + iδM j )(Nl + iδMl ) − C2δik

] = 0. (14)

For known real-valued unit vectors N and M, eq. (14) represents two real-valued coupled equations for δ and C2. These equations are coupled
polynomials of the third degree in C2 and of the sixth degree in δ (see Romeo 1994). In the general case of N �= M and of complex-valued
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aijkl, the solution of (14) for δ and C2 is not simple. It simplifies only in exceptional cases. For example, for homogeneous waves (N = M), eq.
(14) yields

det
[
ai jkl N j Nl − [C/(1 + iδ)]2δik

] = 0. (15)

Thus, for homogeneous waves, C2/(1 + iδ)2 are the eigenvalues of the 3 × 3 complex-valued Christoffel matrix aijklNjNl, which can be
determined by conventional methods. Quantities C2 and δ can then be computed from these complex-valued eigenvalues. The next two cases,
which can be treated in a simpler way, correspond to inhomogeneous P and S plane waves propagating in isotropic viscoelastic media, and
to inhomogeneous SH plane waves propagating in a symmetry plane of an monoclinic (orthorhombic, hexagonal) viscoelastic medium (see
Section 3.1).

In addition to the complicated solution of (14) for C2 and δ, eq. (14) has another great disadvantage. For certain combinations of N and
M, it may yield non-physical solutions, C2 < 0.

The system of two coupled equations for C2 and δ can be decoupled. Červený (2004) proposed a method, called semi-analytic, in which
the equation for δ is fully separated from that for C2. Once δ has been found, C2 can be determined by an explicit formula. However, the
price paid for decoupling is the more complicated non-polynomial form of the equation for δ. The problems with the non-physical solutions
remain.

2.2 Componental specification of the slowness vector

Inserting the componental specification (10) of slowness vector p into (2), we obtain a system of three linear equations for the components Ui

of the complex-valued polarization vector U:

ai jkl

(
σn j + p�

j

)(
σnl + p�

l

)
Uk = Ui , i = 1, 2, 3. (16)

The condition of solvability of system (16) reads

det
[
ai jkl

(
σn j + p�

j

)(
σnl + p�

l

) − δik

] = 0. (17)

Assuming ai jkl , n and p� are known, eq. (17) represents an algebraic equation of the sixth degree in σ . The six roots σ of (17) correspond to
P, S1, and S2 inhomogeneous plane waves, propagating away from �, to both sides of it. One polarization vector U corresponds to each root
σ . For a non-degenerate case, i.e. for a root which does not coincide with any other, the relevant complex-valued polarization vector U can be
obtained from (16), supplemented by a suitable normalization condition, for example:

Ui U
∗
i = 1, or Ui Ui = 1. (18)

Eq. (17) is a basic equation for the determination of the slowness vectors of reflected/transmitted waves at structural interfaces (see,
for example, Fedorov (1968), Gajewski & Pšenčı́k (1987) and Červený (2001, p. 527)). These references, however, treat only real-valued
quantities aijkl (perfectly elastic media).

The two eqs (16) and (17) are sufficient for complete solution of the problem of homogeneous and inhomogeneous plane waves propagating
in viscoelastic anisotropic media. Let us mention that the above problem can also be solved using an alternative approach based on 6 × 6
matrices and relevant eigenvalue problems. We emphasize that we mention this approach here only for completeness; it is not used in this
article at all. It may be proved that the roots σ of (17) can be alternatively determined as eigenvalues of the 6 × 6 complex-valued matrix Π:

Π =
(

Π11 Π12

Π21 Π22

)
, (19)

where the 3 × 3 complex-valued partition matrices 		IJ read

Π11 = −C
(1)−1

C
(2) = ΠT

22,

Π12 = −C
(1)−1

,

Π21 = −I3 + C
(4) − C

(3)
C

(1)−1
C

(2)
,

Π22 = −C
(3)

C
(1)−1

, (20)

with

C (1)
ik = ai jkln j nl , C (2)

ik = ai jkln j p�
l , C (3)

ik = ai jkl p�
j nl , C (4)

ik = ai jkl p�
j p�

l . (21)

I3 in (20) is a 3 × 3 identity matrix. Eigenvalues σ are solutions of the characteristic equation

det[Π − σ I6] = 0, (22)

where I6 is a 6 × 6 identity matrix.
The eigenvalue problem (22) for the 6 × 6 matrix Π, given by (19)–(21), has been well known in seismology from the displacement–

stress propagator matrix computations, and also in mechanics and applied mathematics, where it is usually called the Stroh formalism. For
appropriate references see the Introduction.
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Thus, if a real-valued unit vector n, perpendicular to plane �, and a complex-valued vector p� , situated in plane �, are given, the
determination of the slowness vector p reduces to the solution of an algebraic equation of the sixth degree (17), or to the solution of a
conventional eigenvalue problem (22) for a 6 × 6 complex-valued matrix Π.

In the componental specification, directions N of propagation vectors P of the individual waves are not known in advance and are not
the same for all waves; they are obtained as a result of computation. If we wish to study the inhomogeneous plane waves propagating in the
direction of an a priori specified unit vector N, we have to choose p�

i in a special way (see the next section).
Once a value of σ has been found, we can determine the relevant real-valued propagation vector P, attenuation vector A, unit vectors N

and M, phase velocity C, attenuation–propagation ratio δ and the attenuation angle γ . They are given by the relations,

P = n(Re σ ) + Re p�,

|P| = [(Re σ )2 + (Re p�)(Re p�)]1/2,

A = n(Im σ ) + Im p�,

|A| = [(Im σ )2 + (Im p�)(Im p�)]1/2,

N = P/|P|,
M = A/|A|,
C = 1/|P|,
δ = |A|/|P|,

cos γ = [(Re p�)(Im p�) + (Re σ )(Im σ )]/|P||A|. (23)

Inserting σ into (16) and solving system (16) with one of the normalization conditions (18), we can also find the relevant polarization
vector U.

2.3 Mixed specification of the slowness vector

If we wish to study inhomogeneous plane waves with the wave front propagating in the direction of a known unit vector N, it is suitable
to use the componental specification with plane � perpendicular to N. In this way, vector N actually specifies the unit vector n (or −n),
perpendicular to �. As plane � represents a wave front in this case, we have Re(p�

i ) = 0. Consequently, vector p� is purely imaginary,
p� = iDm (see eq. 11). Here m is a real-valued unit vector, parallel to the wave front (thus n · m = 0), and D is an inhomogeneity parameter.

Using (11) in eqs (16) and (17), we obtain the basic relations for σ and U of the mixed specification of the slowness vector. For σ , we
obtain the algebraic equation of the sixth degree:

det[ai jkl (σn j + iDm j )(σnl + iDml ) − δik] = 0, (24)

and for polarization vector U the system of linear equations

ai jkl (σn j + iDm j )(σnl + iDml )Uk = Ui , i = 1, 2, 3. (25)

To determine polarization vector U from (25), a suitable normalization condition for U should be used (see eq. 18).
Let us again emphasize that aijkl, Uj, pj and σ are generally complex-valued, whereas n and m are real-valued, mutually perpendicular,

unit vectors, and D is a real-valued scalar.
Eq. (24) for σ simplifies considerably for homogeneous plane waves (D = 0). It yields

det
[
ai jkln j nl − (1/σ )2δik

] = 0.

This immediately provides

(1/σ )2 = G, (26)

where G is an eigenvalue of the 3 × 3 complex-valued Christoffel matrix aijklnjnl. Eq. (26) is valid for homogeneous plane waves only, but
otherwise it is quite universal, valid for any P, S1 or S2 homogeneous plane wave propagating in an anisotropic/isotropic, viscoelastic/perfectly
elastic medium.

The two eqs (24) and (25) are sufficient for complete solution of the problem of homogeneous and inhomogeneous plane waves propagating
in unbounded viscoelastic anisotropic media in a specified direction N. All analytical results obtained in this paper, and numerical results
obtained in the related paper (Červený & Pšenčı́k 2005) are based on the solution of the algebraic equation of the sixth degree (24) for σ , and
on the solution of the system of linear algebraic eqs (25) for Ui.

Only for completeness, we present here also the approach based on the solution of the eigenvalue problem (22) for the mixed specification.
The equations for the 6 × 6 matrix Π remain the same as in the componental specification, only p� = iDm is used. Consequently, eqs (19)
and (20) are not changed, but eqs (21) read

C (1)
ik = ai jkln j nl , C (2)

ik = iDai jkln j ml , C (3)
ik = iDai jklm j nl , C (4)

ik = −D2ai jklm j ml . (27)
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We emphasize again that the approach based on the eigenvalue problem (22) for the matrix Π is not used in this paper at all. Once the
quantity σ has been found, we can determine the relevant real-valued propagation vector P, attenuation vector A, unit vectors N and M, phase
velocity C, attenuation–propagation ratio δ and attenuation angle γ :

P = n Re σ,

|P| = |Re σ |,
A = n Im σ + Dm,

|A| = [(Im σ )2 + D2]1/2,

N = P/|P| = εn,

M = A/|A|,
C = 1/|Re σ |,
δ = |A|/|P|,

cos γ = ε Im σ/[(Im σ )2 + D2]1/2,

(28)

where

ε = Re σ/|Re σ | = ±1. (29)

The mixed specification offers a simple and general algorithm to study inhomogeneous or homogeneous plane waves propagating in
the direction of a known unit vector N in unbounded, anisotropic or isotropic, viscoelastic or perfectly elastic media based on eqs (24) and
(25). Assume that two real-valued, mutually perpendicular unit vectors n = ±N and m are known (N perpendicular to the wave front � and
m tangential to it), and that the real-valued inhomogeneity parameter D is given. The determination of slowness vector p is then reduced to
the solution of algebraic eq. (24) of the sixth degree. The algorithm is independent of the choice of sign in n = ±N. The six roots σ i (i = 1,
2, . . . , 6) of (24) correspond to P, S1, and S2 inhomogeneous plane waves, propagating to both sides of �. Three of them propagate in the
direction of N = n, and other three in the opposite direction, N = −n. (See Červený & Pšenčı́k (2003) for numerical examples, and a detailed
numerical treatment based on eq. (24) in Červený & Pšenčı́k (2005).)

The most important advantages of the mixed specification over the directional specification in the determination of the slowness vector
of an inhomogeneous plane wave propagating in the direction of N are as follows:

(1) Conventional numerical algorithms can be used in the mixed specifications. Contrary to this, the directional specification requires the
solution of a generally complicated system of two coupled equations.

(2) The mixed specification yields the slowness vector not only for N = n but also for N = −n.
(3) Since eqs (28) yield real-valued, non-negative phase velocity C for any complex-valued σ , the mixed specification yields a physically

acceptable solution for any choice of real-valued, mutually perpendicular, unit vectors n = ±N and m and any choice of real-valued
inhomogeneity parameter D. It never yields non-physical solutions C2 < 0, as the computations in the N, M domain do.

Let us now briefly discuss the differences between the mixed and componental specifications. In fact, the mixed specification is a
special case of the componental specification. Thus, eqs (16) and (17) can be also used in the mixed specification if n and p� are properly
specified. The advantage of the mixed specification consists only in a simpler way of parametrization of homogeneous and inhomogeneous
plane waves propagating in unbounded viscoelastic anisotropic media in a given direction of propagation N. We can merely use n = N
in this case. The vector n and a unit vector m perpendicular to it then specify the propagation–attenuation plane, in which the complex-
valued slowness vector p is situated. The inhomogeneity parameter D controls inhomogeneity of the plane wave under consideration. If the
componental specification were used (with n and p� given), the direction of propagation N would not be known in advance. It should be
sought.

The componental specification is more useful in applications in which the directions of propagation N of the considered waves are not
known in advance, and are to be determined (reflection/transmission problem, initial surface problem). In this article, however, we are not
interested in these applications so that the mixed specification is most suitable.

It should be emphasized that the assumed mutual perpendicularity of n and m does not restrict the generality and universality of (12).
A complete system of all possible homogeneous and inhomogeneous plane waves propagating in directions N = n and N = −n is obtained
by choosing all possible real-valued unit vectors m, perpendicular to n, and all possible inhomogeneity parameters D either from the interval
〈0, ∞) or from (−∞, 0〉.

3 P L A N E O F S Y M M E T RY O F A N A N I S O T RO P I C V I S C O E L A S T I C M E D I U M
O F M O N O C L I N I C S Y M M E T RY

In this section, we consider inhomogeneous plane waves propagating in the plane of symmetry �S of a monoclinic viscoelastic medium. We
choose the Cartesian coordinate system xi in such a way that the plane of symmetry �S corresponds to coordinate plane x 1x 3. In the Voigt
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notation, the density normalized elastic moduli Aµν (µ, ν = 1, 2, . . . , 6) are then given by the matrix


A11 A12 A13 0 A15 0
A12 A22 A23 0 A25 0
A13 A23 A33 0 A35 0
0 0 0 A44 0 A46

A15 A25 A35 0 A55 0
0 0 0 A46 0 A66




(30)

(see Carcione 2001, eq. 1.37). For a viscoelastic monoclinic medium, Aµν are complex-valued. As special cases of (30), we can consider an
orthorhombic viscoelastic medium (with A15 = A25 = A35 = A46 = 0), a hexagonal viscoelastic medium with axis of symmetry along the
x 3-axis (A15 = A25 = A35 = A46 = 0, and A11 = A22, A44 = A55, A13 = A23, A12 = A11 − 2A66), etc. We assume that matrix ReAαβ is
positive definite, and matrix ImAαβ is negative definite, or zero.

We concentrate on plane waves propagating in the symmetry plane �S , and consider

p2 = 0. (31)

Thus, in this case the plane of symmetry �S corresponds to propagation-attenuation plane �‖. The elements of the 3 × 3 generalized Christoffel
matrix � ik = aijklpjpl are given by relations

�11(pn) = A11 p2
1 + A55 p2

3 + 2A15 p1 p3,

�22(pn) = A66 p2
1 + A44 p2

3 + 2A46 p1 p3,

�33(pn) = A55 p2
1 + A33 p2

3 + 2A35 p1 p3,

�13(pn) = �31(pn) = A15 p2
1 + A35 p2

3 + (A13 + A55)p1 p3,

�12(pn) = �21(pn) = �23(pn) = �32(pn) = 0. (32)

Constraint relation (3) factorizes:

det[�ik(pn) − δik] = [�22(pn) − 1] det

[
�11(pn) − 1 �13(pn)
�13(pn) �33(pn) − 1

]
= 0. (33)

Eq. (33) can be satisfied in two cases:

(1) Case of SH plane waves. The constraint relation reads

�22(pn) − 1 = 0. (34)

It follows from (2) that the polarization vector U is perpendicular to the plane of symmetry �S ,

U(pn) = (0, U2(pn), 0)T. (35)

It is common to call the relevant plane wave the SH plane wave.
(2) Case of P and SV waves. The constraint relation reads

det

[
�11(pn) − 1 �13(pn)

�13(pn) �33(pn) − 1

]
= 0. (36)

The polarization vectors U of the relevant plane waves are situated in the plane of symmetry �S ,

U(pn) = (U1(pn), 0, U3(pn))T, (37)

where U 1(pn) and U 3(pn) satisfy the system of two complex-valued linear equations resulting from (2),

(�11(pn) − 1)U1 + �13(pn)U3 = 0,

�13(pn)U1 + (�33(pn) − 1)U3 = 0. (38)

Eq. (38) should be supplemented by a proper normalization condition (see eq. 18).

In this section, we derive the complete equations for the SH , P and SV homogeneous and inhomogeneous plane waves, propagating in
the symmetry plane �S .

3.1 Directional specification of the slowness vector

We first treat the homogeneous and inhomogeneous SH plane waves, and after this briefly comment on the P and SV waves.

3.1.1 Case of SH waves

For SH waves, constraint relation (34), with (32) for �22(pn), yields

A66 p2
1 + A44 p2

3 + 2A46 p1 p3 = 1. (39)
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Inserting directional specification pi = C−1(Ni + iδMi ), and separating the real and imaginary parts, we obtain two equations for δ

and C2:

a1 + δa2 − δ2a3 = C2, (40)

−a4 + δa5 + δ2a6 = 0, (41)

where

a1 = AR
66 N 2

1 + AR
44 N 2

3 + 2AR
46 N1 N3,

a2 = −2
[
AI

66 N1 M1 + AI
44 N3 M3 + AI

46(M1 N3 + N1 M3)
]
,

a3 = AR
66 M2

1 + AR
44 M2

3 + 2AR
46 M1 M3,

a4 = −[
AI

66 N 2
1 + AI

44 N 2
3 + 2AI

46 N1 N3

]
,

a5 = 2
[
AR

66 N1 M1 + AR
44 N3 M3 + AR

46(N1 M3 + M1 N3)
]
,

a6 = −[
AI

66 M2
1 + AI

44 M2
3 + 2AI

46 M1 M3

]
. (42)

Here we have used the notation AR
i j = Re(Aij), AI

i j = Im(Aij).
For a given model of a viscoelastic monoclinic medium (30), and for given unit vectors N ≡ (N 1, 0, N 3) and M ≡ (M 1, 0, M 3), quantities

ai, i = 1, 2, . . . , 6 in (42) are known. Thus, eqs (40) and (41) can be used to determine δ and C2.
An analogous system of equations for an SH inhomogeneous plane wave propagating in a viscoelastic transversely isotropic medium

was first derived and numerically studied by Krebes & Le (1994): for SH inhomogeneous plane waves propagating in the symmetry plane of
a monoclinic viscoelastic medium see Carcione & Cavallini (1995) and Carcione (2001); for electromagnetic waves see Carcione & Cavallini
(1997).

A brief note on the coefficients ai in (42). We have assumed that matrix ReAαβ is positive definite, and matrix ImAαβ negative definite
or zero, where Aαβ is given by (30). For SH waves, the 6 × 6 matrix Aαβ reduces to the 2 × 2 matrix(

A66 A46

A46 A44

)
. (43)

Then a1 and a3 are positive and a4 and a6 non-negative, but a2 and a5 may be positive, zero or negative.
Eq. (41) for δ is quadratic, and for a6 �= 0 yields the solutions

δ1,2 = −a5/2a6 ±
√

(a5/2a6)2 + a4/a6. (44)

As the imaginary part of matrix (43) is negative definite, or zero, the expression under square root in (44) is non-negative, so that δ1 and δ2

are real-valued. As δ must be non-negative, we have to use the ‘+’ sign in (44),

δ = −a5/2a6 +
√

(a5/2a6)2 + a4/a6. (45)

Inserting this δ into (40) yields the square of phase velocity, C2.
Thus, for given directions N and M and for a6 �= 0, (45) and (40) represent the final equations for the determination of the attenuation–

propagation ratio δ and phase velocity C. The slowness vector p is then given by (9), and the attenuation angle γ by relation (8), cos γ =
N · M.

If a6 = 0, also a4 = 0. This means that the medium is perfectly elastic. Eq. (41) then yields a5δ = 0. This is satisfied in two cases:

(a) δ = 0, a5 arbitrary: Note that δ = 0 indicates the real-valued slowness vector. Thus, a regular plane wave propagating in a perfectly
elastic medium is obtained. Its phase velocity is C = √

a1 (see 40) for δ = 0.
(b) a5 = 0, δ arbitrary: This corresponds to an inhomogeneous plane wave propagating in a perfectly elastic medium. Condition a5 = 0,

however, may be then satisfied only for a special choice of N and M. In isotropic media (A44 = A66, A46 = 0), condition a5 = 0 leads to
the well-known condition of perpendicularity of N and M. In anisotropic media, condition a5 = 0 is satisfied for N and M making an angle
different from 900 (but strictly defined).

There is, however, a problem in the determination of C2 and δ using (40) and (45). For certain combinations of N and M, eqs (45) with
(40) can yield C2 ≤ 0. This interesting result was discovered independently by Krebes & Le (1994) and by Carcione & Cavallini (1995, 1997)
(see also Carcione 2001). Let us consider a fixed attenuation angle γ (cos γ = N · M), and unit propagation vector N varying. Carcione
(2001, Section 4.4.6) calls N for which C2 ≤ 0 forbidden directions of propagation. Carcione & Cavallini (1995) also speak of ‘stop bands’,
where there is no wave propagation. Such forbidden directions of propagation do not arise if the componental or mixed specification is used
to parametrize inhomogeneous plane waves. For a detailed explanation see Červený & Pšenčı́k (2005).

3.1.2 P and SV inhomogeneous plane waves

For P and SV inhomogeneous plane waves the constraint relation is given by (36), with �11(pn), �33(pn) and �13(pn) given by (32). The two
relevant coupled equations for δ and C2 are not simple to solve. Moreover, the non-physical solutions (C2 ≤ 0) may also be obtained. For
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this reason, we do not discuss this case here. The method based on the mixed specification of the slowness vector (see Section 3.3) yields a
simpler algorithm and avoids the problem of non-physical solutions completely.

3.2 Componental specification of the slowness vector

We now apply componental specification (10) to inhomogeneous and homogeneous plane waves propagating in the plane of symmetry �S of
a monoclinic viscoelastic medium (see eq. 30). We assume that the unit normal n to plane � is situated in the plane of symmetry �S , so that
n2 = 0. We also assume p�

2 = 0.
We consider first SH plane waves, and then SV and P plane waves. The results may find applications in the solution of reflec-

tion/transmission problems of inhomogeneous plane waves and in initial-value problems, in which the initial values of slowness vector,
p� , are given along an initial plane �.

3.2.1 Case of SH waves

Inserting the componental specification pi = σni + p�
i into the constraint relation (34) for SH waves yields

A44

(
σn3 + p�

3

)2 + A66

(
σn1 + p�

1

)2 + 2A46

(
σn1 + p�

1

)(
σn3 + p�

3

) = 1. (46)

This is a quadratic equation in σ ,

σ 2�22 + 2σ E22 + F22 − 1 = 0, (47)

where �22, E 22 and F 22 are given by the relations (see 32)

�22 = A66n2
1 + A44n2

3 + 2A46n1n3,

E22 = A66n1 p�
1 + A44n3 p�

3 + A46

(
n1 p�

3 + n3 p�
1

)
,

F22 = A66 p�2
1 + A44 p�2

3 + 2A46 p�
1 p�

3 . (48)

The two solutions σ are as follows,

σ1,2 = ( − E22 ±
√

�22 + E2
22 − �22 F22

)/
�22. (49)

Using (48) and (32), eq. (49) can be expressed in a simpler form,

σ1,2 = −(E22/�22) ±
√

1/�22 − (
p�

1 n3 − n1 p�
3

)2
�/�2

22, (50)

where the quantity � is given by the relation

� = A44 A66 − A2
46. (51)

3.2.2 Case of SV and P waves

Inserting pi = σni + p�
i into constraint relation (36) yields an algebraic equation of the fourth degree in σ ,

σ 4a1 + 2σ 3b1 + σ 2(4a2 + b2 − c1) + 2σ (b3 − c2) + a3 − c3 + 1 = 0, (52)

where

a1 = �11�33 − �2
13, b1 = �11 E33 + F33 E11 − 2�13 E13, c1 = �11 + �33,

a2 = E11 E33 − E2
13, b2 = �11 F33 + �33 F11 − 2�13 F13, c2 = E11 + E33,

a3 = F11 F33 − F2
13, b3 = F11 E33 + F33 E11 − 2F13 E13, c3 = F11 + F33. (53)

We have also used the notation

�i j = �i j (n), Fi j = �i j (p
�), (54)

where � i j (n) and � i j (p�) are given by (32), with p substituted by n and p� . Finally, quantities Eij are given by relations

E11 = A11n1 p�
1 + A55n3 p�

3 + A15

(
n1 p�

3 + n3 p�
1

)
,

E33 = A55n1 p�
1 + A33n3 p�

3 + A35

(
n1 p�

3 + n3 p�
1

)
,

E13 = A15n1 p�
1 + A35n3 p�

3 + 1

2
(A13 + A55)

(
n1 p�

3 + n3 p�
1

)
. (55)

If the density normalized viscoelastic moduli A11, A13, A15, A33, A35 and A55, unit vector n and vector p� are known, all coefficients of
eq. (52) can be determined, and (52) can be solved for σ .

Inserting solution of (47) or (52) into (23), we obtain the relevant expressions for propagation vector P, attenuation vector A, unit vectors
N and M, phase velocity C, attenuation-propagation ratio δ and attenuation angle γ .

C© 2005 RAS, GJI, 161, 197–212
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3.3 Mixed specification of the slowness vector

The mixed specification may be treated as a special case of the componental specification discussed in Section 3.2, if we put p� = iDm (see
11). Consequently, for SH , P and SV plane waves propagating in the plane of symmetry �S of a monoclinic viscoelastic medium we can use
the equations of the previous section, where we insert p� = iDm. Here m is a unit vector perpendicular to n, and D is the inhomogeneity
parameter.

As m is assumed to be perpendicular to n = (n1, 0, n3) and situated in the symmetry plane �‖, we use m in the following form:

m = (n3, 0, −n1)T. (56)

Due to this choice of the unit vector m, the propagation–attenuation plane coincides with the symmetry plane.

3.3.1 Case of SH waves

Inserting (11) and (56) into (50), we obtain simple explicit formulae for σ

σ1,2 = −iD
/�22 ± (
1/�22 + D2�/�2

22

)1/2
, (57)

where

�22 = A66n2
1 + A44n2

3 + 2A46n1n3,


 = (A66 − A44)n1n3 + A46

(
n2

3 − n2
1

)
,

(58)

and where � is given by (51).

3.3.2 Case of P and SV waves

In this case, we obtain a quartic equation for σ . Inserting (11) and (56) into (52) yields

σ 4 A1 + 2iDσ 3 B1 − σ 2
[
D2(4A2 + B2) + C1

] + 2iσ
(
D3 B3 + DC2

) + D4 A3 + D2C3 + 1 = 0. (59)

Here Ai, Bi and Ci (i = 1, 2, 3) are given by the same expressions as ai, bi and ci (see 53), only p� in Eij and Fij is substituted by m. Standard
methods for solving quartic equations can be used to determine the four roots σ of (59).

Once the values of σ have been found, we can use (28) and determine the relevant real-valued propagation vector P, attenuation vector
A, unit vectors N and M, phase velocity C, attenuation–propagation ratio δ and attenuation angle γ , related to the SH , SV and P homogeneous
or inhomogeneous plane wave under consideration:

P1 = n1(Re σ ),

P3 = n3(Re σ ),

A1 = n1(Im σ ) + n3 D,

A3 = n3(Im σ ) − n1 D,

|P| = |Re σ |,
|A| = [(Im σ )2 + D2]1/2,

N1 = εn1,

N3 = εn3,

M1 = [n1(Im σ ) + n3 D]/[(Im σ )2 + D2]1/2,

M3 = [n3(Im σ ) − n1 D]/[(Im σ )2 + D2]1/2,

C = 1/|Re σ |,
δ = [(Im σ )2 + D2]1/2/|Re σ |,

cos γ = εIm σ/[(Im σ )2 + D2]1/2. (60)

Here ε is given by (29). We also get P 2 = 0, A2 = 0, N 2 = 0, M 2 = 0.

3.4 Some properties of plane SH waves

The mixed specification of slowness vector p, particularly eqs (57), (58) and (60), offers a simple possibility to investigate the properties of
homogeneous and inhomogeneous plane SH waves, propagating in the symmetry planes of viscoelastic anisotropic media. Actually, this is
the only case of inhomogeneous plane waves propagating in anisotropic viscoelastic media which can be investigated analytically. We present
here only the results which follow from simple analytical considerations. For a detailed numerical treatment see Červený & Pšenčı́k (2005).

C© 2005 RAS, GJI, 161, 197–212



Waves in viscoelastic anisotropic media—I 207

3.4.1 Direction of propagation N

As we can see from (60), N = εn, where ε equals either +1, or −1. Thus, the unit vector N specifying the direction of propagation vector P
(perpendicular to the wave front) equals n, or is opposite to it. For Re σ > 0, we obtain N = n, and for Re σ < 0 N = −n.

3.4.2 Attenuation angle γ

The attenuation angle γ is introduced here as a positive angle between unit vectors N and M, 0◦ ≤ γ ≤ 180◦, in such a way that cos γ =
N · M. In the planar case that we are treating it has been common to use an ‘oriented attenuation angle γ ’ in the seismological literature
(although the word ‘oriented’ has been considered only tacitly). The oriented attenuation angle γ would then be uniquely defined in the range
−180◦ < γ < 180◦. Simply speaking, the sign of γ specifies to which side of the propagation vector P the attenuation vector A is pointing.
Such a definition of γ has been particularly useful in the directional specification of the slowness vector, where γ is used as an input parameter
of the inhomogeneous plane wave under consideration. In the mixed specification, however, we use D as the input parameter, and the correct
orientation of A is fully specified by the sign of D. Thus, we do not need to consider an oriented attenuation angle γ at all. We always define
γ by (60), in the range 0◦ ≤ γ ≤ 180◦. For 0 ≤ cos γ ≤ 1, we obtain 0◦ ≤ γ ≤ 90◦, and for −1 ≤ cos γ ≤ 0, we get 90◦ ≤ γ ≤ 180◦.

3.4.3 Roots σ 1 and σ 2

It is reasonable to assume that the following relations are valid for any D:

Re σ1 > 0, Re σ2 < 0. (61)

Consequently, root σ = σ 1 corresponds to N = n (the wave front propagating along n), and root σ = σ 2 corresponds to N = −n (the wave
front propagating against n). For homogeneous plane waves (D = 0), the validity of (61) is obvious from (57). Since the validity of (61) is
not required anywhere in this paper, we do not give its proof here for a general case.

3.4.4 Exponential decay of amplitudes. Attenuation |A|
The maximum exponential decay of amplitudes occurs along the attenuation vector A. In our treatment, however, we decompose the attenuation
vector A into its two Cartesian components. The first component is along the direction of propagation N and the second along the wave front.
The exponential decay (growth) along N is controlled by the quantity Imσ , and the exponential decay along the wave front by D. For
homogeneous plane waves, the exponential decay is only along N. Contrary to this, the decay is only along the wave front if Im σ = 0. The
complete attenuation effect is given by the modulus |A| of attenuation vector A, |A| = [(Im σ )2 + D2]1/2 (see 60). |A| is briefly referred to
as the attenuation.

3.4.5 Homogeneous SH plane waves

For homogeneous plane waves, N ≡ M, and the inhomogeneity parameter D vanishes. Then (57) yields,

σ1,2 = ±
√

1/�22, (62)

where �22 is given by (58). Eqs (62), (58) and (60) yield simple expressions for phase velocityC, attenuation |A| and the attenuation–propagation
ratio δ:

C = 1/|Re
√

1/�22|, |A| = |Im
√

1/�22|, δ = |Im
√

1/�22|/|Re
√

1/�22|. (63)

3.4.6 Isotropic viscoelastic media

The properties of inhomogeneous plane waves propagating in isotropic viscoelastic media have been extensively studied in the seismological
literature (see the references given in the Introduction). Most of these studies, however, use the attenuation angle γ as the basic parameter of the
inhomogeneous plane wave. It is interesting to see how the results change if the mixed specification of the slowness vector with inhomogeneity
parameter D is used.

For isotropic viscoelastic media, the values of σ follow immediately from (57), if we use A44 = A66 and A46 = 0. We then obtain a
surprisingly simple result:

σ1,2 = ±(
1/A44 + D2

)1/2
. (64)

The quantity σ is applicable to inhomogeneous plane S waves propagating in any 3-D medium, in any direction. It is invariant with respect to
unit vectors n and m. If we use a standard notation A44 = V 2

S(1 − i/QS), where VS is the real-valued velocity and QS the real-valued quality
factor of S waves, we obtain,

σ1,2 = ±[
1/V 2

S (1 − i/QS) + D2
]1/2

. (65)
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Let us summarize the properties of homogeneous and inhomogeneous plane S waves propagating in isotropic viscoelastic media, which
follow from eqs (64) and (65):

(1) The values of σ and of all consequent quantities are direction independent, and do not depend on the sign of D (they are symmetrical
with respect to D = 0).

(2) The maximum phase velocity is always obtained for homogeneous plane waves (D = 0), and equals 1/|Re
√

1/A44|. With increasing
|D| the phase velocity decreases as 1/|Re

√
1/A44 + D2|, and for |D| → ∞ it approaches zero.

(3) The minimum attenuation is always obtained for homogeneous plane waves (D = 0). With increasing |D|, attenuation |A| increases.
(4) The attenuation angle γ is zero for homogeneous plane waves (D = 0), and increases to 90◦ with |D| increasing. The boundary

attenuation angle is always 90◦.

Eqs (64) and (65) remain valid even for inhomogeneous plane S waves propagating in perfectly elastic isotropic media; we only insert
1/QS = 0 or Im(A44) = 0. Then C = C1,2 = 1/

√
1/V 2

S + D2 and Im σ = 0. The attenuation angle γ depends neither on direction nor on D,
and equals 90◦. For D = 0, the expression (60) for cos γ is indefinite, but both limits (D → 0 and −D → 0) yield γ = 90◦.

3.4.7 Weakly inhomogeneous plane waves

For small D, the square root in (57) may be expanded in terms of D. Then we obtain approximately:

Re σ1,2
.= ±a + bD ± cD2, Im σ1,2

.= ±e − f D ± gD2. (66)

Here

a = Re(1/�22)1/2, b = Im(
/�22), c = 1

2
Re

(
�/�

3/2
22

)
, e = Im(1/�22)1/2, f = Re(
/�22), g = 1

2
Im

(
�/�

3/2
22

)
. (67)

The coefficient g is usually very small. Thus, for small D, Re σ 1,2 can be approximated by a quadratic parabola and Im σ 1,2 by a straight line.
To simplify the notation, we consider here only one root of σ , namely σ = σ 1. The minimum of the parabola corresponds to D = DM , where

DM .= −b/2c. (68)

As phase velocity C is given by the relation C = 1/|Re σ |, the phase velocity CM corresponding to DM is:

CM .= 1/(a − b2/4c). (69)

Thus, the maximum phase velocity (as a function of D) does not correspond to the homogeneous plane wave (D = 0), but to the weakly
inhomogeneous plane wave with inhomogeneity parameter D = DM , given by (68).

Similarly, we can determine the value of D = D0, at which Im σ equals zero:

D0
.= e/ f. (70)

For D = D0, the attenuation angle γ equals 90◦. Moreover, the value of D0 is a boundary between the values of D for which amplitudes of
inhomogeneous plane waves exponentially decay or grow along the direction of propagation N.

Finally, attenuation |A| is minimum for the inhomogeneity parameter D = Datt, given by the relation

Datt
.= e f/(1 + f 2). (71)

The attenuation |A| at D = Datt is given by the relation

Amin
.= e/

√
1 + f 2, (72)

and is here referred to as the minimum attenuation. Thus, the minimum attenuation (as a function of D) does not correspond to the homogeneous
plane wave (D = 0) but to the weakly inhomogeneous plane wave with the inhomogeneity parameter D = Datt, given by (71).

The inhomogeneity parameters DM and Datt also play an important role in the investigation of the energy flux of weakly inhomogeneous
SH plane waves propagating in symmetry planes of an anisotropic viscoelastic medium. Although we do not discuss the energy flux in this
paper, we present here (without derivation) two interesting properties valid for D = DM and D = Datt. We introduce the complex-valued
Poynting vector F, and the time-averaged, real-valued energy flux S = Re F. These quantities can be simply computed once the complex-valued
slowness vector p is known. Then, for D = Datt, the energy flux S and attenuation vector A are parallel. Similarly, for D = DM , the real and
imaginary parts of the Poynting vector, Re F and Im F, are parallel.

3.4.8 Strongly inhomogeneous SH plane waves

For large |D|, eqs (57) yield approximately,

Re σ1,2
.= D Im(
/�22) ± |D|Re

(
�/�2

22

)1/2
, Im σ1,2

.= −D Re(
/�22) ± |D| Im
(
�/�2

22

)1/2
. (73)

We denote all quantities corresponding to the limiting case of infinite |D| by asterisks. For |D| → ∞, the first equation of (73) with (60)
immediately yields

C∗
1,2 = 0. (74)
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Of course, the zero phase velocity C∗ = 0 is not realistic; it corresponds to the limiting case of |D| → ∞, which cannot, in fact, occur. This
limiting case, however, plays an important role in the discussion of inhomogeneous plane waves. Similarly, the second equation yields the
expressions for the limiting (boundary) attenuation angles γ ∗

1,2:

cos γ ∗
1,2 = θ1,2/

(
θ2

1,2 + 1
)1/2

, (75)

where θ 1,2 are given by the relation

θ1,2 = Im
(
�/�2

22

)1/2 ∓ sgnD Re(
/�22). (76)

Thus, the boundary attenuation angle γ ∗ does not depend on the magnitude of D but only on the sign of D.
It was shown in Section 3.4.6 that the boundary attenuation angle always equals 90◦ in viscoelastic isotropic media. For viscoelastic

anisotropic media, however, it usually differs from 90◦, and depends on the unit vectors n, m and on sgn D. For weakly dissipative media, it
is usually close to 90◦ but may deviate considerably from 90◦ for strongly dissipative media. It may be both less than and greater than 90◦.

3.4.9 Perfectly elastic anisotropic media

The density normalized moduli A44, A66 and A46 are real-valued in this case. Consequently, �22, 
 and � are also real-valued, and (57) yields

Re σ1,2 = ±(
1 + D2�/�22

)1/2
/�

1/2
22 , Im σ1,2 = −D
/�22. (77)

Consequently, phase velocity C and attenuation angle γ are given by the relations

C = C1,2 = �
1/2
22 /

(
1 + D2�/�22

)1/2
, cos γ1,2 = ∓(D/|D|)
/

(
�2

22 + 
2
)1/2

. (78)

Thus the attenuation angle γ does not depend on D but only on the sign of D. If the medium is anisotropic and 
 �= 0, the attenuation angle
γ is different from 90◦.

3.4.10 Polarization of SH waves

Both homogeneous and inhomogeneous SH plane waves are always linearly polarized in the direction perpendicular to �S (see 35).

3.5 Some properties of plane P and SV waves

The properties of the slowness vectors of plane P and SV waves propagating in the plane of symmetry of a monoclinic viscoelastic medium
are very similar to those of SH inhomogeneous plane waves discussed in the preceding section. It is, however, usually more difficult to find
simple analytical estimates for the individual quantities, as the case of P and SV inhomogeneous plane waves requires the solution of the
quartic eq. (59). Mostly, the numerical treatment is more effective (see Červený & Pšenčı́k 2005).

In two cases, however, the quartic eq. (59) in σ reduces to a quadratic equation in σ 2. This applies to homogeneous P and SV waves
propagating in a symmetry plane of an anisotropic viscoelastic medium, and to P and SV inhomogeneous plane waves propagating in an
isotropic viscoelastic medium. We present explicit solutions for both cases, as perturbation methods may be used to extend them to P and SV
weakly inhomogeneous plane waves (small D) propagating in viscoelastic anisotropic media. We also briefly discuss, more or less qualitatively,
some more general cases, for example strongly inhomogeneous plane waves.

We do not discuss here again the points made in Sections 3.4.1–3.4.4 derived for SH waves. They remain valid even for P and SV waves.

3.5.1 Homogeneous plane P and SV waves

For D = 0, the quartic eq. (59) in σ reduces to the quadratic equation in σ 2:

σ 4 A1 − σ 2C1 + 1 = 0, (79)

where A1 = �11�33 − �2
13 and C 1 = �11 + �33 are complex-valued coefficients. Consequently, the roots σ 2 for P and SV waves can be

expressed analytically,

σ 2 = 1

2

(
�11 + �33 ∓

√
(�11 − �33)2 + 4�2

13

)/(
�11�33 − �2

13

)
. (80)

Here the ‘−’ sign is for P waves and the ‘+’ sign for SV waves. Each σ 2 in (80) yields two solutions σ , one to each side of �, both for P and
SV waves.

We can also verify that the general relation σ 2 = 1/G, given in (26), remains valid. Here G is an eigenvalue of the complex-valued
Christoffel matrix, corresponding to a P or SV wave, and satisfying the quadratic equation G2 − C 1G + A1 = 0.
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3.5.2 Plane P and SV waves in isotropic viscoelastic media

In isotropic media, B 1, C 2 and B 3 in (59) vanish. Thus, the quartic equation in σ reduces to a quadratic equation in σ 2. If we further use
A1 = A3 = A11 A55, A2 = C 1 = C 3 = A11 + A55 and B 2 = A2

11 + A2
55, valid for isotropic media, the quadratic equation reads

σ 4 A11 A55 − σ 2
(
2D2 A11 A55 + A11 + A55

) + D4 A11 A55 + D2(A11 + A55) + 1 = 0. (81)

Solving this equation, we obtain two simple solutions for σ 2

σ 2 = 1/A11 + D2, for P waves,

σ 2 = 1/A55 + D2, for SV waves. (82)

Thus, for isotropic viscoelastic media the expressions for σ 2 for plane P and SV waves have exactly the same form as for SH waves (see 64).
Actually, this was expected. For SH and SV waves the expressions are identical, as A44 = A55, and for P waves we use A11 instead of A44 (or
A55). Eq. (65) can also be used for all the three waves, only for P waves we replace VS and QS by VP and QP. The same conclusions (1)–(4)
listed in Section 3.4.6 for SH waves also apply to P and SV waves. In addition, we obtain one interesting property of phase velocities of P
and S waves. We take into account that σ 2 → D2 for increasing |D|. This implies that the differences between the phase velocities of P and S
waves decrease with increasing D.

3.5.3 Weakly inhomogeneous plane P and SV waves

In a similar way as for SH waves, we can derive approximate relations for σ , assuming that the inhomogeneity parameter D is small. We put

σ
.= σ0 + νD, (83)

where σ 0 is given by (80), and corresponds to homogeneous plane waves. Using (59), we obtain an approximate relation for ν, valid for D
small,

ν
.= −i

(
σ 2

0 B1 − C2

)/(
2σ 2

0 A1 − C1

)
. (84)

It follows from (83) and (84) that ν
.= 0 and σ (D)

.= σ (−D) for isotropic viscoelastic media (where B 1 = C 2 = 0) but not for anisotropic
viscoelastic media. For weakly dissipative anisotropic media, ν is approximately purely imaginary. Consequently, for small D the differences
between σ (D) and σ (−D) are particularly expressed in Im σ and in related quantities (cos γ ). For small D, the quantity Im σ as a function
of D can be roughly approximated by an inclined straight line Im σ

.= Im σ 0 + D Im ν, passing through Im σ 0 for D = 0, and intersecting
the axis Im σ = 0 not at D = 0, as in isotropic media, but at D = D0, where D0 is given by the expression

D0
.= −Im σ0/Im ν. (85)

An important property of D0 is that attenuation angle γ equals 90◦ for D = D0. This D0 also represents the boundary between the values of
D for which the amplitudes exponentially decay and exponentially grow along the unit propagation vector N.

The behaviour of Re σ for D small is similar, Re σ
.= Re σ 0 + D Re ν. The values of Re ν are, however, considerably smaller in

magnitude than those of Im ν, but still exist. Consequently, phase velocity C (as a function of D) of a weakly inhomogeneous P or SV wave is
not maximum for homogeneous plane waves (D = 0) but for a certain weakly inhomogeneous plane wave (D = DM �= 0). The same applies
to the minimum of attenuation |A|. The derivation of the relevant approximate analytical estimates is straightforward, but is not given here.

3.5.4 Strongly inhomogeneous P and SV waves

Here we consider large |D|. We introduce a new variable w instead of σ by a simple relation

σ = wD. (86)

Inserting (86) into (59), we obtain a quartic equation in w,

A1w
4 + 2iw3 B1 − w2

[
4A2 + B2 + D−2C1

] − 2iw
(
B3 + D−2C2

) + A3 + D−2C3 + D−4 = 0. (87)

In the limiting case of |D| → ∞, eq. (87) simplifies, but still remains quartic,

A1w
4 + 2iw3 B1 − w2(4A2 + B2) − 2iwB3 + A3 = 0. (88)

For viscoelastic isotropic media we have B 1 = B 3 = 0 and A1 = A3 = 1
2 (4A2 + B2) = A11 A22. Eq. (88) then simplifies to w4 − 2w2 + 1 =

0, which has a double root w2 = 1, and yields σ 2 = D2 for |D| → ∞. For anisotropic viscoelastic media, the solution σ for P and SV waves
may be expressed for |D| → ∞ in the following form:

σ = Dw∞, (89)

where w∞ is the root of (88). This yields simple expressions for phase velocity C∞ and cos γ ∞:

C∞ = 1/|DRe w∞|, cos γ∞ = ε(D/|D|)Im w∞/
√

(Im w∞)2 + D−2, (90)

where ε = Re w∞/|Re w∞| = ±1.
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Thus, phase velocity C → 0 for |D| → ∞, for both P and SV waves. The behaviour of γ ∞ is more complex. Only for Im w∞ = 0 (e.g.
for isotropic viscoelastic medium) is γ ∞ = 90◦. For anisotropic viscoelastic media, however, Im w∞ �= 0, and γ ∞ deviates from 90◦. The
deviation is positive for one sign of D and negative for the other sign of D.

3.5.5 Polarization of P and SV waves

It is not difficult to show from (38) that P and SV plane waves propagating in viscoelastic anisotropic or isotropic media are generally
elliptically polarized. This is valid both for homogeneous and inhomogeneous plane waves.

4 C O N C L U D I N G R E M A R K S

The importance of studies of wave propagation in viscoelastic anisotropic media in seismology and seismic exploration (for example in shallow
consolidated sediments, reservoir rocks, zones of partial melting, mining areas, etc.) is indubitable. In this paper we have studied properties
of homogeneous and inhomogeneous plane waves propagating in an unbounded viscoelastic anisotropic medium in an arbitrarily specified
direction N. We used the mixed specification of the slowness vector discussed in Section 2.3. Although the mixed specification can be used
for unrestricted anisotropy, we investigated special cases which can be treated analytically. Simple and transparent analytical expressions were
derived and analysed in great detail. The analytical expressions are used together with solutions of algebraic equations of the sixth degree in
the companion paper (Červený & Pšenčı́k 2005) to study numerically homogeneous and inhomogeneous plane waves in perfectly elastic or
viscoelastic, isotropic or anisotropic media.

The proposed algorithms could be extended even to rheologically more complicated media (poroviscoelasticity, Biot, etc.). In most of
these extensions, the degree of the algebraic equation in σ , analogous to (24), increases from six to eight.

It was shown that attenuation angle γ is a quantity which should be sought and not used as an a priori given parameter in the studies
of P, SV and SH plane waves. The parameter γ , used as an input parameter, complicates computations considerably, and its use sometimes
even leads to non-physical results. The fact that γ cannot be used quite freely is known already from studies of inhomogeneous plane waves
propagating in perfectly elastic media, where γ can attain only a certain constant value. In the case of perfectly elastic anisotropic media the
value of γ is generally different from 90◦, in perfectly elastic isotropic media it is exactly 90◦. Other values of γ are forbidden. On the other
hand, the inhomogeneity parameter D introduced in the paper can be used universally and has all the necessary properties of a parameter of
the problem.

Similarly, for P, S1 and S2 waves, propagating in an arbitrary direction (generally outside symmetry planes) in a viscoelastic medium of
unrestricted anisotropy, unit vector M in the direction of attenuation vector A should be sought and not assumed to be known. Instead of M,
the unit vector m, perpendicular to n, and inhomogeneity parameter D, should be specified (see eq. (12) and the text relevant to it).

We have only considered plane waves throughout the paper. Knowledge of plane wave algorithms, however, is a necessary prerequisite
for the solution of more general problems of wave propagation (for example point sources, Green’s functions) in inhomogeneous layered
media (asymptotic high-frequency methods, ray methods).
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